Skip to main content

Propofol

  • Chapter
Modern Anesthetics

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 182))

Abstract

The hypnotic agent propofol has pharmacokinetic characteristics that allow for rapid onset and offset of drug effect and fast elimination from the body. Elderly patients show a greater sensitivity to the hypnotic effect of propofol. The drug is extensively metabolized in the liver through the cytochrome P450 system and glucuronidation, with potential for drug interaction. Propofol does not cause significant inotropic depression at clinically relevant concentrations. But in vitro, propofol impairs isotonic relaxation of the heart and decreases free cytosolic Ca2+ concentrations in myocardial cells. In animal models, the cardioprotective effects of propofol derive in part from its antioxidant and free radical scavenging properties. Propofol decreases cerebral blood flow and cerebral metabolic rate dose-dependently. The neuroprotective effect of propofol in animal models is attributed to its antioxidant property, the potentiation of γ-aminobutyric acid type A (GABAA)-mediated inhibition of synaptic transmission, and the inhibition of glutamate release. Subhypnotic doses of propofol induce sedative, amnestic, and anxiolytic effects in a dose-dependent fashion. Propofol impairs ventilation with a considerable effect on the control of ventilation and central chemoreceptor sensitivity. Propofol reduces the ventilatory response to hypercapnia and the ventilatory adaptation to hypoxia, even at subanesthetic doses. The drug potentiates hypoxic pulmonary vasoconstriction, an effect caused by inhibition of K+ATP-mediated pulmonary vasodilatation. Most of the pharmacological actions of propofol result from interaction with the GABAA receptor or with calcium channels. Propofol prolongs inhibitory postsynaptic currents mediated by GABAA receptors, indicating that its effects are associated with enhanced inhibitory synaptic transmission, but propofol also influences presynaptic mechanisms of GABAergic transmission. Propofol modulates various aspects of the host’s inflammatory response. It decreases secretion of proinflammatory cytokines, alters the expression of nitric oxide, impairs monocyte and neutrophil functions, and has potent, dose-dependent radical scavenging activity similar to the endogenous antioxidant vitamin E.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vanlersberghe, C., Camu, F. (2008). Propofol. In: Schüttler, J., Schwilden, H. (eds) Modern Anesthetics. Handbook of Experimental Pharmacology, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74806-9_11

Download citation

Publish with us

Policies and ethics