Skip to main content

On the Relationship between Classical Grid Search and Probabilistic Roadmaps

  • Chapter
Algorithmic Foundations of Robotics V

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 7))

Abstract

We present, implement, and analyze a spectrum of closely-related planners, designed to gain insight into the relationship between classical grid search and probabilistic roadmaps (PRMs). Building on quasi-Monte Carlo sampling literature, we have developed deterministic variants of the PRM that use low-discrepancy and low-dispersion samples, including lattices. Classical grid search is extended using subsampling for collision detection and also the optimal-dispersion Sukharev grid, which can be considered as a kind of lattice-based roadmap to complete the spectrum. Our experimental results show that the deterministic variants of the PRM offer performance advantages in comparison to the original PRM and the recent Lazy PRM. This even includes searching using a grid with subsampled collision checking. Our theoretical analysis shows that all of our deterministic PRM variants are resolution complete and achieve the best possible asymptotic convergence rate, which is shown superior to that obtained by random sampling. Thus, in surprising contrast to recent trends, there is both experimental and theoretical evidence that some forms of grid search are superior to the original PRM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo. OBPRM: An obstacle-based PRM for 3D workspaces. In Proceedings of the Workshop on Algorithmic Foundations of Robotics, pages 155–168, 1998.

    Google Scholar 

  2. N. M. Amato and Y. Wu. A randomized roadmap method for path and manipulation planning. In IEEE Int. Conf. Robot. & Autom., pages 113–120, 1996.

    Chapter  Google Scholar 

  3. J. Barraquand, L. Kavraki, J.-C. Latombe, T.-Y. Li, R. Motwani, and P. Ragha-van. A random sampling scheme for robot path planning. In G. Giralt and G. Hirzinger, editors, Proc. of the 7th International Symposium on Robotics Research, pages 249–264. Springer, New York, NY, 1996.

    Google Scholar 

  4. J. Barraquand and J.-C. Latombe. A Monte-Carlo algorithm for path planning with many degrees of freedom. In IEEE Int. Conf. Robot. & Autom., pages 1712–1717, 1990.

    Chapter  Google Scholar 

  5. R. Bohlin. Path planning in practice; lazy evaluation on a multi-resolution grid. In IEEE/RS J Int. Conf on Intelligent Robots & Systems, 2001.

    Google Scholar 

  6. R. Bohlin and L. Kavraki. Path planning using Lazy PRM. In IEEE Int. Conf. Robot & Autom., 2000.

    Google Scholar 

  7. R. Bohlin and L. Kavraki. A randomized algorithm for robot path planning based on lazy evalaution. In S. Rajasekaran, P. Pardalos, J. Reif, and J. Rolim, editors, Handbook on Randomized Computation. Kluwer Academic, 2001.

    Google Scholar 

  8. V. Boor, N. H. Overmars, and A. F. van der Stappen. The gaussian sampling strategy for probabilistic roadmap planners. In IEEE Int. Conf. Robot. & Autom., pages 1018–1023, 1999.

    Google Scholar 

  9. M. Branicky, S. M. LaValle, K. Olsen, and L. Yang. Quasi-randomized path planning. In Proc. IEEE InVl Conf. on Robotics and Automation, pages 1481–1487, 2001.

    Google Scholar 

  10. B. R. Donald. A search algorithm for motion planning with six degrees of freedom. Artif IntelL, 31: 295–353, 1987.

    Article  MATH  Google Scholar 

  11. B. R. Donald, P. G. Xavier, J. Canny, and J. Reif. Kinodynamic planning. Journal of the ACM, 40: 1048–66, November 1993.

    Article  MATH  MathSciNet  Google Scholar 

  12. B. Faverjon. Obstacle avoidance using an octree in the configuration space of a manipulator. In IEEE Int. Conf. Robot. & Autom., pages 504–512, 1984.

    Google Scholar 

  13. B. Faverjon and P. Tournassoud. A local based method for path planning of manipulators with a high number of degrees of freedom. In IEEE Int. Conf. Robot & Autom., pages 1152–1159, 1987.

    Google Scholar 

  14. C. Holleman and L. E. Kavraki. A framework for using the workspace medial axis in PRM planners. In IEEE Int. Conf Robot & Autom., pages 1408–1413, 2000.

    Google Scholar 

  15. D. Hsu, L. E. Kavraki, J.-C. Latombe, R. Motwani, and S. Sorkin. On finding narrow passages with probabilistic roadmap planners. In et al. P. Agarwal, editor, Robotics: The Algorithmic Perspective, pages 141–154. A.K. Peters, Wellesley, MA, 1998.

    Google Scholar 

  16. D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive configuration spaces. Int. J. Comput. Geom. & Appl, 4: 495–512, 1999.

    Article  MathSciNet  Google Scholar 

  17. Y. K. Hwang and N. Ahuja. A potential field approach to path planning. IEEE Trans. Robot & Autom., 8 (l): 23–32, February 1992.

    Article  Google Scholar 

  18. L. E. Kavraki. Computation of configuration-space obstacles using the Fast Fourier Transform. IEEE Trans. Robot & Autom., 11 (3): 408–413 1995.

    Article  MathSciNet  Google Scholar 

  19. L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. & Autom., 12 (4): 566–580, June 1996.

    Article  Google Scholar 

  20. F. Lamiraux and J.-P. Laumond. On the expected complexity of random path planning. In IEEE Int. Conf. Robot & Autom., pages 3306–3311, 1996.

    Google Scholar 

  21. J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA, 1991.

    Book  Google Scholar 

  22. S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and prospects. In B. R. Donald, K. M. Lynch, and D. Rus, editors, Algorithmic and Computational Robotics: New Directions, pages 293–308. A K Peters, Wellesley, MA, 2001.

    Google Scholar 

  23. P. Leven and S. Hutchinson. Real-time motion planning in changing environments. In Proc. International Symposium on Robotics Research, 2000.

    Google Scholar 

  24. S. R. Lindemann and S. M. LaValle. Incremental low-discrepancy lattice methods for motion planning. 2003. Submitted to IEEE International Conference on Robotics and Automation.

    Google Scholar 

  25. J. Matousek. Geometric Discrepancy. Springer-Verlag, Berlin, 1999.

    Book  MATH  Google Scholar 

  26. E. Mazer, J. M. Ahuactzin, ana P. Bessière. The Ariadne’s clew algorithm. J. Artificial Intell. Res., 9: 295–316, November 1998.

    MATH  Google Scholar 

  27. E. Mazer, G. Talbi, J. M. Ahuactzin, and P. Bessière. The Ariadne’s clew algorithm. In Proc. Int. Conf. of Society of Adaptive Behavior, Honolulu, 1992.

    Google Scholar 

  28. H. Niederreiter. Random Number Generation and Quasi-Monte-Carlo Methods. Society for Industrial and Applied Mathematics, Philadelphia, USA, 1992.

    Book  MATH  Google Scholar 

  29. H. Niederreiter and C. P. Xing. Nets, (t,s)-sequences, and algebraic geometry. In P. Hellekalek and G. Larcher, editors, Random and Quasi-Random Point Sets, Lecture Notes in Statistics, Vol. 138, pages 267–302. Springer-Verlag, Berlin, 1998.

    Chapter  Google Scholar 

  30. C. Pisula, K. Hoff, M. Lin, and D. Manoch. Randomized path planning for a rigid body based on hardware accelerated Voronoi sampling. In Proc. Workshop on Algorithmic Foundation of Robotics, 2000.

    Google Scholar 

  31. G. Sanchez and J.-C. Latombe. A single-query bi-directional probabilistic roadmap planner with lazy collision checking. In Int. Symp. Robotics Research, 2001.

    Google Scholar 

  32. T. Simeon, J.-P. Laumond., and C. Nissoux. Visibility based probabilistic roadmaps for motion planning. Advanced Robotics Journal, 14 (6), 2000.

    Google Scholar 

  33. Thierry Simeon, 2002. Personal communication.

    Google Scholar 

  34. A. G. Sukharev. Optimal strategies of the search for an extremum. U.S.S.R. Computational Mathematics and Mathematical Physics, 11 (4), 1971. Translated from Russian, Zh. Vuchisl. Mat i Mat Fiz11, 4, 910–924, 1971.

    Google Scholar 

  35. X. Wang and F. J. Hickernell. Randomized halton sequences. Math. Comp. Modelling, 32: 887–899, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  36. S. A. Wilmarth, N. M. Amato, and P. F. Stiller. MAPRM: A probabilistic roadmap planner with sampling on the medial axis of the free space. In IEEE Int. Conf. Robot. & Autom., pages 1024–1031, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

LaValle, S.M., Branicky, M.S. (2004). On the Relationship between Classical Grid Search and Probabilistic Roadmaps. In: Boissonnat, JD., Burdick, J., Goldberg, K., Hutchinson, S. (eds) Algorithmic Foundations of Robotics V. Springer Tracts in Advanced Robotics, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45058-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45058-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07341-0

  • Online ISBN: 978-3-540-45058-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics