Skip to main content

Online Graph Exploration: New Results on Old and New Algorithms

  • Conference paper
Automata, Languages and Programming (ICALP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6756))

Included in the following conference series:

Abstract

We study the problem of exploring an unknown undirected connected graph. Beginning in some start vertex, a searcher must visit each node of the graph by traversing edges. Upon visiting a vertex for the first time, the searcher learns all incident edges and their respective traversal costs. The goal is to find a tour of minimum total cost. Kalyanasundaram and Pruhs [23] proposed a sophisticated generalization of a Depth First Search that is 16-competitive on planar graphs. While the algorithm is feasible on arbitrary graphs, the question whether it has constant competitive ratio in general has remained open. Our main result is an involved lower bound construction that answers this question negatively. On the positive side, we prove that the algorithm has constant competitive ratio on any class of graphs with bounded genus. Furthermore, we provide a constant competitive algorithm for general graphs with a bounded number of distinct weights.

Supported by the National Research Fund, Luxembourg, and cofunded under the Marie Curie Actions of the European Commission (FP7-COFUND).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29(4), 1164–1188 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Asahiro, Y., Miyano, E., Miyazaki, S., Yoshimuta, T.: Weighted nearest neighbor algorithms for the graph exploration problem on cycles. Inf. Process. Lett. 110(3), 93–98 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ausiello, G., Feuerstein, E., Leonardi, S., Stougie, L., Talamo, M.: Algorithms for the on-line travelling salesman. Algorithmica 29(4), 560–581 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Awerbuch, B., Betke, M., Rivest, R.L., Singh, M.: Piecemeal graph exploration by a mobile robot. Inf. Comput. 152(2), 155–172 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. Information and Computation 106(2), 234–252 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bender, M.A., Slonim, D.K.: The power of team exploration: Two robots can learn unlabeled directed graphs. In: Proceedings of FOCS, pp. 75–85 (1994)

    Google Scholar 

  7. Berman, P.: On-line searching and navigation. In: Fiat, A. (ed.) Dagstuhl Seminar 1996. LNCS, vol. 1442, pp. 232–241. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  8. Betke, M., Rivest, R.L., Singh, M.: Piecemeal learning of an unknown environment. Machine Learning 18, 231–254 (1995)

    Google Scholar 

  9. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  10. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph (extended abstract). In: Proceedings of FOCS, pp. 355–361 (1990)

    Google Scholar 

  11. Dessmark, A., Pelc, A.: Optimal graph exploration without good maps. Theoretical Computer Science 326(1-3), 343–362 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal constrained graph exploration. ACM Trans. Algorithms 2, 380–402 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dynia, M., Kutyłowski, J., der Heide, F.M.a., Schindelhauer, C.: Smart robot teams exploring sparse trees. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 327–338. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Dynia, M., Lopuszanski, J., Schindelhauer, C.: Why robots need maps. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 41–50. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Erdős, P.: Graph theory and probability. Canad. J. Math. 11, 34–38 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fleischer, R., Trippen, G.: Exploring an unknown graph efficiently. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 11–22. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Fraigniaud, P., Gąsieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. Netw. 48, 166–177 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Impact of memory size on graph exploration capability. Discrete Applied Mathematics 156(12), 2310–2319 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gal, S.: Search Games. Academic Press, London (1980)

    MATH  Google Scholar 

  20. Gąsieniec, L., Radzik, T.: Memory efficient anonymous graph exploration. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 14–29. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Gutin, G., Punnen, A.P.: The Traveling Salesman Problem and Its Variations. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  22. Hurkens, C.A.J., Woeginger, G.J.: On the nearest neighbor rule for the traveling salesman problem. Operations Research Letters 32(1), 1–4 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kalyanasundaram, B., Pruhs, K.: Constructing competitive tours from local information. Theor. Comput. Sci. 130(1), 125–138 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kwek, S.: On a simple depth-first search strategy for exploring unknown graphs. In: Rau-Chaplin, A., Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 1997. LNCS, vol. 1272, pp. 345–353. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  25. Miyazaki, S., Morimoto, N., Okabe, Y.: The online graph exploration problem on restricted graphs. IEICE Transactions on Information and Systems E92.D(9), 1620–1627 (2009)

    Article  Google Scholar 

  26. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. Journal of Algorithms 33(2), 281–295 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Papadimitriou, C., Yannakakis, M.: Shortest paths without a map. Theoretical Computer Science 84(1), 127–150 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rao, N., Kareti, S., Shi, W., Iyengar, S.: Robot navigation in unknown terrains: Introductory survey of nonheuristic algorithms. Report ORNL/TM-12410, Oak Ridge Nat. Lab (1993)

    Google Scholar 

  29. Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuristics for the traveling salesman problem. SIAM J. Comput. 6(3), 563–581 (1977)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Megow, N., Mehlhorn, K., Schweitzer, P. (2011). Online Graph Exploration: New Results on Old and New Algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22012-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22012-8_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22011-1

  • Online ISBN: 978-3-642-22012-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics