Skip to main content

Geophysical Imaging Techniques

  • Chapter
  • First Online:
Measuring Roots

Abstract

Soils are the biggest terrestrial carbon store. The contribution of plant roots to soil and atmospheric carbon is significant and difficult to survey accurately. Worldwide interest in reducing greenhouse gases has led to research activities for quantifying the root biomass and evaluating their critical role in space and time. Geophysical methods image the medium under study in 2D and 3D, and monitor changes and processes in 4D. They offer good parametrical and spatiotemporal resolution combined with a minimum-invasive character. The high-resolution techniques of electric resistivity imaging (ERI) and ground penetrating radar (GPR) have extended newly their applications into the less known in vivo investigation of biogeophysical targets of living plants and trees. This includes mapping roots and trunk structures, diagnosing wood decay, analysing fluid content and physiological processes of water redistribution, sap uptake, etc. (e.g., Hagrey and Michaelsen, Eur J Environ Eng Geophys 7:75–93, 2002; Hagrey and Michaelsen, Geophysics 64:746–753, 1999; Hagrey et al., Geophys J Int 138:643–654, 1999; Hagrey et al. Proceedings, Meeting of Engineering Geology, Kiel, Germany, 2003; Hanafy and Hagrey, Geophysics 71:k9–k18, 2006; Hubbard et al., The Leading Edge 21:552–559, 2002). Applications of ERI and GPR techniques to image roots and root-zones are based on the electrical and electromagnetic contrast of these targets relative to surrounding soils (e.g., Hruška et al. Tree Physiol 19:125–130, 1999; Butnor et al., Tree Physiol 21:1269–1278, 2001; Butnor et al., Am J Soil Sci Soc 67:1607–1615, 2003; Hagrey et al. Geophys J Int 138:643–654, 2004, Hagrey 2007; Werban et al. J Plant Nutr Soil Sci 171:927–935, 2007; Amato et al. Tree Physiol 28:1441–1448, 2008; Amato et al. Eur J Agron 31:213–222, 2009; Petersen and Hagrey, The Leading Edge 28(10):1220–1224, 2009; Doolittle and Butnor, Soils, peatlands and biomonitoring. In: Jol HM (Ed) Ground penetrating radar: theory and applications. Elsevier, Amsterdam, 177–192, 2009; Hagrey and Petersen, Geophysics 76(2), G25–G35, 2011). In this chapter, we present principles of ERI and GPR techniques for root studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al’pin LM (1950) The theory of dipole sounding: Moscow, Gcetoptekhizdat, 89 p. [Translation in Dipole methods for measuring earth conductivity]: Plenum Press, New York, 1966, pp l–60

    Google Scholar 

  • Amato M, Basso B, Cellano G, Bitella G, Morelli G, Rossi R (2008) In situ detection of tree root distribution and biomass by multielectrode resistivity imaging. Tree Physiol 28:1441–1448

    PubMed  Google Scholar 

  • Amato M, Bitella G, Rossi R, Gomez JA, Lovelli S, Gomes JF (2009) Multi-electrode 3D resistivity imaging of alfalfa root zone. Eur J Agron 31:213–222

    Article  Google Scholar 

  • Annan AP (1973) Radio interferometry depth sounding: Part I – theoretical discussion. Geophysics 38:557–580

    Article  Google Scholar 

  • Annan AP (2004) Ground penetrating radar, principles, procedures & applications. Sensors & Software, Mississauga, Canada, p 303

    Google Scholar 

  • Annan AP (2005) GPR methods for hydrogeological studies, chapter 7. In: Rubin Y, Hubbard S (eds) Hydrogeophysics. Springer, Heidelberg, p 523

    Google Scholar 

  • Annan AP (2009) Electromagnetic principles of ground penetrating radar. In: Jol HM (ed) Ground penetrating radar: theory and applications. Elsevier, Amsterdam, pp 3–37

    Google Scholar 

  • Annan AP, Davis JL (1976) Impulse radar sounding in permafrost. Radio Sci 11:383–394

    Article  Google Scholar 

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Min Eng 146:54–62

    Google Scholar 

  • Asprion U (1998) Ground-penetrating radar (GPR) analysis in aquifer-sedimentology: case studies, with an emphasis on glacial systems of SW Germany. Tübinger Geowissenschaftliche Arbeiten, Reihe A, B and 43

    Google Scholar 

  • Bakker MAJ (2004) The internal structure of Pleistocene push moraines. A multidisciplinary approach with emphasis on ground penetrating radar: PhD thesis, Queen Mary, University of London, p 177

    Google Scholar 

  • Barringer AR (1965) Research directed to the determination of subsurface terrain properties and ice thickness by pulsed VHF propagation methods. Air Force Cambridge Research Laboratories contribution AF 19(628):2998

    Google Scholar 

  • Battista BM, Addison AD, Knapp CC (2009) Empirical mode decomposition operator for dewowing GPR data. J Environ Eng Geophys 14:163–169

    Article  Google Scholar 

  • Bevan BW (2000) An early geophysical survey at Williamsburg, USA. Archaea Prospec 7:51–58

    Article  Google Scholar 

  • Binley A, Kemna A (2005) Electrical methods. In: Rubin Y, Hubbard S (eds) Hydrogeophysics. Springer, Heidelberg, pp 129–156

    Chapter  Google Scholar 

  • Breusse JJ (1963) Modern geophysical methods for subsurface water exploration. Geophysics 27(4):633–657

    Article  Google Scholar 

  • Bristow CS (2003) Ground penetrating radar in sediments. Geol Soc, London

    Google Scholar 

  • Bucur V (2003) Nondestructive characterization and imaging of wood. New York, Springer, p 324

    Book  Google Scholar 

  • Buderi R (1996) Invention that changed the World. New York, NY, p 575

    Google Scholar 

  • Butnor JR, Doolittle JA, Kress L, Cohen S, Johnsen KH (2001) Use of ground-penetrating radar to study tree roots in the southeastern United States. Tree Physiol 21:1269–1278

    Article  PubMed  CAS  Google Scholar 

  • Butnor JR, Doolittle JA, Johnsen KH, Samuelson L, Stokes T, Kress L (2003) Utility of ground-penetrating radar as a root biomass survey tool in forest systems. Am J Soil Sci Soc 67:1607–1615

    Article  CAS  Google Scholar 

  • Campbell JE (1990) Dielectric properties and influence of ionic conductivity in soils at one to fifty megahertz. Soil Sci Soc Am J 54:332–341

    Article  Google Scholar 

  • Carpenter EW, Habberjam GM (1956) A tripotential method for resistivity prospecting. Geophysics 21:455–469

    Article  Google Scholar 

  • Cassidy NJ (2009) Ground penetrating radar data processing, modelling and analysis. In: Jol HM (ed) Ground penetrating radar: theory and applications. Elsevier, Amsterdam, pp 141–172

    Chapter  Google Scholar 

  • Chambers JE, Oglivy RD, Kuras O, Cripps JC, Meldrum PI (2002) 3D electrical imaging of known targets at a controlled environmental test site. Environ Geol 41:690–704

    Article  Google Scholar 

  • Clough JW (1976) Electromagnetic lateral waves observed by earth-sounding radars. Geophysics 41:1126–1132

    Article  Google Scholar 

  • Coscia I, Marescot L, Maurer H, Greenhalgh S, Green AG (2008) Experimental design for cross hole electrical resistivity tomography datasets. EAGE Near Surface Geophysics, Cracow, p 5

    Google Scholar 

  • Dahlin T (1996) 2D resistivity surveying for environmental and engineering applications. First Break 14:275–284

    Google Scholar 

  • Dahlin T (2000) Short note on electrode charge-up effects in DC resistivity data acquisition using multi-electrode arrays. Geophys Prospec 48:181–187

    Article  Google Scholar 

  • Dahlin T, Loke MH (1998) Resolution of 2D Wenner resistivity imaging as assessed by numerical modelling. J Appl Geophys 38:237–249

    Article  Google Scholar 

  • Dahlin T, Zhou B (2004) A numerical comparison of 2D resistivity imaging with ten electrode arrays. Geophys Prospect 52:379–398

    Article  Google Scholar 

  • Daniels DJ (1996) Subsurface penetrating radar. The Institution of Electrical Engineers, London, p 320

    Google Scholar 

  • Daniels DJ (2004) Ground-penetrating radar. Institute of Electrical Engineers, London

    Book  Google Scholar 

  • Davis JL, Annan AP (1989) Ground penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophys Prospect 37:531–551

    Article  Google Scholar 

  • Dey A, Morrison HF (1979) Resistivity modelling for arbitrarily shaped three-dimensional structures. Geophysics 44:753–780

    Article  Google Scholar 

  • Dobrin MB (1960) Geophysical prospecting. McGraw Hill, New York, p 10020

    Google Scholar 

  • Doolittle JA, Butnor JR (2009) Soils, peatlands and biomonitoring. In: Jol HM (ed) Ground penetrating radar: theory and applications. Elsevier, Amsterdam, pp 177–192

    Chapter  Google Scholar 

  • Edwards LS (1977) A modified pseudosection for resistivity and IP. Geophysics 42:1020–1036

    Article  Google Scholar 

  • Emerson DW (1990) Emerson, notes on mass properties of rocks-density, porosity, permeability. Explor Geophys 21:209–216

    Article  Google Scholar 

  • Gerlitz K, Knoll MD, Cross GM, Luzitano RD, Knight R (1993) Processing ground penetrating radar data to improve resolution of near-surface targets. In: Proceeding of the symposium on the application of geophysics to engineering and environmental problems. San Diego, California

    Google Scholar 

  • Geselowitz DB (1971) An application of electrocardiographic lead theory to impedance plethysmography. IEEE Trans Biomed Eng 18:38–41

    Article  PubMed  CAS  Google Scholar 

  • Greaves RJ, Lesmes DP, Lee JM, Toksöz MN (1996) Velocity variations and water content estimated from multi-offset, ground-penetrating radar. Geophysics 61:683–695

    Article  Google Scholar 

  • Griffiths DH, Turnbull J (1985) A multi-electrode array for resistivity surveying. First Break 3(7):16–20

    Google Scholar 

  • Griffiths DH, Turnbull J, Olayinka AI (1990) Two-dimensional resistivity mapping with a computer-controlled array. First Break 8:121–129

    Google Scholar 

  • Günther T, Rücker C, Spitzer K (2006) 3-d modeling and inversion of DC resistivity data incorporating topography – Part II: inversion. Geophys J Int 166:506–517

    Article  Google Scholar 

  • Hagrey SA al (2006) Electrical resistivity imaging of wooden tree trunks. Near Surf Geophys 4:177–185

    Google Scholar 

  • Hagrey SA al (2007) Geophysical imaging of root zone, trunk and moisture heterogeneity. J Exp Bot 58:839–854

    Article  CAS  Google Scholar 

  • Hagrey SA al (2009) 2D Optimisation of electrode arrays for borehole surveys. EAGE Near Surface Geophysics, Dublin, p 5

    Google Scholar 

  • Hagrey SA al, Michaelsen J (1999) Resistivity and percolation study of preferential flow in vadose zone at Bokhorst, Germany. Geophysics 64:746–753

    Article  Google Scholar 

  • Hagrey SA al, Michaelsen J (2002) Hydrogeophysical soil study at a drip irrigated orchard, Portugal. Eur J Environ Eng Geophys 7:75–93

    Google Scholar 

  • Hagrey SA al, Müller C (2000) GPR-study of pore water content and salinity in sand. Geophys Prospect 48:63–85

    Article  Google Scholar 

  • Hagrey SA al, Schubert-Klempnauer T, Wachsmuth D, Michaelsen J, Meissner R (1999) Preferential flow, first results of a full scale flow model. Geophys J Int 138:643–654

    Article  Google Scholar 

  • Hagrey SA al, Rabbel W, Meissner R, Werban U (2003) The “GeoModel” at Kiel-A hydrogeophysical full scale model for Engineering Geology to study pore water, contamination and structure of soils. In: Proceedings, meeting of engineering geology. Kiel, Germany, pp 361–362

    Google Scholar 

  • Hagrey SA al, Meissner R, Werban U, Rabbel W, Ismaeil A (2004) Hydro-, Bio-Geophysics. The Leading Edge 23:670–674

    Article  Google Scholar 

  • Hagrey SA al, Petersen T (2011) Numerical and experimental mapping of small root zones using optimized surface and borehole resistivity tomography. Geophysics 76(2):G25–G35

    Google Scholar 

  • Hallof PG (1957) On the interpretation of resistivity and induced polarization measurements, Ph.D Thesis, Massachusetts, p 256

    Google Scholar 

  • Hanafy SM, Hagrey SA al (2006) Radar tomography for soil moisture heterogeneity. Geophysics 71:k9–k18

    Article  Google Scholar 

  • Hayt W (1989) Engeneering electromagnetics. McGraw-Hill, New York

    Google Scholar 

  • Heinz J, Aigner T (2003) Three-dimensional GPR analysis of various quaternary gravel-bed braided river deposits (southwestern Germany). In: Bristow CS, Jol HM (eds) Ground penetrating radar in sediments. Geol Soc London Spec Publ 211:99–110

    Google Scholar 

  • Hesse A, Jolivet A, Tabbagh A (1986) New prospects in shallow depth electrical surveying for archaeological and pedological applications. Geophysics 51:585–594

    Article  Google Scholar 

  • Hruška J, Cermák J, Sustek S (1999) Mapping of tree root systems by means of the ground penetrating radar. Tree Physiol 19:125–130

    Article  PubMed  Google Scholar 

  • Hubbard SS, Grote K, Rubin Y (2002) Mapping the volumetric soil water content of a California vineyard using high-frequency GPR ground wave data. The Leading Edge 21:552–559

    Article  Google Scholar 

  • Jol HM (ed) (2009) Ground penetrating radar – theory and applications. Elsevier, Amsterdam

    Google Scholar 

  • Jol HM, Bristow CS (2003) GPR in sediments: advice on data collection, basic processing and interpretation, a good practice guide. In: Bristow CS, Jol HM (eds) Ground penetrating radar in sediments. Geol Soc London Spec Publ 211:9–27

    Google Scholar 

  • Jol HM, Lawton DC, Smith DG (2002) Ground penetrating radar: 2-D and 3-D subsurface imaging of a coastal barrier spit, Long Beach, WA, USA. Geomorphology 53:165–181

    Article  Google Scholar 

  • Keller GV, Frischknecht FC (1966) Electrical methods in geophysical prospecting. Pergamon, Oxford

    Google Scholar 

  • Koefoed O (1979) Geosounding principles 1: resistivity sounding measurements. Elsevier, Amsterdam

    Google Scholar 

  • Langwig JE (1971) Trace element-electrical conductivity relationships in wood, PhD Thesis: State University Coll. For. Syracuse, NY, p181

    Google Scholar 

  • Lazzari L (2007) Study of spatial variability of soil root zone properties using electrical resistivity technique, Ph.D. thesis: University of Basilicata, Italy

    Google Scholar 

  • Lehmann F, Green AG (1999) Semiautomated georadar data acquisition in three dimensions. Geophysics 64:719–731

    Article  Google Scholar 

  • Li Y, Oldenburg DW (1992) Approximate inverse mappings in DC resistivity problem. Geophys J Int 109:343–362

    Article  Google Scholar 

  • Loke MH, Barker RD (1995) Least-squares deconvolution of apparent resistivity pseudosection. Geophysics 60:1682–1690

    Article  Google Scholar 

  • Loke MH, Barker RD (1996) Rapid least square inversion of apparent resistivity pseudosections using quasi-Newton method. Geophys Prospect 48:131–152

    Article  Google Scholar 

  • Loke MH, Dahlin T (2002) A comparison of the Gauss-Newton and quasi-Newton methods in resistivity imaging inversion. J Appl Geophys 49:149–162

    Article  Google Scholar 

  • Loke MH, Acworth I, Dahlin T (2003) A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor Geophys 34:182–187

    Article  Google Scholar 

  • Lowrie W (1997) Fundamentals of geophysics. Cambridge University Press, Cambridge

    Google Scholar 

  • Martinis R (2002) Nondestructive techniques for decay diagnosis on standing trees. PhD thesis: University of Florence, Italy, p300

    Google Scholar 

  • McCann DM, Forde MC (2001) Review of NDT methods in the assessment of concrete and masonry structures. NDT and E (Independent Nondestructive Testing and Evaluation) International 34(2):71–84

    Google Scholar 

  • McCann DM, Jackson PD, Fenning PJ (1988) Comparison of the seismic and ground probing radar methods in geological surveying. Proc Inst Elect Eng 135:380–390

    Google Scholar 

  • McGillivray PR, Oldenburg DW (1990) Methods for calculating Frechet derivatives and sensitivities for the non-linear inverse problem: a comparative study. Geophys Prosp 38:499–524

    Article  Google Scholar 

  • McNeill JD (1980) Electrical conductivity of soils and rocks: Geonics Ltd. Technical Note TN 5:p22

    Google Scholar 

  • Merriam JB (2005) Injection electrode overprinting. J Environ Eng Geophys 10:365–370

    Article  Google Scholar 

  • Møller I, Vosgerau H (2006) Testing ground penetrating radar for resolving facies architecture changes - a radar stratigraphic and sedimentological analysis along a 30 km profile on the Karup Outwash Plain, Denmark. Near Surf Geophys 4:57–68

    Google Scholar 

  • Morey RM (1974) Continuous subsurface profiling by impulse radar. In: Proceedings of the Engineering Foundation Conference on Subsurface Exploration for Underground Excavation and Heavy Construction, Henniker, NH, August 11–16, 1974, American Society of Civil Engineers, pp 213–232

    Google Scholar 

  • Neal A (2004) Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth-Sci Rev 66:261–330

    Article  Google Scholar 

  • Nicolotti G, Socco LV, Martinis R, Godio A, Sambuelli L (2003) Application and comparison of three tomographic techniques for detection of decay in trees. J Arboricult 29:66–78

    Google Scholar 

  • Nitsche FO, Green AG, Horstmeyer H, Büker F (2002) Quaternary depositional history of the Reuss delta, Switzerland: constraints from high-resolution seismic reflection and georadar surveys. J Quat Sci 17:131–143

    Article  Google Scholar 

  • Oldenburg DW, Li Y (1994) Inversion of induced polarization data. Geophysics 59:1327–1341

    Article  Google Scholar 

  • Oldenburg DW, Li Y (1999) Estimating depth of investigation in dc resistivity and IP surveys. Geophysics 64:403–416

    Article  Google Scholar 

  • Panissod C, Dabas M, Jolivet A, Tabbagh A (1997) A novel mobile multipole system (MUCEP) for shallow (0–3 m) geoelectrical investigation: the ‘Vol-de-Canards’ array. Geophys Prospect 45:983–1002

    Article  Google Scholar 

  • Parasnis DS (1997) Principles of applied geophysics. Chapman & Hall, London

    Google Scholar 

  • Pazdirek O, Blaha V (1996) Examples of resistivity imaging using ME-100 resistivity field acquisition system. In: EAGE 58th Conference and Technical Exhibition Extended Abstracts, Amsterdam

    Google Scholar 

  • Petersen T, Hagrey SA al (2009) Mapping root zones of small plants using surface and borehole resistivity tomography. Leading Edge 28(10):1220–1224

    Article  Google Scholar 

  • Pipan M, Baradello L, Forte E, Prizzon A, Finetti I (1999) 2-D and 3-D processing and interpretation of multi-fold ground penetrating radar data: a case history from an archaeological site. J Appl Geophys 41:271–292

    Article  Google Scholar 

  • Reynolds JM (1997) An Introduction to applied and environmental geophysics. Wiley, New York

    Google Scholar 

  • Roy A, Apparao A (1971) Depth of investigation in direct current methods. Geophysics 36:943–959

    Article  Google Scholar 

  • Rust AC, Russell JK, Knight RJ (1999) Dielectric constant as a predictor of porosity in dry volcanic rocks. J Volcanol Geotherm Res 91:79–96

    Article  CAS  Google Scholar 

  • Samouëlian A, Cousin I, Richard G, Tabbagh A, Bruand A (2003) Electrical resistivity imaging for detecting soil cracking at the centimetric scale. Soil Sci Soc J Am 67:1319–1326

    Article  Google Scholar 

  • Sandoz JL (1996) Ultrasonics solid wood evaluation in industrial applications. In: Tenth international symposium on nondestructive testing of wood. Lausanne, Switzerland, pp 147–154

    Google Scholar 

  • Schön JH (1997) Physical properties of rocks: fundamentals and principles of petrophysics, handbook of geophysical exploration. Elsevier, Amsterdam

    Google Scholar 

  • Sheriff RE, Geldart LP (1995) Exploration seismology. Cambridge University Press, New York

    Book  Google Scholar 

  • Silvester PP, Ferrari RL (1990) Finite elements for electrical engineers. Cambridge University Press, Cambridge

    Google Scholar 

  • Simmons G, Strangway DW, Bannister L, Baker R, Cubley D, La Torraca G, Watts R (1972) The surface electrical properties experiment. In: Z Kopal, DW Strangway, D Reidel (eds) Lunar geophysics. Dordrecht, 258–271

    Google Scholar 

  • Simpson W, TenWolde A (1999) Physical properties and moisture relations of wood. In: Wood handbook-Wood as an engineering material. Madison. US Department of Agriculture, Forest Service, Forest Products Laboratory, Report FPL–GTR–113, Ch. 3, p 463

    Google Scholar 

  • Skaar C (1988) Wood-water relations. Springer, Heidelberg, p 279

    Book  Google Scholar 

  • Sørensen K (1996) Pulled array continuous electrical profiling. First Break 14(3):85–90

    Google Scholar 

  • Stern W (1929) Versuch einer elektrodynamischen Dickenmessung von Gletschereis. Ger Beitr zur Geophysik 23:292–333

    Google Scholar 

  • Stern W (1930) Uber Grundlagen, Methodik und bisherige Ergebnisse elektrodynamischer Dickenmessung von Gletschereis. Z Gletscherkunde 15:24–42

    Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Topp GC, Davis JL, Annan AP (1980) Electromagnetoc determination of soil water content. Measurements in coaxial transmission lines. Water Resour Res 16:574–582

    Article  Google Scholar 

  • Torgovnikov G (1993) Dielectric properties of wood and wood-based materials. Springer, New York, p 196

    Book  Google Scholar 

  • Urbini S, Vittuari L, Gandolfi S (2001) GPR and GPS data integration: examples of application in Antarctica. Annali di Geofisica 44:687–702

    Google Scholar 

  • van Overmeeren RA, Ritsema IL (1988) Continuous vertical electrical sounding. First Break 6(10):313–324

    Google Scholar 

  • Venkateswaran A (1972) A comparison of the electric properties of milled wood, milled wood cellulose, and milled wood lignin. Wood Sci 4:248–253

    CAS  Google Scholar 

  • Ward SH, Hohmann GH (1988) Electromagnetic theory for geophysical aplications. In: Nabighian MN (ed) Electro-magnetic methods in applied geophysics, 1, Theory. Society of Exploration Geophysicists, Tulsa, Okla, pp 130–311

    Chapter  Google Scholar 

  • Wenner F (1916) A method of measuring earth resistivity: US. Natl Bureau Stand Bull 12(3):469–478

    Google Scholar 

  • Wensink WA (1993) Dielectric properties of wet soils in the frequency range 1–3000 MHz. Geophys Prospect 41:671–696

    Article  Google Scholar 

  • Werban U, Hagrey SA al, Rabbel W (2007) Hydrogeophysical monitoring of root zone water content in the lab. J Plant Nutr Soil Sci 171:927–935

    Article  CAS  Google Scholar 

  • Yilmaz Ö (1987) Seismic data processing. Society of Exploration Geophysicists, Tulsa, Oklahoma, p 526

    Google Scholar 

  • Yilmaz Ö (2001) Seismic Data Analysis. Society of Exploration Geophysicists, Tulsa, Oklahoma

    Book  Google Scholar 

  • Zhou QY, Shimada J, Sato A (2001) Three-dimensional spatial and temporal monitoring of soil water content using electrical resistivity tomography. Water Resour Res 37:273–285

    Article  Google Scholar 

  • Zohdy AAR (1989) A new method for the automatic interpretation of Schlumberger and Wenner sounding curves. Geophysics 54:245–253

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said Attia al Hagrey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hagrey, S.A.a. (2012). Geophysical Imaging Techniques. In: Mancuso, S. (eds) Measuring Roots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22067-8_10

Download citation

Publish with us

Policies and ethics