Skip to main content

Role of Endothelial Nitric Oxide in Bone Marrow-Derived Progenitor Cell Mobilization

  • Chapter
Bone Marrow-Derived Progenitors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 180))

Abstract

Mobilization and recruitment of bone marrow-derived progenitor cells (BMDPCs) play an important role in postischemic tissue repair. Patients with coronary artery disease (CAD) or peripheral vascular disease (PVD) exhibit endothelial dysfunction, and as a result are likely to have a reduced number of progenitor cells mobilized in their peripheral circulation following ischemic injury. Identification of eNOS independent pathways for BMDPC mobilization may have important therapeutic value in this patient population. To identify such mechanisms we investigated the effect of granulocyte-colony stimulating factor (GCSF) and stem cell factor (SCF) in eNOS-KO mice with and without surgical hind-limb ischemia. Our results suggest that BMDPC mobilization can be achieved via activation of NO-independent pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K, Zeiher AM, Dimmeler S (2003) Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9:1370–1376

    Article  PubMed  CAS  Google Scholar 

  • Aicher A, Heeschen C, Dimmeler S (2004) The role of NOS3 in stem cell mobilization. Trends Mol Med 10:421–425

    Article  PubMed  CAS  Google Scholar 

  • Al-Khaldi A, Al-Sabti H, Galipeau J, Lachapelle K (2003) Therapeutic angiogenesis using autologous bone marrow stromal cells: improved blood flow in a chronic limb ischemia model. Ann Thorac Surg 75:204–209

    Article  PubMed  Google Scholar 

  • Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A, Miller L, Guetta E, Zipori D, Kedes LH, et al (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infracted myocardium: feasibility, cell migration, and body distribution. Circulation 108:863–868

    Article  PubMed  Google Scholar 

  • Boger RH, Bode-Boger SM, Thiele W, Junker W, Alexander K, Frolich JC (1997) Biochemical evidence for impaired nitric oxide synthesis in patients with peripheral arterial occlusive disease. Circulation 95:2068–2074

    PubMed  CAS  Google Scholar 

  • Dimmeler S, Hermann C, Galle J, Zeiher AM (1999) Upregulation of superoxide dismutase and nitric oxide synthase mediates the apoptosis-suppressive effects of shear stress on endothelial cells. Arterioscler Thromb Vasc Biol 19:656–664

    PubMed  CAS  Google Scholar 

  • Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Adler K, Tiemann M, Rutten H, Fichtlscherer S, Martin H, Zeiher AM (2001) HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 108:391–397

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Fernandez F, Jimenez A, Lopez-Blaya A, Velasco S, Arriero MM, Celdran A, Rico L, Farre J, Casado S, Lopez-Farre A (2001) Cerivastatin prevents tumor necrosis factoralpha-induced downregulation of endothelial nitric oxide synthase: role of endothelial cytosolic proteins. Atherosclerosis 155:61–70

    Article  PubMed  CAS  Google Scholar 

  • Gregg AR, Schauer A, Shi O, Liu Z, Lee CG, O’Brien WE (1998) Limb reduction defects in endothelial nitric oxide synthase-deficient mice. Am J Physiol 275:H2319–H2324

    PubMed  CAS  Google Scholar 

  • Heeschen C, Lehmann R, Honold J, Assmus B, Aicher A, Walter DH, Martin H, Zeiher AM, Dimmeler S (2004) Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 109:1615–1622

    Article  PubMed  Google Scholar 

  • Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, et al (2002) Recruitment of stem and progenitor cells fromthe bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109:625–637

    Article  PubMed  CAS  Google Scholar 

  • Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600

    Article  PubMed  Google Scholar 

  • Jo DY, Hwang JH, Kim JM, Yun HJ, Kim S (2003) Human bone marrow endothelial cells elaborate non-stromal-cell-derived factor-1 (SDF-1)-dependent chemoattraction and SDF-1-dependent transmigration of haematopoietic progenitors. Br J Haematol 121:649–652

    Article  PubMed  CAS  Google Scholar 

  • Kauser K, Rubanyi GM (2002) “Nitric oxide deficiency” in cardiovascular diseases. Cardiovascular protection by restoration of endothelial nitric oxide production. In: Rubanyi GM (ed) Mechanisms of vasculoprotection. Springer-Verlag, Berlin Heidelberg New York, pp 1–31

    Google Scholar 

  • Kawamoto A, Tkebuchava T, Yamaguchi J, Nishimura H, Yoon YS, Milliken C, Uchida S, Masuo O, Iwaguro H, Ma H, et al (2003) Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 107:461–468

    Article  PubMed  Google Scholar 

  • Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, Fuchs S, Epstein SE (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109:1543–1549

    Article  PubMed  CAS  Google Scholar 

  • Landmesser U, Engberding N, Bahlmann FH, Schaefer A, Wiencke A, Heineke A, Spiekermann S, Hilfiker-Kleiner D, Templin C, Kotlarz D, Mueller M, Fuchs M, Hornig B, Haller H, Drexler H (2004) Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation 110:1933–1939

    Article  PubMed  CAS  Google Scholar 

  • Laufs U, Werner N, Link A, Endres M, Wassmann S, Jurgens K, Miche E, Bohm M, Nickenig G (2004) Physical training increases endothelial progenitor cells, inhibits neointimal formation, and enhances angiogenesis. Circulation 109:220–226

    Article  PubMed  CAS  Google Scholar 

  • Lenk K, Adams V, Lurz P, Erbs S, Linke A, Gielen S, Schmidt A, Scheinert D, Biamino G, Emmrich F, et al (2005) Therapeutical potential of blood-derived progenitor cells in patients with peripheral arterial occlusive disease and critical limb ischaemia. Eur Heart J 26:1903–1909

    Article  PubMed  Google Scholar 

  • Lévesque JP, Liu F, Simmons PJ, Betsuyaku T, Senior RM, Pham C, Link DC (2004) Characterization of hematopoietic progenitor mobilization in protease-deficientmice. Blood 104:65–72

    Article  PubMed  CAS  Google Scholar 

  • Llevadot J, Murasawa S, Kureishi Y, Uchida S, Masuda H, Kawamoto A, Walsh K, Isner JM, Asahara T (2001) HMG-CoA reductase inhibitor mobilizes bone marrow-derived endothelial progenitor cells. J Clin Invest 108:399–405

    Article  PubMed  CAS  Google Scholar 

  • Losordo DW, Dimmeler S (2004) Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part II: cell-based therapies. Circulation 109:2692–2697

    Article  PubMed  Google Scholar 

  • Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, Kearney M, Chen D, Symes JF, Fishman MC, et al (1998) Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 101:2567–2578

    PubMed  CAS  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 98:10344–10349

    Article  PubMed  CAS  Google Scholar 

  • Ozuyaman B, Ebner P, Niesler U, Ziemann J, Kleinbongard P, Jax T, Godecke A, Kelm M, Kalka C (2005) Nitric oxide differentially regulates proliferation and mobilization of endothelial progenitor cells but not of hematopoietic stem cells. Thromb Haemost 94:770–772

    PubMed  Google Scholar 

  • Qian HS, Liu P, Kauser K, et al (2001) Nitric oxide deficiency leads to impaired angiogenesis and severe dysfunction of microcirculation in a mouse hind limb ischemia model. Proceedings of the 7th World Congress of Microcirculation Sydney, Australia. Monduzzi Editore, Sydney, pp 525–529

    Google Scholar 

  • Qian HS, Liu P, Huw LY, Orme A, Halks-Miller M, Hill SM, Jin F, Kretschmer P, Blasko E, Cashion L, Szymanski P, Vergona R, Harkins R, Yu J, Sessa WC, Dole WP, Rubanyi GM, Kauser K (2006) Effective treatment of vascular endothelial growth factor refractory hindlimb ischemia by a mutant endothelial nitric oxide synthase gene. Gene Ther 13:1342–1350

    Article  PubMed  CAS  Google Scholar 

  • Rabbany SY, Heissig B, Hattori K, Rafii S (2003) Molecular pathways regulating mobilization of marrow-derived stem cells for tissue revascularization. Trends Mol Med 9:109–117

    Article  PubMed  CAS  Google Scholar 

  • Schachinger V, Britten MB, Zeiher AM (2000) Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101:1899–1906

    PubMed  CAS  Google Scholar 

  • Semerad CL, Christopher MJ, Liu F, Short B, Simmons PJ, Winkler I, Lévesque JP, Chappel J, Ross FP, Link DC (2005) G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 106:3020–3027

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia-and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438

    Article  PubMed  CAS  Google Scholar 

  • Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, et al (2002) Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360:427–435

    Article  PubMed  Google Scholar 

  • Urbich C, Dimmeler S (2005) Risk factors for coronary artery disease, circulating endothelial progenitor cells, and the role of HMG-Co Areductase inhibitors. Kidney Int 67:1672–1676

    Article  PubMed  CAS  Google Scholar 

  • Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89:E1–7

    PubMed  CAS  Google Scholar 

  • Vita JA, Treasure CB, Nabel EG, McLenachan JM, Fish RD, Yeung AC, Vekshtein VI, Selwyn AP, Ganz P (1990) Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation 81:491–497

    PubMed  CAS  Google Scholar 

  • Werner N, Nickenig G (2006) Influence of cardiovascular risk factors on endothelial progenitor cells: limitations for therapy? Arterioscler Thromb Vasc Biol 26:257–266

    Article  PubMed  CAS  Google Scholar 

  • Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Bohm M, Nickenig G (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353:999–1007

    Article  PubMed  CAS  Google Scholar 

  • Yu J, deMuinck ED, Zhuang Z, Drinane M, Kauser K, Rubanyi GM, Qian HS, Murata T, Escalante B, Sessa WC (2005) Endothelial nitric oxide synthase is critical for ischemic remodeling, mural cell recruitment, and blood flow reserve. Proc Natl Acad Sci U S A 102:10999–11004

    Article  PubMed  CAS  Google Scholar 

  • Zeiher AM, Drexler H, Saurbier B, Just H (1993) Endothelium-mediated coronary blood flow modulation in humans. Effects of age, atherosclerosis, hypercholesterolemia, and hypertension. J Clin Invest 92:652–662

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Monterio de Resende, M., Huw, L.Y., Qian, H.S., Kauser, K. (2007). Role of Endothelial Nitric Oxide in Bone Marrow-Derived Progenitor Cell Mobilization. In: Kauser, K., Zeiher, AM. (eds) Bone Marrow-Derived Progenitors. Handbook of Experimental Pharmacology, vol 180. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68976-8_2

Download citation

Publish with us

Policies and ethics