Skip to main content

Multi-agent Model of Biological Swarming

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2801))

Abstract

An agent-based approach is used to explain the formation of vortex swarms in biological systems. The dynamics of the multiagent system is described by 3N coupled equations, modeling for each agent its position, its velocity and its internal energy depot. The energy depot considers the conditions for active biological motion, such as energy take-up, metabolism, and energy conversion. The equation of motion results from a superposition of deterministic and stochastic terms (random noise). The deterministic part considers indirect interactions with other agents to describe local avoidance behavior, and external influences resulting from an attractive environmental potential. Stochastic computer simulations of the multi-agent system are shown in very good agreement with the behavior observed in Daphnia swarms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Czirok, A., Ben-Jacob, E., Cohen, I., Vicsek, T.: Formation of complex bacterial colonies via self-generated vortices. Physical Review E 54(2), 1791–1801 (1996)

    Article  Google Scholar 

  2. Czirok, A., Vicsek, T.: Collective behavior of interacting self-propelled particles. Physica A 281, 17–29 (2000)

    Article  Google Scholar 

  3. Ebeling, W., Schweitzer, F., Tilch, B.: Active Brownian particles with energy depots modelling animal mobility. BioSystems 49, 17–29 (1999)

    Article  Google Scholar 

  4. Erdmann, U., Ebeling, W.: Collective motion of Brownian particles with hydrodynamic interactions. Fluctuation and Noise Letters (2002) (submitted)

    Google Scholar 

  5. Helbing, D., Schweitzer, F., Keltsch, J., Molnár, P.: Active walker model for the formation of human and animal trail systems. Physical Review E 56(3), 2527–2539 (1997)

    Article  Google Scholar 

  6. Mach, R., Ordemann, A., Schweitzer, F.: Modeling vortex swarming in Daphnia. Journal of Theoretical Biology (2003) (submitted)

    Google Scholar 

  7. Mikhailov, A.S., Zanette, D.H.: Noise-induced breakdown of coherent collective motion in swarms. Physical Review E 60, 4571–4575 (1999)

    Article  Google Scholar 

  8. Molnár, P.: Modellierung und Simulation der Dynamik von Fussgängerströmen. Shaker, Aachen (1995)

    Google Scholar 

  9. Ordemann, A., Balazsi, G., Moss, F.: Motions of daphnia in a light field: Random walks with a zooplankton. Nova Acta Leopoldina (2003) (in press)

    Google Scholar 

  10. Ordemann, A.: Vortex-swarming of the zooplankton daphnia. The Biological Physicist 2(3), 5–10 (2002)

    Google Scholar 

  11. Schweitzer, F., Ebeling, W., Tilch, B.: Complex motion of Brownian particles with energy depots. Physical Review Letters 80(23), 5044–5047 (1998)

    Article  Google Scholar 

  12. Schweitzer, F., Ebeling, W., Tilch, B.: Statistical mechanics of canonicaldissipative systems and applications to swarm dynamics. Physical Review E 64(2), 021110–1 – 021110–12 (2001)

    Google Scholar 

  13. Schweitzer, F., Lao, K., Family, F.: Active random walkers simulate trunk trail formation by ants. BioSystems 41, 153–166 (1997)

    Article  Google Scholar 

  14. Schweitzer, F.: Brownian Agents and Active Particles. In: Collective Dynamics in the Natural and Social Sciences. Springer Series in Synergetics, Springer, Heidelberg (2003)

    Google Scholar 

  15. Toner, J., Tu, Y.: Long-range order in a two-dimensional dynamical xy model: How birds fly together. Physical Review Letters 75(23), 4326–4329 (1995)

    Article  Google Scholar 

  16. Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Physical Review Letters 75, 1226–1229 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mach, R., Schweitzer, F. (2003). Multi-agent Model of Biological Swarming. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds) Advances in Artificial Life. ECAL 2003. Lecture Notes in Computer Science(), vol 2801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39432-7_87

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39432-7_87

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20057-4

  • Online ISBN: 978-3-540-39432-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics