Skip to main content

Bacillus as PGPR in Crop Ecosystem

  • Chapter
  • First Online:
Bacteria in Agrobiology: Crop Ecosystems

Abstract

Gram-positive bacteria, in particular, members of group Bacillus, are among the best-studied experimental systems in bacteriology. Research, in Bacillus subtilis is remarkably diverse, including genetics, biochemistry, cell biology, and ecology, thus has an enormous impact on both basic and applied biology. Multiple species of Bacillus and Paenibacillus occur in the agricultural fields that can promote the crop health in different ways. Some of these species directly stimulate plant growth either through enhancement in acquisition of nutrients or through stimulation of host plant’s defense mechanisms prior to infection; other species can inhibit or suppress the populations of pathogenic microorganisms and/or pests. Although the distribution, diversity, and population dynamics of these two genera have been widely studied using a variety of techniques, much remains to be learned if we are to improve both basic studies of plant–microbe interactions and bacterial ecology, as well as the efforts to improve agricultural technologies. Biological control, using microorganisms to suppress plant disease, offers a powerful alternative to the use of synthetic chemicals. Many species of Bacillus and related forms are potential biological control agents against various pathogenic microbes. Their spore forming ability makes them an ideal candidate for developing efficient biopesticide products from technological point of view. Many isolates of Bacillus spp. have been developed as biocontrol agents (BCAs) of plant pests and pathogens. However, a greater understanding of their ecology including diversity, distribution, and physiology of this Gram-positive genus will be helpful for identification of new strains to be used as successful BCAs. Development of molecular and genomic tools offers new possibilities for improving the selection, characterization, and management of biological control including modifications of wild-type strains to improve their ability for controlling soilborne diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams PD, Kloepper JW (2002) Effect of host genotype on indigenous bacterial endophytes of cotton (Gossypium hirsutum L.). Plant Soil 240:181–189

    Article  CAS  Google Scholar 

  • Algawadi AR, Gaur AC (1988) Associative effect of Rhizobium and phosphate solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant Soil 105:241–246

    Article  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893

    Article  PubMed  CAS  Google Scholar 

  • Arias RS, Sagardoy MA, van Vuurde JWL (1999) Spatio-Temporal distribution of naturally occurring Bacillus spp. and other bacteria on the phylloplane of soybean under field conditions. J Basic Microbiol 39:283–292

    Article  PubMed  CAS  Google Scholar 

  • Arrebola E, Jacobs R, Korsten L (2010) Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J Appl Microbiol 108:386–395

    Article  PubMed  CAS  Google Scholar 

  • Ash C, Farrow JAE, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli using a PCR probe test. Antonie van Leeuwenhoek 64:253–260

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  PubMed  CAS  Google Scholar 

  • Bargabus RL, Zidack NK, Sherwood JW, Jacobsen BJ (2002) Characterization of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere colonizing Bacillus mycoides biological control agent. Physiol Mol Plant Pathol 61:289–298

    Article  CAS  Google Scholar 

  • Bell CR, Dickie GA, Harvey WLG, Chan JWYF (1995) Endophytic bacteria in grapevine. Can J Microbiol 41:46–53

    Article  CAS  Google Scholar 

  • Benhamou N, Kloepper JW, Quadt-Hallmann A, Tuzun S (1996) Induction of defense related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol 112:919–929

    PubMed  CAS  Google Scholar 

  • Berg G, Zachow C, Lottmann J, Gotz M, Costa R, Smalla K (2005) Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Appl Environ Microbiol 71:4203–4213

    Article  PubMed  CAS  Google Scholar 

  • Berge O, Heulin T, Achouak W, Richard C, Bally R, Balandreau J (1991) Rahnella aquatilis, a nitrogen-fixing enteric bacterium associated with the rhizosphere of wheat and maize. Can J Microbiol 37:195–203

    Article  Google Scholar 

  • Bethlenfalvay GJ (1994) Sustainability and rhizoorganisms in an ecosystem. Sociedad Mexicana de la Ciencia del Suelo 4:9–10

    Google Scholar 

  • Bloemberg GV, Lugtenberg BFJ (2001) Molecular Basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  PubMed  CAS  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassan F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    Article  PubMed  CAS  Google Scholar 

  • Bottini R, Cassan F, Picolli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion. Appl Microbiol Biotechnol 65:497–503

    Article  PubMed  CAS  Google Scholar 

  • Chen XH, Koumaoutsi A, Scholz R, Borriss R (2009) More than anticipated-production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. J Mol Microbiol Biotechnol 16:14–24

    Article  PubMed  CAS  Google Scholar 

  • Choudhary DK, Johri BN (2008) Interactions of Bacillus spp. and plants – with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    Article  PubMed  Google Scholar 

  • Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47:289–297

    Article  CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Ait Barka E (2005) Endophytic colonization of Vitis vinifera L. by a plant growth promoting bacterium, Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  PubMed  CAS  Google Scholar 

  • Cook RJ, Bruckart WL, Coulson JR, Goettel MS, Humber RA, Lumsden RD, Maddox JV, McManus ML, Moore L, Meyer SF, Quimby PC Jr, Stack JP, Vaughn JL (1996) Safety of microorganisms intended for pest and plant disease control: a framework for scientific evaluation. Biol Control 7:333–351

    Article  Google Scholar 

  • Crowley DE, Rengel Z (1999) Biology and chemistry of rhizosphere influencing nutrient availability. In: Rengel Z (ed) Mineral nutrition of crops: fundamental mechanisms and implications. The Haworth, New York, pp 1–40

    Google Scholar 

  • Dong YH, Xu JL, Li XZ, Zhang LH (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum sensing signal and attenuates the virulence of Erwinia carotovora. Proc Nat Acad Sci USA 97:3526–3531

    Article  PubMed  CAS  Google Scholar 

  • Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum sensing dependent bacterial infection by an N-acylhomoserine lactonase. Nature 411:813–817

    Article  PubMed  CAS  Google Scholar 

  • Dong YH, Zhang XF, Xu JL, Zhang LH (2004) Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl Environ Microbiol 70:954–960

    Google Scholar 

  • Dong YH, Wang LY, Zhang LH (2007) Quorum quenching microbial infections: mechanisms and implications. Philos Trans R Soc Lond B Biol Sci 362:1201–1211

    Article  PubMed  CAS  Google Scholar 

  • Duineveld BM, Rosado AS, van Elsas JD, van Veen JA (1998) Analysis of the dynamics of bacterial communities in the rhizosphere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns. Appl Environ Microbiol 64:4950–4957

    PubMed  CAS  Google Scholar 

  • Duineveld BM, Kowalchuk GA, Keijzer A, van Elsas JD, van Veen JA (2001) Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR amplified 16S rRNA as well as DNA fragments coding 16S rRNA. Appl Environ Microbiol 67:172–178

    Article  PubMed  CAS  Google Scholar 

  • Emmert EAB, Handelsman J (1999) Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol Lett 171:1–9

    Article  PubMed  CAS  Google Scholar 

  • Faure D, Vereecke D, Leveau JH (2009) Molecular communication in the rhizosphere. Plant Soil 321:279–303

    Article  CAS  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270

    Article  PubMed  CAS  Google Scholar 

  • Gaur AC (1990) Phosphate solubilizing microorganisms as biofertilizers. Omega Scientific Publishers, New Delhi, p 176

    Google Scholar 

  • Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  CAS  Google Scholar 

  • Grayston SJ, Griffith GS, Mawdsley JL, Campbell CD, Bardgett RD (2001) Accounting for the variability in soil microbial communities of temperate upland grassland ecosystem. Soil Biol Biochem 33:533–551

    Article  CAS  Google Scholar 

  • Gu Y-H, Mazzola M (2003) Modification of fluorescent pseudomonad community and control of apple replant disease induced in a wheat cultivar-specific manner. Appl Soil Ecol 24:57–72

    Article  Google Scholar 

  • Gutierrez-Manero FJ, Ramos B, Probanza A, Mehouachi J, Talon M (2001) The plant growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberelins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Hurek T, Reinhold-Hurek B (2003) Azoarcus spp. strain BH72 as a model for nitrogen fixing grass endophytes. J Biotechnol 106:169

    Article  PubMed  CAS  Google Scholar 

  • Idris EES, Bochow H, Ross H, Boriss F (2004) Use of Bacillus subtilis as biocontrol agent. 6. Phytohormone action of culture filtrate prepared from plant growth promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus subtilis FZB37. J Plant Dis Prot 111:583–597

    CAS  Google Scholar 

  • Idris EES, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of Indole-3-Acetic Acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Interact 20:619–626

    Article  PubMed  CAS  Google Scholar 

  • Jaeger CH III, Lindow SE, Miller W, Clark E, Firestone MK (1999) Mapping of sugar and amino acids availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol 65:2685–2690

    PubMed  CAS  Google Scholar 

  • Johri BN, Sharma A, Virdi JS (2003) Rhizobacterial diversity in India and its influence on soil and plant health. Adv Biochem Eng Biotechnol 84:49–89

    PubMed  CAS  Google Scholar 

  • Joshi R, McSpadden Gardener BB (2006) Identification and characterization of novel genetic markers associated with biological control activities in Bacillus subtilis. Biol Control 96:145–154

    CAS  Google Scholar 

  • Juhnke ME, Mathre DE, Sands DC (1987) Identification and characterization of rhizosphere competent bacteria of wheat. Appl Environ Microbiol 53:2793–2799

    PubMed  CAS  Google Scholar 

  • Jungk A (2001) Root hair and acquisition of plant nutrients from soils. J Plant Nutr Soil Sci 164:121–129

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2006) Role of phosphate solubilizing microorganisms in sustainable agriculture-a review. In: Lichtfouse E, Navarrete M, Debaeke P, Veronique S, Alberola C (eds) Sustainable agriculture, vol 5. Springer, Netherlands, pp 551–570

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth promoting rhizobacteria on radishes. In: Proceedings of IVth International Conference on Plant Pathogenic Bacteria. pp.879–882

    Google Scholar 

  • Kloepper JW, Leong J, Teinteze M, Schroth MN (1980) Enhancing plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Suzuki T, Fujita T, Masuda M, Shimizu S (1995) Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetonitrile in plant associated bacteria, Agrobacterium and Rhizobium. Proc Nat Acad Sci USA 92:714–718

    Article  PubMed  CAS  Google Scholar 

  • Krause MS, DecEuster TJJ, Tiquia SM, Michel FC Jr, Madden LV, Hoitink HAJ (2003) Isolation and characterization of rhizobacteria from composts that suppress the severity of bacterial leaf spot of radish. Phytopathology 93:1292–1300

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Saini S, Prakash A, Johri BN (2009) Influence of cultivation practices on phenotypic and genotypic diversity of antagonistic rhizobacteria isolated from soybean (Glycine maxL.). In: Abstracts, 1st Asian PGPR Congress for Sustainable Agriculture, Hyderabad. pp.118

    Google Scholar 

  • Kundu BS, Gaur AC (1980) Effect of nitrogen fixing and phosphate solubilizing microorganism as single and composite inoculants on cotton. Ind J Microbiol 20:225–229

    Google Scholar 

  • Leveau JHJ, Lindow SE (2005) Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 71:2365–2371

    Article  PubMed  CAS  Google Scholar 

  • Liu ZL, Sinclair JB (1992) Population dynamics of Bacillus megaterium strain B153-2-2 in the rhizosphere of soybean. Phytopathology 82:1297–1301

    Article  Google Scholar 

  • Loper JE, Schroth MN (1986) Influence of bacterial sources of indole-3-acetic acid biosynthetic on root elongation of sugar beet. Phytopathology 76:386–389

    Article  CAS  Google Scholar 

  • Mahaffee WF, Kloepper JW (1997) Temporal changes in the bacterial communities of soil, rhizosphere and endorhiza associated with field grown cucumber (Cucumis sativus L.). Microb Ecol 34:210–223

    Article  PubMed  Google Scholar 

  • Maplestone PA, Campbell R (1989) Colonization of roots of wheat seedlings by bacilli proposed as biocontrol agents against take all. Soil Biol Biochem 21:543–550

    Article  Google Scholar 

  • Mcspadden Gardener BB (2004) Ecology of Bacillus and Paenibacillus species in agricultural systems. Phytopathology 94:1252–1258

    Article  PubMed  CAS  Google Scholar 

  • McSpadden Gardener BB, Driks A (2004) Overview of the nature and applications of biocontrol microbes: Bacillus spp. Phytopathology 94:1244

    Article  PubMed  Google Scholar 

  • McSpadden Gardener BB, Fravel DR (2002) Biological control of plant pathogens: Research, commercialization and application in the USA. Plant Health Progress. doi:10.1094/PHP-2002-0510-01-RV

    Google Scholar 

  • Milus EA, Rothrock CS (1993) Rhizosphere colonization of wheat by selected soil bacteria over diverse environments. Can J Microbiol 39:335–341

    Article  Google Scholar 

  • Mittal S, Johri BN (2007) Assessment of rhizobacterial diversity of Triticum aestivum and Eleusine coracana from Northern region of India. Curr Sci 93:1530–1537

    Google Scholar 

  • Molina L, Constantinescu F, Michel L, Reimmann C, Duffy B, Defago G (2003) Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiol Ecol 45:71–81

    Article  PubMed  CAS  Google Scholar 

  • Moyne AL, Shelby R, Cleveland TE, Tuzun S (2001) Bacillomycin D: an iturin with antifungal activity against Aspergillus flavus. J Appl Microbiol 90:622–629

    Article  PubMed  CAS  Google Scholar 

  • Natarajan T, Subramainan P (1995) Response of phosphobacteria along with Rhizobium at two levels of phosphorus on groundnut. In: Microbiology Abstracts, XXXVI Annual Conference of Association of Microbiologists of India. p.111

    Google Scholar 

  • Oger P, Petit A, Dessaux Y (1997) Genetically engineered plants producing opines alter their biological environment. Nat Biotechnol 15:369–372

    Article  PubMed  CAS  Google Scholar 

  • Park SJ, Park SY, Ryu C-M, Park SW, Lee JK (2008) The role of AiiA, a quorum quenching enzyme from Bacillus thuringiensis on the rhizosphere competence. J Microbiol Biotechnol 18:1518–1521

    PubMed  CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  PubMed  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indole-acetic acid in development of host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  PubMed  CAS  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant-rhizobacterial interactions. Plant Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  • Podile AR, Dube HC (1988) Plant growth-promoting activity of Bacillus subtilis strain AF1. Curr Sci 57:183–186

    Google Scholar 

  • Podile AR, Laxmi VDV, Manjula K, Sailaja PR (1995) Bacillus subtilis AF1 as biocontrol PGPR: Towards understanding survival and mechanism of action. In: Adholeya S, Singh S (eds) Mycorrhizae: Biofertilizers for the Future. TERI, New Delhi, India. pp 506–509

    Google Scholar 

  • Priest F (1993) Systematics and ecology of Bacillus. In: Sonenshein AL, Hoch J, Losick R (eds) Bacillus subtilis and other gram positive bacteria, biochemistry, physiology and molecular genetics. American Society for Microbiology Press, Washington, DC, pp 3–16

    Google Scholar 

  • Reva ON, Smirnov VV, Pattersson B, Priest FG (2002) Bacillus endophyticus spp. nov., isolated from the inner tissues of cotton plants (Gossypium sp.). Int J Syst Evol Microbiol 52:101–107

    PubMed  CAS  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Romero D, Pérez-García A, Rivera ME, Cazorla FM, de Vicente A (2004) Isolation and evaluation of antagonistic bacteria towards the cucurbit powdery mildew fungus Podosphaera fusca. Appl Microbiol Biotechnol 64:263–269

    Article  PubMed  CAS  Google Scholar 

  • Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Perez-Garcia A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis towards Podosphaera fusca. Mol plant Microbe Interact 20:430–440

    Article  PubMed  CAS  Google Scholar 

  • Rosado AS, Duarte GF, Seldin L, van Elsas JD (1998a) Genetic diversity of nifH gene sequences in Paenibacillus azotofixans strains and soil samples analyzed by denaturing gradient gel electrophoresis of PCR amplified gene fragments. Appl Environ Microbiol 64:2770–2779

    PubMed  CAS  Google Scholar 

  • Rosado AS, de Azevedo FS, da Cruz DW, van Elsas JD, Seldin L (1998b) Phenotypic and genetic diversity of Paenibacillus azotofixans strains isolated from the rhizoplane or rhizosphere soil of different grasses. J Appl Microbiol 84:216–226

    Article  Google Scholar 

  • Sailaja PR, Podile AR, Reddanna P (1997) Biocontrol strain Bacillus subtilis AF1 rapidly induces lipoxygenase in groundnut (Arachis hypogaea L.) compared to crown rot pathogen Aspergillus niger. Eur J Plant Pathol 104:125–132

    Article  Google Scholar 

  • Schauder S, Shokat K, Surette MG, Bassler BL (2001) The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41:463–476

    Article  PubMed  CAS  Google Scholar 

  • Seldin L (1992) Primary characterization of the bacteriophage BA-4 from a nitrogen fixing Bacillus azotofixans strain. Microbios 71:167–177

    CAS  Google Scholar 

  • Seldin L, Soares Rosado A, da Cruz DW, Nobrega A, van Elsas JD, Paiva E (1998) Comparison of Paenibacillus azotofixans strains isolated from rhizoplane, and non-root-associated soil from maize planted in two different Brazilian soils. Appl Environ Microbiol 64:3860–3868

    PubMed  CAS  Google Scholar 

  • Shishido M, Breuil C, Chanway CP (1999) Endophytic colonization of spruce by plant growth-promoting rhizobacteria. FEMS Microbiol Ecol 29:191–196

    Article  CAS  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizospheric soil bacterial communities studied by denaturing gradient gel electrophoresis: plant dependent enrichment and seasonal shift revealed. Appl Environ Microbiol 67:4742–4751

    Article  PubMed  CAS  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 304:205–240

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism plant signaling. FEMS Microbiol Rev 31:425–448

    Article  PubMed  CAS  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonized red clover nodules, roots, stems, and foliage and their influence on host growth. Biol Fertil Soils 25:13–19

    Article  Google Scholar 

  • Sturz AV, Cristie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Tomar SS, Pathan MA, Gupta KP, Khandkar UR (1993) Effect of phosphate solubilizing bacteria at different levels of phosphate on black gram (Phaseolus mungo). Ind J Agron 38:131–133

    CAS  Google Scholar 

  • Uroz S, Oger PM, Chapelle E, Adeline MT, Faure D, Dessaux Y (2008) A Rhodococcus qsdA-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases. Appl Environ Microbiol 74:1357–1366

    Article  PubMed  CAS  Google Scholar 

  • van Loon LC (2000) Systemic induced resistance. In: Slusarenko AJ, Fraser RSS, van Loon LC (eds) Mechanism of resistance to plant diseases. Kluwer, Dordrecht, pp 521–574

    Google Scholar 

  • van Loon LC, Glick BR (2004) Increased plant fitness by rhizobacteria. In: Sandermann H (ed) Molecular ecotoxicology of plants, vol 170. Springer, Berlin, pp 177–205

    Google Scholar 

  • van Overbeek L, van Elsas JD (2008) Effect of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol Ecol 64:283–296

    Article  PubMed  Google Scholar 

  • Vandeputte O, Oden S, Mol A, Vereecke D, Goethals K, El Jaziri M, Prinsen E (2005) Biosynthesis of auxin by the Gram positive phytopathogen Rhodococcans fascians is controlled by compounds specific to infect plant tissues. Appl Environ Microbiol 71:1169–1170

    Article  PubMed  CAS  Google Scholar 

  • Vargas-Ayala R, Rodriguez-Kaban R, Morgan-Jones G, McInroy JA, Kloepper JW (2000) Shifts in soil microflora induced by velvetbean (Mucuna deeringiana) in cropping systems to control root-knot nematodes. Biol Control 17:11–22

    Article  Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–512

    PubMed  CAS  Google Scholar 

  • Whitehead NA, Barnard AML, Slater HLSNJ, Salmond GPC (2001) Quorum sensing in Gram negative bacteria. FEMS Microbiol Rev 25:365–404

    Article  PubMed  CAS  Google Scholar 

  • Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere and rhizoplane in response to crop species, soil type and crop development. Appl Environ Microbiol 67:5849–5854

    Article  PubMed  CAS  Google Scholar 

  • Yang SH, Zhang Q, Guo JH, Charkowski AO, Glick BR, Ibekwe AM (2007) Global effect of indole-acetic acid biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937. Appl Environ Microbiol 73:1079–1088

    Article  PubMed  CAS  Google Scholar 

  • Zaidi A, Khan MS (2005) Interactive effect of rhizospheric microorganisms on growth, yield and nutrient uptake of wheat. J Plant Nutr 28:2079–2092

    Article  CAS  Google Scholar 

  • Zehnder GW, Yao C, Murphy JF, Sikora EJ, Kloepper JW (2000) Induction of resistance in tomato against cucumber mosaic cucumovirus by plant growth-promoting rhizobacteria. Biol Control 45:127–137

    Google Scholar 

  • Zhang LH, Dong YH (2004) Quorum sensing and signal interference: diverse implications. Mol Microbiol 53:1563–1571

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Moyne A-L, Reddy MS, Kloepper JW (2002) Development of assays for assessing induced systemic resistance by plant growth promoting rhizobacteria against blue mold of tobacco. Biol Control 25:288–296

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grant received in the form of Silver Jubilee Fellowship to BNJ from Madhya Pradesh Council of Science and Technology, Bhopal. The authors are thankful to Dr. Shipra Singh, DST Young Scientist for critical reading of the manuscript and Mr. Sandeep Saini, Research Fellow, Department of Biotechnology and Bioinformatics Centre, Barkatullah University, Bhopal for help in preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankit Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kumar, A., Prakash, A., Johri, B.N. (2011). Bacillus as PGPR in Crop Ecosystem. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Crop Ecosystems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18357-7_2

Download citation

Publish with us

Policies and ethics