Skip to main content

Efficient Quantum Tensor Product Expanders and k-Designs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5687))

Abstract

Quantum expanders are a quantum analogue of expanders, and k-tensor product expanders are a generalisation to graphs that randomise k correlated walkers. Here we give an efficient construction of constant-degree, constant-gap quantum k-tensor product expanders. The key ingredients are an efficient classical tensor product expander and the quantum Fourier transform. Our construction works whenever k = O(n/logn), where n is the number of qubits. An immediate corollary of this result is an efficient construction of an approximate unitary k-design, which is a quantum analogue of an approximate k-wise independent function, on n qubits for any k = O(n/logn). Previously, no efficient constructions were known for k > 2, while state designs, of which unitary designs are a generalisation, were constructed efficiently in [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambainis, A., Emerson, E.: Quantum t-designs: t-wise Independence in the Quantum World. Computational Complexity 2007 (2007) arXiv:quant-ph/0701126v2

    Google Scholar 

  2. Sen, P.: Random measurement bases, quantum state distinction and applications to the hidden subgroup problem. In: Complexity 2006, pp. 274–287 (2005) arXiv:quant-ph/0512085

    Google Scholar 

  3. Ambainis, A., Smith, A.: Small Pseudo-Random Families of Matrices: Derandomizing Approximate Quantum Encryption. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) APPROX-RANDOM 2004. LNCS, vol. 3122, pp. 249–260. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Hayden, P., Leung, D., Shor, P.W., Winter, A.: Randomizing Quantum States: Constructions and Applications. Communications in Mathematical Physics 250, 371–391 (2004) arXiv:quant-ph/0307104

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambainis, A., Bouda, J., Winter, A.: Tamper-resistant encryption of quantum information (2008) arXiv:0808.0353

    Google Scholar 

  6. Low, R.A.: Large Deviation Bounds for k-designs (2009) arXiv:0903.5236

    Google Scholar 

  7. Hastings, M.B., Harrow, A.W.: Classical and Quantum Tensor Product Expanders (2008) arXiv:0804.0011

    Google Scholar 

  8. Ben-Aroya, A., Ta-Shma, A.: Quantum expanders and the quantum entropy difference problem (2007) arXiv:quant-ph/0702129

    Google Scholar 

  9. Harrow, A.W.: Quantum expanders from any classical Cayley graph expander. Q. Inf. Comp. 8(8/9), 715–721 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Gross, D., Eisert, J.: Quantum Margulis Expanders. Q. Inf. Comp. 8(8/9), 722–733 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Hoory, S., Brodsky, A.: Simple Permutations Mix Even Better (2004) arXiv:math/0411098

    Google Scholar 

  12. Kassabov, M.: Symmetric Groups and Expanders (2005) arXiv:math/0503204

    Google Scholar 

  13. Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation. American Mathematical Society, Boston (2002)

    MATH  Google Scholar 

  14. Harrow, A.W., Low, R.A.: Random quantum circuits are approximate 2-designs (2008) arXiv:0802.1919

    Google Scholar 

  15. Bourgain, J., Gamburd, A.: New results on expanders. C. R. Acad. Sci. Paris, Ser. I 342, 717–721 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Stanley, R.: Enumerative Combinatorics. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  17. Rota, G.C.: On the foundations of combinatorial theory I. Theory of Möbius Functions. Probability Theory and Related Fields 2(4), 340–368 (1964)

    MathSciNet  MATH  Google Scholar 

  18. Goodman, R., Wallach, N.: Representations and Invariants of the Classical Groups. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  19. Harrow, A.W., Low, R.A.: Efficient quantum tensor product expanders and k-designs (2008) arXiv:0811.2597

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harrow, A.W., Low, R.A. (2009). Efficient Quantum Tensor Product Expanders and k-Designs. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2009 2009. Lecture Notes in Computer Science, vol 5687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03685-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03685-9_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03684-2

  • Online ISBN: 978-3-642-03685-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics