Skip to main content

The Ecology of Social Evolution in Termites

  • Chapter

Termites (Isoptera) belong to the classical eusocial insects and their resemblance to ant colonies is so striking that they are commonly known as ‘white ants’. However, the termites evolved social life independently, long before the ants. Their different ancestry also is reflected in several fundamental differences in the organization of the colonies. This chapter aims at summarizing the state-of-the-art in termite research and comparing the results with other social invertebrate and vertebrate systems in an attempt to reveal common principles underlying social evolution. First, I provide an overview of termites’ biology and classification. I continue with a summary on the ‘hunt’ for a genetical explanation of the evolution of termite’ eusociality. Using a case study, I summarize ecological factors favoring cooperation in a lower termite and show the relevance of these results for other termite species. Based on these results I outline the potential evolutionary transitions in termite eusociality. Finally, I compare the driving forces in termites with those in cooperatively breeding vertebrates and offer a potential explanation why eusociality rarely evolved in vertebrates, despite often strikingly similar ecological pressures in both groups.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe T (1987) Evolution of life types in termites. In: Kawano S, Connell JH, Hidaka T (eds) Evolution and coadaptation in biotic communities. University of Tokyo Press, Tokyo, pp 125-148

    Google Scholar 

  • Abe T (1990) Evolution of the worker caste in termites. In: Veeresh GK, Mallik B, Viraktamath CA (eds) Social insects and the environments. Oxford & IBH, New Delhi, pp 29-30

    Google Scholar 

  • Abe T, Darlington JPEC (1985) Distribution and abundance of a mound-building termite, Macrotermes michaelseni, with special reference to its subterranean colonies and ant preda-tors. Physiol Ecol Jpn 22:59-74

    Google Scholar 

  • Arnold KE, Owens IPF (1998) Cooperative breeding in birds: a comparative analysis of the life-history hypothesis. Proc R Soc Lond Ser B 265:739-745

    Article  Google Scholar 

  • Atkinson L, Adams ES (1997) The origins and relatedness of multiple reproductives in colonies of the termite Nasutitermes corniger. Proc R Soc Lond B 264:1131-1136

    Article  Google Scholar 

  • Bartz SJ (1979) Evolution of eusociality in termites. Proc Natl Acad Sci USA 76:5764-5768

    Article  PubMed  CAS  Google Scholar 

  • Bignell DE, Eggleton P (2000) Termites in ecosystem. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 363-388

    Google Scholar 

  • Bodot P (1961) La destruction des termitiéres de Bellicositermes natalensis par une fourmi: Dorylus (Typhlopone) dentifons Wasman. C R Acad Sci 253:3053-3054

    CAS  Google Scholar 

  • Boland CRJ, Heinsohn R, Cockburn A (1997) Experimental manipulation of brood reduction and parental care in cooperatively breeding white-winged choughs. J Anim Ecol 66:683-691

    Article  Google Scholar 

  • Bourke ARG, Franks NR (1995) Social evolution in ants. Princeton University Press, Princeton Brown JL (1987) Helping and communal breeding in birds. Princeton University Press, Princeton

    Google Scholar 

  • Buchli HR (1958) L’origine des castes et les potentialités ontogéniques des termites européens du genre Reticulitermes Holmgren. Ann Sci Nat Zool 11:267-429

    Google Scholar 

  • Bulmer MS, Adams ES, Traniello JFA (2001) Variation in colony structure in the subterranean termite Reticulitermes flavipes. Behav Ecol Sociobiol 49:236-243

    Article  Google Scholar 

  • Clement J-L (1986) Open and closed societies in Reticulitermes termites (Isoptera, Rhinotermitidae): geographical and seasonal variations. Sociobiology 11:311-323

    Google Scholar 

  • Crozier RH, Luykx PD (1985) The evolution of termite eusociality is unlikely to have been based on a haplodiploid analogy. Am Nat 126:867-869

    Article  Google Scholar 

  • Crozier RH, Pamilo P (1996) Evolution of social insect colonies. Oxford University Press, Oxford

    Google Scholar 

  • Darlington JPEC (1979) Populations of nests of Macrotermes species in Kajiado and Bissell. Annual Report of the International Centre of Insect Physiology and Ecology 6:22-23

    Google Scholar 

  • Darlington JPEC (1986) Attacks by doryline ants and termite nest defences (Hymenoptera; Formicidae; Isoptera; Termitidae). Sociobiology 11:189-200

    Google Scholar 

  • Darlington JPEC, Zimmermann PR, Wandiga SO (1992) Populations in nests of the termite Macrotermes jeanneli in Kenya. J Trop Ecol 8:73-85

    Article  Google Scholar 

  • DeHeer CJ, Vargo EL (2004) Colony genetic organization and colony fusion in the termite Reticulitermes flavipes as revealed by foraging patterns over time and space. Mol Ecol 13: 431-441

    Article  PubMed  Google Scholar 

  • Deshmukh I (1989) How important are termites in the production ecology of African savannas? Sociobiology 15:155-168

    Google Scholar 

  • Dunn PO, Cockburn A, Mulder RA (1995) Fairy-wren helpers often care for young to which they are unrelated. Proc R Soc London Ser B 259:339-343

    Article  Google Scholar 

  • Eggleton P (2000) Global patterns of termite diversity. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 25-52

    Google Scholar 

  • Eggleton P (2001) Termites and trees: a review of recent advances in termite phylogenetics. Insectes Soc 48:187-193

    Article  Google Scholar 

  • Emlen ST (1991) Evolution of cooperative breeding in birds and mammals. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach. Blackwell, Oxford, pp 301-337

    Google Scholar 

  • Emlen ST (1997) Predicting family dynamics in social vertebrates. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach. Blackwell Scientific, Oxford, pp 228-353

    Google Scholar 

  • Evans TA, Lai JCS, Toledano E, McDowall L, Rakotonarivo S, Lenz M (2005) Termite assess wood size by using vibration signals. Proc Natl Acad Sci USA 102:3732-3737

    Article  PubMed  CAS  Google Scholar 

  • Gerber C, Badertscher S, Leuthold RH (1988) Polyethism in Macrotermes bellicosus (Isoptera). Insectes Soc 35:226-240

    Article  Google Scholar 

  • Goodisman MAD, Crozier RH (2002) Population and colony genetic structure of the primitive termite Mastotermes darwiniensis. Evolution 56:70-83

    PubMed  Google Scholar 

  • Gotwald WH (1995) Army ants: the biology of social predation. Cornell University Press, Cornell

    Google Scholar 

  • Grandcolas P (1994) Phylogenetic systematics of the subfamily Polyphaginae, with the assign-ment of Cryptocercus Scudderm 1862 to this taxon (Blattaria, Blaberoidea, Polyphagidae). Syst Entomol 19:145-158

    Google Scholar 

  • Grandcolas P, D’Haese C (2002) The origin of a ‘true’ worker caste in termites: phylogenetic evi-dence is not decisive. J Evol Biol 15:885-888

    Article  Google Scholar 

  • Grassé PP, Noirot C (1947) Le polymorphisme social du termite a cou jaune (Kalotermes flavicol-lis F.). Les faux-ouvriers ou pseudergates et les mues regressives. Compt Rend Acad Sci 214:219-221

    Google Scholar 

  • Grassé PP (1984) Termitologia, vol. 2. Masson, Paris

    Google Scholar 

  • Gross MR (1996) Alternative reproductive strategies and tactics: diversity within sexes. Trends Ecol Evol 11:92-98

    Article  Google Scholar 

  • Hahn PD, Stuart AM (1987) Sibling interactions in two species of termites: a test of the haplodip-loid analogy (Isoptera: Kalotermitidae; Rhinotermitidae). Sociobiology 13:83-92

    Google Scholar 

  • Hamilton WD (1964) The genetic evolution of social behavior I, II. J Theoret Biol 7:1-52

    Article  CAS  Google Scholar 

  • Hamilton WD (1972) Altruism and related phenomena, mainly in social insects. Ann Rev Ecol Syst 3:192-232

    Article  Google Scholar 

  • Hamilton WD, May RM (1977) Dispersal in stable habitats. Nature 269:578-581

    Article  Google Scholar 

  • Hatchwell BJ, Komdeur J (2000) Ecological constraints, life-history traits and the evolution of cooperative breeding. Anim Behav 59:1079-1086

    Article  PubMed  Google Scholar 

  • Haverty MI (1977) The proportion of soldiers in termite colonies: a list and a bibliography (Isoptera). Sociobiology 2:199-216

    Google Scholar 

  • Heinsohn R, Legge S (1999) The cost of helping. Trends Ecol Evol 14:53-57

    Article  PubMed  Google Scholar 

  • Henderson G (1998) Primer pheromones and possible soldier caste influence on the evolution of sociality in lower termites. In: Vandermeer R, Breed KMD, Espelie KE, Winston ML (eds) Pheromone communication in social insects. Westview Press, Boulder, pp 314-330

    Google Scholar 

  • Hennig W (1981) Insect phylogeny. Wiley, New York

    Google Scholar 

  • Higashi M, Yamamura N, Abe T, Burns TP (1991) Why don’t all termite species have a sterile worker caste? Proc R Soc Lond Ser B 246:25-30

    Article  CAS  Google Scholar 

  • Higashi M, Yamamura N, Abe T (2000) Theories on the sociality of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 169-187

    Google Scholar 

  • Husseneder C, Brandl R, Epplen JT, Kaib M (1999) Within colony relatedness in a termite spe-cies: genetic roads to eusociality? Behaviour 136:1045-1063

    Article  Google Scholar 

  • Inward D, Beccaloni G, Eggleton P (2007a) Death of an order: a comprehensive molecular phylo-genetic study confirms that termites are eusocial cockroaches. Biol Lett 3:331-335

    Article  PubMed  CAS  Google Scholar 

  • Inward D, Vogler AP, Eggleton P (2007b) A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol Phyl Evol 44:953-967

    Article  CAS  Google Scholar 

  • eon J, Choe JC (2003) Reproductive skew and sterile castes. Am Nat 161:206-224

    Article  Google Scholar 

  • Johnstone RA (2000) Models of reproductive skew: a review and synthesis. Ethology 106:5-26

    Article  Google Scholar 

  • Kambhampati S (1995) A phylogeny of cockroaches and related insects based on DNA sequence of mitochondrial ribosomal RNA genes. Proc Natl Acad Sci USA 92:2017-2020

    Article  PubMed  CAS  Google Scholar 

  • Kambhampati S, Eggleton P (2000) Taxonomy and phylogeny of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 1-23

    Google Scholar 

  • Keller L, Reeve HK (1994) Partitioning of reproduction in animal societies. Trends Ecol Evol 9:98-102

    Article  Google Scholar 

  • Klass K-D (1995) Die Phylogenie der Dictyoptera. PhD Thesis, Fakultät für Biologie, Ludwig Maximilians Universität München, München

    Google Scholar 

  • Koenig WD, Pitelka FA, Carmen WJ, Mumme RL, Stanback MT (1992) The evolution of delayed dispersal in cooperative breeders. Q Rev Biol 67:111-150

    Article  PubMed  CAS  Google Scholar 

  • Kokko H, Lundberg P (2001) Dispersal, migration, and offspring retention in saturated habitats. Am Nat 157:188-202

    Article  PubMed  CAS  Google Scholar 

  • Kokko H, Ekman J (2002) Delayed dispersal as a route to breeding: territorial inheritance, safe havens, and ecological constraints. Am Nat 160:468-484

    Article  PubMed  Google Scholar 

  • Kokko H, Johnstone RA, Wright J (2002) The evolution of parental and alloparental effort in cooperatively breeding groups: when should helpers pay to stay? Behav Ecol 13:291-300

    Article  Google Scholar 

  • Korb J (1997) Lokale und regionale Verbreitung von Macrotermes bellicosus (Isoptera; Macrotermitinae): Stochastik oder Deterministik? W&T Verlag, Berlin

    Google Scholar 

  • Korb J (2003) Thermoregulation and ventilation of termite mounds. Naturwissenschaften 90:212-219

    PubMed  CAS  Google Scholar 

  • Korb J (2005) Regulation of sexual development in the basal termite Cryptotermes secundus: mutilation, pheromonal manipulation or honest signal? Naturwissenschaften 92:45-49

    Article  PubMed  CAS  Google Scholar 

  • Korb J (2006) Limited food induces nepotism in drywood termites. Biol Lett 2:364-366

    Article  PubMed  Google Scholar 

  • Korb J (2007) Workers of a drywood termite do not work. Frontiers Zool 4:7 Korb J (in press) Termites. Curr Biol: in press

    Google Scholar 

  • Korb J, Fuchs A (2006) Termites and mites - adaptive behavioural responses to infestation? Behaviour 143:891-907

    Article  Google Scholar 

  • Korb J, Heinze J (2004) Multilevel selection and social evolution of insect societies. Naturwissenschaften 91:291-304

    Article  PubMed  CAS  Google Scholar 

  • Korb J, Katrantzis S (2004) Influence of environmental conditions on the expression of the sexual dispersal phenotype in a lower termite: implications for the evolution of workers in termites. Evol Dev 6:342-352

    Article  PubMed  Google Scholar 

  • Korb J, Lenz M (2004) Reproductive decision-making in the termite Cryptotermes secundus (Kalotermitidae) under variable food conditions. Behav Ecol 15:390-395

    Article  Google Scholar 

  • Korb J, Linsenmair KE (1999) Reproductive success of Macrotermes bellicosus (Isoptera, Macrotermitinae) in two neighbouring habitats. Oecologia 118:183-191

    Article  Google Scholar 

  • Korb J, Linsenmair KE (2001) The causes of spatial patterning of mounds of a fungus-cultivating termite: results from nearest-neighbour analysis and ecological studies. Oecologia 127:324-333

    Article  Google Scholar 

  • Korb J, Schmidinger S (2004) Help or disperse? Cooperation in termites influenced by food condi-tions. Behav Evol Sociobiol 56:89-95

    Article  Google Scholar 

  • Korb J, Schneider K (2007) Does kin structure explain the occurrence of workers in a lower ter-mite? Evol Ecol 27:817-828

    Article  Google Scholar 

  • Kristensen NP (1991) Phylogeny of extant hexapods. In: The insects of Australia. CSIRO & Melbourne University Press, Carleton, pp 125-140

    Google Scholar 

  • Lacy RC (1980) The evolution of eusociality in termites: a haplodiploid analogy? Am Nat 116:449-451

    Article  Google Scholar 

  • La Fage JP, Nutting WL (1978) Nutrient dynamics of termites. In: Brain MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, pp 165-232

    Google Scholar 

  • Leinaas HP (1983) A haplodiploid analogy in the evolution of termite eusociality? reply to Lacy. Am Nat 121:302-304

    Article  Google Scholar 

  • Lenz M (1976) The dependence of hormone effects in termite caste determination on external factors. In: Lüscher M (ed) Phase and caste determination in insects: endocrine aspects. Pergamon Press, Oxford, pp 73-89

    Google Scholar 

  • Lenz M (1994) Food resources, colony growth and caste development in wood-feeding termites. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview Press, Boulder, pp 159-209

    Google Scholar 

  • Lepage M, Darlington JPEC (2000) Population dynamics of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 333-362

    Google Scholar 

  • Leponce M, Roisin Y, Pasteels JM (1997) Structure and dynamics of the arboreal termite commu-nity in New Guinean coconut plantations. Biotropica 29:193-203

    Article  Google Scholar 

  • Levieux J (1983) Feeding strategies of ants in different West African savannas. In: Jaisson P (ed) Social insects in the tropics, vol.2. Université de Paris-Nord, Paris, pp 245-252

    Google Scholar 

  • Lo N, Kitade O, Miura T, Constantino R, Matsumoto T (2004) Molecular phylogeny of the Rhinotermitidae. Insectes Soc 51:365-371

    Article  Google Scholar 

  • Longhurst C, Howse PE (1979) Foraging, recruitment and emigration in Megaponera foetens (Fab.) (Hym., Formicidae) from the Nigerian Guinea savanna. Insectes Soc 26:204-215

    Article  Google Scholar 

  • Longhurst C, Baker R, Howse PE (1979) Termite predation by Megaponera foetens (Fab.) (Hymenoptera: Formicidae): coordination of raids by glandular secretions. J Chem Ecol 5:703-719

    Article  CAS  Google Scholar 

  • Lüscher M (1974) Kasten und Kastendifferenzierung bei niederen Termiten. In: Schmidt GH (ed) Sozialpolymorphismus bei Insekten. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 694-739

    Google Scholar 

  • Luykx PD, Syren RM (1979) The cytogenetics of Incisitermes schwarzi and other Florida ter-mites. Sociobiology 4:191-209

    Google Scholar 

  • Lys JA, Leuthold RH (1991) Task-specific distribution of the two worker castes in extranidal activities in Macrotermes bellicosus (Smeathman): observation of behaviour during food acquisition. Insectes Soc 38:161-170

    Article  Google Scholar 

  • Magrath RD, Whittingham LA (1997) Subordinate males are more likely to help if unrelated to the breeding female in cooperatively breeding white-browed scrubwrens. Behav Ecol Sociobiol 41:185-192

    Article  Google Scholar 

  • Maynard Smith J (1964) Group selection and kin selection. Nature 201:1145-1147

    Article  Google Scholar 

  • Miller LR, Paton R (1983) Cryptotermes in mangroves in the Northern Territory (Isoptera: Kalotermitidae). J Aust Ent Soc 22:189-190

    Article  Google Scholar 

  • Myles TG (1986) Evidence of parental and-or sibling manipulation in three species of termites in Hawaii USA Isoptera. Proc Hawaiian Ento Soc 27:129-140

    Google Scholar 

  • Myles TG (1988) Resource inheritance in social evolution from termite to man. In: Slobodchikoff CN (ed) The ecology of social behavior. Academic Press, New York, pp 379-423

    Google Scholar 

  • Myles TG, Nutting WL (1988) Termite eusocial evolution: a re-examination of Bartz’s hypothesis and assumptions. Q Rev Biol 63:1-24

    Article  Google Scholar 

  • Myles TG (1999) Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33:1-88

    Google Scholar 

  • Nalepa CA (1994) Nourishment and the origin of termite eusociality. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview Press, Boulder, pp 57-104

    Google Scholar 

  • Nalepa CA, Bandi C (2000) Characterizing the ancestors: a paedomorphosis and termite evolu-tion. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecol-ogy. Kluwer Academic Publishers, Dordrecht, pp 53-75

    Google Scholar 

  • Nijhout HF (2003) Development and evolution of adaptive polyphenisms. Evol Dev 5:9-18

    Article  PubMed  Google Scholar 

  • Noirot C (1990) Sexual castes and reproductive strategies in termites. In: Engels W (ed) Social insects: an evolutionary approach to castes and reproduction. Springer, Berlin Heidelberg New York, pp 5-35

    Google Scholar 

  • Noirot C, Darlington JPEC (2000) Termite nests: architecture, regulation and defence. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 121-140

    Google Scholar 

  • Noirot C, Pasteels JM (1987) Ontogenetic development and the evolution of the worker caste in termites. Experientia 43:851-860

    Article  Google Scholar 

  • Nutting WL (1969) Flight and colony foundation. In: Krishna K, Weesner FM (eds) Biology of termites, vol. I. Academic Press, New York, pp 233-282

    Google Scholar 

  • Parmentier D (2006) Developmental flexibility and evolution of the worker caste in termites. PhD Thesis, Université Libre de Bruxelles

    Google Scholar 

  • Parmentier D, Roisin Y (2003) Caste morphology and development in Termitogeton nr. planus (Insecta, Isoptera, Rhinotermitidae). J Morph 255:69-79

    Article  PubMed  Google Scholar 

  • Pen I, Weissing FJ (2000) Towards a unified theory of cooperative breeding: the role of ecology and life history re-examined. Proc R Soc Lond Ser B 267:2411-2418

    Article  Google Scholar 

  • Queller DC, Strassmann JE (1998) Kin selection and social insects. Bioscience 48:165-175

    Article  Google Scholar 

  • Reeve HK, Ratnieks FLW (1993) Queen-queen conflict in polygynous societies: mutual tolerance and reproductive skew. In: Keller L (ed) Queen number and sociality in insects. Oxford University Press, Oxford, pp 45-85

    Google Scholar 

  • Reyer H-U, Westerterp K (1985) Parental energy expenditure: a proximate cause of helper recruit-ment in the pied kingfisher (Ceryle rudis). Behav Ecol Sociobiol 17:363-369

    Article  Google Scholar 

  • Reyer H-U, Dittami JP, Hall MR (1986) Avian helpers at the nest: are they psychologically castrated? Ethology 71:216-228

    Article  Google Scholar 

  • Roisin Y (1994) Intragroup conflicts and the evolution of sterile castes in termites. Am Nat 143:751-765

    Article  Google Scholar 

  • Roisin Y (1999) Philopatric reproduction, a prime mover in the evolution of termite sociality? Insectes Soc 46:297-305

    Article  Google Scholar 

  • Roisin Y (2000) Diversity and evolution of caste patterns. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 95-119

    Google Scholar 

  • Roisin Y (2001) Caste sex ratios, sex linkage, and reproductive strategies in termites. Insectes Soc 48:224-230

    Article  Google Scholar 

  • Roonwal ML (1970) Termites of the oriental region. In: Krishna K, Weesner FM (eds) Biology of termites, vol. II. Academic Press, New York, pp 315-391

    Google Scholar 

  • Rosengaus RB, Maxmen AB, Coates LA, Traniello JFA (1998) Disease resistance: a benefit of sociality in the dampwood termite Zootermopsis angusticollis (Isoptera: Termopsidae). Behav Ecol Sociobiol 44:125-134

    Article  Google Scholar 

  • Rosengaus RB, Traniello JFA (2001) Disease susceptibility and the adaptive nature of colony demog-raphy in the dampwood termite Zootermopsis angusticollis. Behav Ecol Sociobiol 50:546-556

    Article  Google Scholar 

  • Roux EA, Korb J (2004) Evolution of eusociality and the soldier caste in termites: a validation of the intrinsic benefit hypothesis. J Evol Biol 17:869-875

    Article  PubMed  CAS  Google Scholar 

  • Shellman-Reeve JS (1997) The spectrum of eusociality in termites. In: Choe JC, Crespi BJ (eds) The evolution of social behaviour in insects and arachnids. Cambridge University Press, Cambridge, pp 52-93

    Chapter  Google Scholar 

  • Shellman-Reeve JS (2001) Genetic relatedness and partner preference in a monogamous, wood-dwelling termite. Anim Behav 61:869-876

    Article  Google Scholar 

  • Soki K, Josens G, Loreau M (1996) Growth and demography of Cubitermes speciosus mounds (Isoptera, Termitidae). Insectes Soc 43:189-200

    Article  Google Scholar 

  • Stacey PB, Ligon JD (1991) The benefits of philopatry hypothesis for the evolution of cooperative breeding: variation in territory quality and group size. Am Nat 137:831-846

    Article  Google Scholar 

  • Stern DL, Foster WA (1997) The evolution of sociality in aphids : a clone’s-eye view. In: Choe JC, Crespi BJ (eds) The evolution of social behaviour in insects and arachnids. Cambridge University Press, Cambridge, pp 150-165

    Chapter  Google Scholar 

  • Thompson GJ, Herbert PDN (1998) Population genetic structure of the neotropical termite Nasutitermes nigriceps (Isoptera: Termitidae). Heredity 8:48-55

    Article  Google Scholar 

  • Thompson GJ, Kitade O, Lo N, Crozier RH (2000) Phylogenetic evidence for a single, ancestral origin of a ‘true’ worker caste in termites. J Evol Biol 13:869-881

    Article  Google Scholar 

  • Thompson GJ, Kitade O, Lo N, Crozier RH (2004) On the origin of termite workers: weighing up the phylogenetic evidence. J Evol Biol 17:217-220

    Article  PubMed  CAS  Google Scholar 

  • Thorne BL (1996) Termite terminology. Sociobiology 28:253-263

    Google Scholar 

  • Thorne BL (1997) Evolution of eusociality in termites. Annu Rev Ecol Syst 28:27-54

    Article  Google Scholar 

  • Thorne BL, Carpenter JM (1992) Phylogeny of Dictyoptera. Syst Entomol 17:253-268

    Article  Google Scholar 

  • Thorne BL, Traniello JFA (2003) Comparative social biology of basal taxa of ants and termites. Ann Rev Entomol 48:283-306

    Article  CAS  Google Scholar 

  • Thorne BL, Grimaldi DA, Krishna K (2000) Early fossil history of the termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 77-93

    Google Scholar 

  • Thorne BL, Breisch NL, Muscedere ML (2003) Evolution of eusociality and the soldier caste in termites: Influence of intraspecific competition and accelerated inheritance. Proc Natl Acad Sci 100:12808-12813

    CAS  Google Scholar 

  • Traniello JFA, Leuthold RH (2000) Behavior and ecology of foraging in termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 141-168

    Google Scholar 

  • Traniello JFA, Rosengaus RB, Savoie K (2002) The development of immunity in a social insect: evidence for the group facilitation of disease resistance. Proc Natl Acad Sci 99:6838-6842

    Article  PubMed  CAS  Google Scholar 

  • Veeranna G, Basalingappa S (1990) Population density in different parts of the mound nests of the termite Odontotermes obesus Rambur and their functional behavior. Entomol 15:59-62

    Google Scholar 

  • Vehrencamp SL (1983) A model for the evolution of despotic versus egalitarian societies. Anim Behav 23:327-335

    Google Scholar 

  • Veltman CJ (1989) Flock, pair, and group living lifestyles without cooperative breeding by Australian magpies, Gymnorhina tibicen. Ibis 131:601-608

    Article  Google Scholar 

  • Vinque PP, Tilquin JP (1978) A sex-linked ring quadrivalent in Termitidae (Isoptera). Chromosoma 67:151-156

    Article  Google Scholar 

  • Walker EM (1922) The terminal structures of orthopteroid insects: a phylogenetic study II. The terminal structures of the male. Ann Entomol Soc Am 15:1-87

    Google Scholar 

  • Zimmerman RB (1983) Sibling manipulation and indirect fitness in termites. Behav Ecol Sociobiol 12:143-145

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Korb, J. (2008). The Ecology of Social Evolution in Termites. In: Korb, J., Heinze, J. (eds) Ecology of Social Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75957-7_7

Download citation

Publish with us

Policies and ethics