Skip to main content

Controlling the Cross-section of Ultrafast Laser Inscribed Optical Waveguides

  • Chapter
  • First Online:
Femtosecond Laser Micromachining

Part of the book series: Topics in Applied Physics ((TAP,volume 123))

Abstract

The refractive index profile, or cross-section, of an optical waveguide is its most defining property. It directly determines the number of transverse modes supported by the waveguide and the properties of these modes. Proper control of the waveguide cross-section is therefore essential if the performance of the waveguide, or waveguide device, is to be optimised. This chapter describes how the waveguide cross-section affects the properties of the guided modes, why it is important to control the waveguide cross-section from a device engineering point of view and the various experimental techniques that have been developed to control the cross-section of ultrafast laser inscribed waveguides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.W. Snyder, J.D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983)

    Google Scholar 

  2. R.G. Hunsperger, Integrated Optics: Theory and Technology (Springer, Berlin, 1982)

    Google Scholar 

  3. A.M. Zheltikov, D.T. Reid, Weak-guidance-theory review of dispersion and birefringence management by laser inscription. Laser Phys. Lett. 5, 11–20 (2008)

    Article  ADS  Google Scholar 

  4. J.M. Senior, Optical Fiber Communications: Principles and Practice (Prentice Hall Europe, Hertfordshire, 1992)

    Google Scholar 

  5. R. Osellame, N. Chiodo, G. Della Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, D. Kopf, Optical waveguide writing with a diode-pumped femtosecond oscillator. Opt. Lett. 29, 1900–1902 (2004)

    Article  ADS  Google Scholar 

  6. X. Orignac, D. Barbier, X.M. Du, R.M. Almeida, O. McCarthy, E. Yeatman, Sol–gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1. 5 μm. Opt. Mater. 12, 1–18 (1999)

    Google Scholar 

  7. S.M. Eaton, W.J. Chen, H. Zhang, R. Iyer, J. Li, M.L. Ng, S. Ho, J.S. Aitchison, P.R. Herman, Spectral loss characterization of femtosecond laser written waveguides in glass with application to demultiplexing of 1300 and 1550 nm wavelengths. J. Lightwave Technol. 27, 1079–1085 (2009)

    Article  Google Scholar 

  8. W.J. Reichman, J.W. Chan, C.W. Smelser, S.J. Mihailov, D.M. Krol, Spectroscopic characterization of different femtosecond laser modification regimes in fused silica. J. Opt. Soc. Am. B 24, 1627–1632 (2007)

    Article  ADS  Google Scholar 

  9. Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, K. Hirao, Micromodification of element distribution in glass using femtosecond laser irradiation. Opt. Lett. 34, 136–138 (2009)

    Article  ADS  Google Scholar 

  10. J. Qiu, C. Zhu, T. Nakaya, J. Si, K. Kojima, F. Ogura, K. Hirao, Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser. Appl. Phys. Lett. 79, 3567–3569 (2001)

    Article  ADS  Google Scholar 

  11. W.J. Chen, S.M. Eaton, H. Zhang, P.R. Herman, Broadband directional couplers fabricated in bulk glass with high repetition rate femtosecond laser pulses. Opt. Express 16, 11470–11480 (2008)

    Article  ADS  Google Scholar 

  12. S.M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J.S. Aitchison, P.R. Herman, Telecom-band directional coupler written with femtosecond fiber laser. IEEE Photon. Technol. Lett. 18, 2174–2176 (2006)

    Article  ADS  Google Scholar 

  13. A. Szameit, D. Blomer, J. Burghoff, T. Schreiber, T. Pertsch, S. Nolte, A. Tunnermann, F. Lederer, Discrete nonlinear localization in femtosecond laser written waveguides in fused silica. Opt. Express 13, 10552–10557 (2005)

    Article  ADS  Google Scholar 

  14. A. Szameit, J. Burghoff, T. Pertsch, S. Nolte, A. Tuennermann, F. Lederer, Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica. Opt. Express 14, 6055–6062 (2006)

    Article  ADS  Google Scholar 

  15. N. Chiodo, G. Della Valle, R. Osellame, S. Longhi, G. Cerullo, R. Ramponi, P. Laporta, U. Morgner, Imaging of Bloch oscillations in erbium-doped curved waveguide arrays. Opt. Lett. 31, 1651–1653 (2006)

    Article  ADS  Google Scholar 

  16. F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch, S. Nolte, A. Tunnermann, S. Longhi, Bloch–Zener oscillations in binary superlattices. Phys. Rev. Lett. 102, 076802 (2009)

    Article  ADS  Google Scholar 

  17. P. Oberson, B. Gisin, B. Huttner, N. Gisin, Refracted near-field measurements of refractive index and geometry of silica-on-silicon integrated optical waveguides. Appl. Opt. 37, 7268–7272 (1998)

    Article  ADS  Google Scholar 

  18. Y. Nasu, M. Kohtoku, Y. Hibino, Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit. Opt. Lett. 30, 723–725 (2005)

    Article  ADS  Google Scholar 

  19. S.M. Eaton, H. Zhang, M.L. Ng, J. Li, W. Chen, S. Ho, P.R. Herman, Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides. Opt. Express 16, 9443–9458 (2008)

    Article  ADS  Google Scholar 

  20. N.D. Psaila, R.R. Thomson, H.T. Bookey, A.K. Kar, N. Chiodo, R. Osellame, G. Cerullo, G. Brown, A. Jha, S. Shen, Femtosecond laser inscription of optical waveguides in bismuth ion doped glass. Opt. Express 14, 10452–10459 (2006)

    Article  ADS  Google Scholar 

  21. Y. Youk, D.Y. Kim, A simple reflection-type two-dimensional refractive index profile measurement technique for optical waveguides. Opt. Commun. 262, 206–210 (2006)

    Article  ADS  Google Scholar 

  22. Y. Park, N.H. Seong, Y. Youk, D.Y. Kim, Simple scanning fibre-optic confocal microscopy for the refractive index profile measurement of an optical fibre. Meas. Sci. Technol. 13, 695–699 (2002)

    Article  ADS  Google Scholar 

  23. Y. Youk, D.Y. Kim, Tightly focused epimicroscope technique for submicrometer-resolved highly sensitive refractive index measurement of an optical waveguide. Appl. Opt. 46, 2949–2953 (2007)

    Article  ADS  Google Scholar 

  24. Y. Youk, D.Y. Kim, Reflection-type confocal refractive index profile measurement method for optical waveguides: effects of a broadband light source and multireflected lights. Opt. Commun. 277, 74–79 (2007)

    Article  ADS  Google Scholar 

  25. V.R. Bhardwaj, E. Simova, P.B. Corkum, D.M. Rayner, C. Hnatovsky, R.S. Taylor, B. Schreder, M. Kluge, J. Zimmer, Femtosecond laser-induced refractive index modification in multicomponent glasses. J. Appl. Phys. 97, 083102 (2005)

    Article  ADS  Google Scholar 

  26. B. Kouskousis, D.J. Kitcher, S. Collins, A. Roberts, G.W. Baxter, Quantitative phase and refractive index analysis of optical fibers using differential interference contrast microscopy. Appl. Opt. 47, 5182–5189 (2008)

    Article  ADS  Google Scholar 

  27. A. Barty, K.A. Nugent, D. Paganin, A. Roberts, Quantitative optical phase microscopy. Opt. Lett. 23, 817–819 (1998)

    Google Scholar 

  28. P. Ferraro, L. Miccio, S. Grilli, M. Paturzo, S. De Nicola, A. Finizio, R. Osellame, P. Laporta, Quantitative phase microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography. Opt. Express 15, 14591–14600 (2007)

    Article  ADS  Google Scholar 

  29. C.B. Schaffer, A. Brodeur, E. Mazur, Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Meas. Sci. Technol. 12, 1784–1794 (2001)

    Article  ADS  Google Scholar 

  30. S.M. Eaton, H. Zhang, P.R. Herman, Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt. Express 13, 4708–4716 (2005)

    Article  ADS  Google Scholar 

  31. S. Nolte, M. Will, J. Burghoff, A. Tuennermann, Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics. Appl. Phys. A 77, 109–111 (2003)

    Article  ADS  Google Scholar 

  32. J. Liu, Z. Zhang, C. Flueraru, X. Liu, S. Chang, C.P. Grover, Waveguide shaping and writing in fused silica using a femtosecond laser. IEEE J. Sel. Top. Quant. Electron. 10, 169–173 (2004)

    Article  Google Scholar 

  33. C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, R. Stoian, Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction. Opt. Express 16, 5481–5492 (2008)

    Article  ADS  Google Scholar 

  34. A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I.V. Hertel, E. Audouard, R. Stoian, Size correction in ultrafast laser processing of fused silica by temporal pulse shaping. Appl. Phys. Lett. 93, 021921 (2008)

    Article  ADS  Google Scholar 

  35. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, S. De Silvestri, Femtosecond micromachining of symmetric waveguides at 1. 5 μm by astigmatic beam focusing. Opt. Lett. 27, 1938–1940 (2002)

    Google Scholar 

  36. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, G. Cerullo, Femtosecond writing of active optical waveguides with astigmatically shaped beams. J. Opt. Soc. Am. B 20, 1559–1567 (2003)

    Article  ADS  Google Scholar 

  37. R. Osellame, V. Maselli, R.M. Vazquez, R. Ramponi, G. Cerullo, Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation. Appl. Phys. Lett. 90, 231118 (2007)

    Article  ADS  Google Scholar 

  38. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser. Opt. Lett. 28, 55–57 (2003)

    Article  ADS  Google Scholar 

  39. M. Ams, G.D. Marshall, D.J. Spence, M.J. Withford, Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Opt. Express 13, 5676–5681 (2005)

    Article  ADS  Google Scholar 

  40. S. Ho, Y. Cheng, P.R. Herman, K. Sugioka, and K. Midorikawa, Direct ultrafast laser writing of buried waveguides in Foturan glass, in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, Oxford, 2004), paper CThD6

    Google Scholar 

  41. K.J. Moh, Y.Y. Tan, X.C. Yuan, D.K.Y. Low, Z.L. Li, Influence of diffraction by a rectangular aperture on the aspect ratio of femtosecond direct-write waveguides. Opt. Express 13, 7288–7297 (2005)

    Article  ADS  Google Scholar 

  42. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, K. Itoh, Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses. Opt. Express 14, 291–297 (2005)

    Article  ADS  Google Scholar 

  43. R.R. Thomson, H.T. Bookey, N.D. Psaila, A. Fender, S. Campbell, W.N. MacPherson, J.S. Barton, D.T. Reid, A.K. Kar, Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications. Opt. Express 15, 11691–11697 (2007)

    Article  ADS  Google Scholar 

  44. W. Yang, C. Corbari, P.G. Kazansky, K. Sakaguchi, I.C.S. Carvalho, Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing. Opt. Express 16, 16215–16226 (2008)

    Article  ADS  Google Scholar 

  45. G.D. Marshall, P. Dekker, M. Ams, J.A. Piper, M.J. Withford, Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating. Opt. Lett. 33, 956–958 (2008)

    Article  ADS  Google Scholar 

  46. M. Ams, P. Dekker, G.D. Marshall, M.J. Withford, Monolithic 100 mw Yb waveguide laser fabricated using the femtosecond-laser direct-write technique. Opt. Lett. 34, 247–249 (2009)

    Article  ADS  Google Scholar 

  47. R.R. Thomson, A.S. Bockelt, E. Ramsay, S. Beecher, A.H. Greenaway, A.K. Kar, D.T. Reid, Shaping ultrafast laser inscribed optical waveguides using a deformable mirror. Opt. Express 16, 12786–12793 (2008)

    Google Scholar 

  48. A. Ruiz de la Cruz, A. Ferrer, W. Gawelda, D. Puerto, M.G. Sosa, J. Siegel, J. Solis, Independent control of beam astigmatism and ellipticity using a SLM for fs-laser waveguide writing. Opt. Express 17, 20853–20859 (2009)

    Article  ADS  Google Scholar 

  49. F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, K. Midorikawa, Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Opt. Lett. 35, 1106–1108

    Google Scholar 

  50. W. Watanabe, Y. Note, K. Itoh, Fabrication of multimode interference waveguides in glass by use of a femtosecond laser. Opt. Lett. 30, 2888–2890 (2005)

    Article  ADS  Google Scholar 

  51. N.D. Psaila, R.R. Thomson, H.T. Bookey, A.K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, S. Shen, Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription. Appl. Phys. Lett. 90, 131102 (2007)

    Article  ADS  Google Scholar 

  52. R.R. Thomson, N.D. Psaila, S.J. Beecher, A.K. Kar, Ultrafast laser inscription of a high-gain Er-doped bismuthate glass waveguide amplifier. Opt. Express 18, 13212–13219 (2010)

    Article  ADS  Google Scholar 

  53. R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H.T. Bookey, R.R. Thomson, N.D. Psaila, A.K. Kar, Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient. Appl. Phys. Lett. 90, 241107 (2007)

    Article  ADS  Google Scholar 

  54. N.D. Psaila, R.R. Thomson, H.T. Bookey, N. Chiodo, S. Shen, R. Osellame, G. Cerullo, A. Jha, A.K. Kar, Er:Yb-doped oxyfluoride silicate glass waveguide laser fabricated using ultrafast laser inscription. IEEE Photon. Technol. Lett. 20, 126–128 (2008)

    Article  ADS  Google Scholar 

  55. Y. Zhang, G. Cheng, G. Huo, Y. Wang, W. Zhao, C. Mauclair, R. Stoian, R. Hui, The fabrication of circular cross-section waveguide in two dimensions with a dynamical slit. Laser Phys. 19, 2236–2241 (2009)

    Article  ADS  Google Scholar 

  56. M. Pospiech, M. Emons, A. Steinmann, G. Palmer, R. Osellame, N. Bellini, G. Cerullo, U. Morgner, Double waveguide couplers produced by simultaneous femtosecond writing. Opt. Express 17, 3555–3563 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert R. Thomson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thomson, R.R., Psaila, N.D., Bookey, H.T., Reid, D.T., Kar, A.K. (2012). Controlling the Cross-section of Ultrafast Laser Inscribed Optical Waveguides. In: Osellame, R., Cerullo, G., Ramponi, R. (eds) Femtosecond Laser Micromachining. Topics in Applied Physics, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23366-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23366-1_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23365-4

  • Online ISBN: 978-3-642-23366-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics