Skip to main content

Chemogenomics in Drug Discovery

  • Conference paper

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 58))

Abstract

Chemogenomics is a new strategy in drug discovery which, in principle, searches for all molecules that are capable of interacting with any biological target. Because of the almost infinite number of drug-like organic molecules, this is an impossible task. Therefore chemogenomics has been defined as the investigation of classes of compounds (libraries) against families of functionally related proteins. In this definition, chemogenomics deals with the systematic analysis of chemical-biological interactions. Congeneric series of chemical analogs are probes to investigate their action on specific target classes, e.g., GPCRs, kinases, phosphodiesterases, ion channels, serine proteases, and others. Whereas such a strategy developed in pharmaceutical industry almost 20 years ago, it is now more systematically applied in the search for target- and subtype-specific ligands. The term “privileged structures” has been defined for scaffolds, such as the benzodiazepines, which very often produce biologically active analogs in a target family, in this case in the class of G-protein-coupled receptors. The SOSA approach is a strategy to modify the selectivity of biologically active compounds, generating new drug candidates from the side activities of therapeutically used drugs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Austin CP, Brady LS, Insel TR, Collins FS (2004) NIH molecular libraries initiative. Science 306:1138–1139

    Article  PubMed  CAS  Google Scholar 

  • Baxter JD, Goede P, Apriletti JW, West BL, Feng W, Mellstrom K, Fletterick RJ, Wagner RL, Kushner PJ, Ribeiro RC, Webb P, Scanlan TS, Nilsson S (2002) Structure-based design and synthesis of a thyroid hormone receptor (TR) antagonist. Endocrinology 143:517–524

    Article  PubMed  CAS  Google Scholar 

  • Bishop AC, Ubersax JA, Petsch DT, Matheos DP, Gray NS, Blethrow J, Shimizu E, Tsien JZ, Schultz PG, Rose MD, Wood JL, Morgan DO, Shokat KM (2000) A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407:395–401

    Article  PubMed  ADS  CAS  Google Scholar 

  • Bleicher KH (2002) Chemogenomics: bridging a drug discovery gap. Curr Med Chem 9:2077–2084

    PubMed  CAS  Google Scholar 

  • Bymaster FP, Calligaro DO, Falcone JF, Marsh RD, Moore NA, Tye NC, Seeman P, Wong DT (1996) Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology 14:87–96

    Article  PubMed  CAS  Google Scholar 

  • Bymaster FP, Nelson DL, DeLapp NW, Falcone JF, Eckols K, Truex LL, Foreman MM, Lucaites VL, Calligaro DO (1999) Antagonism by olanzapine of dopamine D1, serotonin2, muscarinic, histamine H1, and α1-adrenergic receptors in vitro. Schizophr Res 37:107–22

    Article  PubMed  CAS  Google Scholar 

  • Capdeville R, Buchdunger E, Zimmermann J, Matter A (2002) Glivec (ST571, Imatinib), a rationally developed, targeted anticancer drug. Nature Rev Drug Discov 1:493–502

    Article  CAS  Google Scholar 

  • Caron PR, Mullican MD, Mashal RD, Wilson KP, Su MS, Murcko MA (2001) Chemogenomic approaches to drug discovery. Curr Opin Chem Biol 5:464–470

    Article  PubMed  CAS  Google Scholar 

  • Ding S, Wu TY, Brinker A, Peters EC, Hur W, Gray NS, Schultz PG (2003) Synthetic small molecules that control stem cell fate. Proc Natl Acad Sci U S A 100:7632–7637

    Article  PubMed  ADS  CAS  Google Scholar 

  • Evans BE, Rittle KE, Bock MG, DiPardo RM, Freidinger RM, Whitter WL, Lundell GF, Veber DF, Anderson PS, Chang RSL, Lotti VJ, Cerino DJ, Chen TB, Kling PJ, Kunkel KA, Springer JP, Hirshfield J (1988) Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J Med Chem 31:2235–2246

    Article  PubMed  CAS  Google Scholar 

  • Hillisch A, Peters O, Kosemund D, Müller G, Walter A, Elger W, Fritzemeier KH (2004a) Protein structure-based design, synthesis strategy and in vitro pharmacological characterization of estrogen receptor α and β selective compounds. Ernst Schering Res Found Workshop 46:47–62

    PubMed  CAS  Google Scholar 

  • Hillisch A, Peters O, Kosemund D, Müller G, Walter A, Schneider B, Reddersen G, Elger W, Fritzemeier KH (2004b) Dissecting physiological roles of estrogen receptor α and β with potent selective ligands from structure-based design. Mol Endocrinol 18:1599–1609

    Article  PubMed  CAS  Google Scholar 

  • Hillisch A, Pineda LF, Hilgenfeld R (2004c) Utility of homology models in the drug discovery process. Drug Discov Today 9:659–669

    Article  PubMed  CAS  Google Scholar 

  • Jacoby E, Schuffenhauer A, Floersheim P (2003) Chemogenomics knowledge-based strategies in drug discovery. Drug News Perspect 16:93–102

    Article  PubMed  CAS  Google Scholar 

  • Keenan RM, Miller WH, Kwon C, Ali FE, Callahan JF, Calvo RR, Hwang SM, Kopple KD, Peishoff CE, Samanen JM, Wong AS, Yuan CK, Huffman WF (1997) Potent, selective, orally active 3-oxo-1,4-benzodiazepine GPIIb/IIIa integrin antagonists. J Med Chem 40:2289–2292

    Article  PubMed  CAS  Google Scholar 

  • Kubinyi H (1998) Similarity and dissimilarity — a medicinal chemist’s view. In: Kubinyi H, Folkers G, Martin YC (eds) 3D QSAR in drug design, vol. II. Ligand-protein interactions and molecular similarity. Kluwer/ESCOM, Dordrecht, 1998, pp 225–252; also published in Persp Drug Design Discov 1998, 9–11:225–252

    Google Scholar 

  • Kubinyi H (2004) Drug discovery from side effects. In: Kubinyi H, Müller G, (eds) Chemogenomics in drug discovery — a medicinal chemistry perspective, vol. 22 of Methods and principles in medicinal chemistry. Mannhold R, Kubinyi H, Folkers G (eds) Wiley-VCH, Weinheim, pp 43–67

    Google Scholar 

  • Kubinyi H, Müller G (eds) (2004) Chemogenomics in drug discovery — a medicinal chemistry perspective, vol. 22, Methods and principles in medicinal chemistry. Mannhold R, Kubinyi H, Folkers G (eds) Wiley-VCH, Weinheim

    Google Scholar 

  • Lipinski C, Hopkins A (2004) Navigating chemical space for biology and medicine. Nature 432:855–861

    Article  PubMed  ADS  CAS  Google Scholar 

  • Lopez-Rodriguez ML, Morcillo MJ, Benhamu B, Rosado ML (1997) Comparative receptor mapping of serotoninergic 5-HT3 and 5-HT4 binding sites. J Comput-Aided Mol Design 11:589–599

    Article  CAS  Google Scholar 

  • Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL, Mitchison TJ (1999) Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286:971–974

    Article  PubMed  CAS  Google Scholar 

  • McGovern SL, Shoichet BK (2003) Kinase inhibitors: not just for kinases anymore. J Med Chem 46:1478–1483

    Article  PubMed  CAS  Google Scholar 

  • McGovern SL, Caselli E, Grigorieff N, Shoichet BK (2002) A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J Med Chem 45:1712–1722

    Article  PubMed  CAS  Google Scholar 

  • McGovern SL, Helfand BT, Feng B, Shoichet BK (2003) A specific mechanism of nonspecific inhibition. J Med Chem 46:4265–4272

    Article  PubMed  CAS  Google Scholar 

  • Miller WH, Keenan RM, Willette RN, Lark MW (2000) Identification and in vivo efficacy of small-molecule antagonists of integrin αvβ3 (the vitronectin receptor). Drug Discov Today 5:397–408

    Article  PubMed  CAS  Google Scholar 

  • Müller G (2003) Medicinal chemistry of target family-directed masterkeys. Drug Discov Today 8:681–691

    Article  PubMed  Google Scholar 

  • Müller G (2004) Target family-directed masterkeys in chemogenomics. In: Kubinyi H, Müller G (eds) Chemogenomics in drug discovery — a medicinal chemistry perspective, vol. 22 of Methods and principles in medicinal chemistry. Mannhold R, Kubinyi H, Folkers G (eds) Wiley-VCH, Weinheim, pp 7–41

    Google Scholar 

  • Patchett AA, Nargund RP (2000) Privileged structures — an update. Annu Rep Med Chem 35:289–298

    Article  CAS  Google Scholar 

  • Rival Y, Hoffmann R, Didier B, Rybaltchenko V, Bourguignon J-J, Wermuth CG (1998) 5-HT3 Antagonists derived from aminopyridazine-type muscarinic M1 agonists. J Med Chem 41:311–317

    Article  PubMed  CAS  Google Scholar 

  • Rohrer SP, Birzin ET, Mosley RT, Berk SC, Hutchins SM, Shen DM, Xiong Y, Hayes EC, Parmar RM, Foor F, Mitra SW, Degrado SJ, Shu M, Klopp JM, Cai SJ, Blake A, Chan WW, Pasternak A, Yang L, Patchett AA, Smith RG, Chapman KT, Schaeffer JM (1998) Rapid identification of subtype-selective agonists of the somatostatin receptor through combinatorial chemistry. Science 282:737–740; erratum Science 282:1646

    Article  PubMed  ADS  CAS  Google Scholar 

  • Römer D, Büscher HH, Hill RC, Maurer R, Petcher TJ, Zeugner H, Benson W, Finner E, Milkowski W, Thies PW (1982) An opioid benzodiazepine. Nature 298:759–760

    Article  PubMed  ADS  Google Scholar 

  • Russell K, Michne WF (2004) The value of chemical genetics in drug discovery. In: Kubinyi H, Müller G (eds) Chemogenomics in drug discovery. Wiley-VCH, Weinheim, pp 69–96

    Chapter  Google Scholar 

  • Samanen JM, Ali FE, Barton LS, Bondinell WE, Burgess JL, Callahan JF, Calvo RR, Chen W, Chen L, Erhard K, Feuerstein G, Heys R, Hwang S-M, Jakas DR, Keenan RM, Ku TW, Kwon C, Lee C-P, Miller WH, Newlander KA, Nichols A, Parker M, Peishoff CE, Rhodes G, Ross S, Shu A, Simpson R, Takata D, Yellin TO, Uzsinskas I, Venslavsky JW, Yuan CK, Huffman WF (1996) Discovery of potent nonpeptide vitronectin receptor (αvβ3) antagonists. J Med Chem 39:4867–4870

    Article  PubMed  CAS  Google Scholar 

  • Scanlan TS, Yoshihara HA, Nguyen N-H, Chiellini G (2001) Selective thyromimetics: tissue-selective thyroid hormone analogs. Curr Opin Drug Disc Dev 4:614–622

    CAS  Google Scholar 

  • Schreiber SL (2000) Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287:1964–1969

    Article  PubMed  ADS  CAS  Google Scholar 

  • Schreiber SL (2003) The small-molecular approach to biology. C&EN 81:51–61; cf. Rouhi AM (2003) Moving beyond natural products. C&EN 81:104–107

    Google Scholar 

  • Seidler J, McGovern SL, Doman TN, Shoichet BK (2003) Identification and prediction of promiscuous aggregating inhibitors among known drugs. J Med Chem 46:4477–4486

    Article  PubMed  CAS  Google Scholar 

  • Slusarchyk WA, Robl JA, Taunk PC, Asaad MM, Bird JE, DiMarco J, Pan Y (1995) Dual metalloprotease inhibitors. V. Utilization of bicyclic azepinonethiazolidines and azepinonetetrahydrothiazines in constrained peptidomimetics of mercaptoacyl dipeptides. Bioorg Med Chem Lett 5:753–758

    Article  CAS  Google Scholar 

  • Sneader W (1996) Drug prototypes and their exploitation. John Wiley, Chichester

    Google Scholar 

  • Stockwell BR (2004) Exploring biology with small organic molecules. Nature 432:846–854

    Article  PubMed  ADS  CAS  Google Scholar 

  • Tan DS, Foley MA, Shair MD, Schreiber SL (1998) Stereoselective synthesis of over two million compounds having structural features both reminiscent of natural products and compatible with miniaturized cell-based assays. J Am Chem Soc 120:8565–8566

    Article  CAS  Google Scholar 

  • Wermuth CG (2001) The “SOSA” approach: an alternative to high-throughput screening. Med Chem Res 10:431–439

    CAS  Google Scholar 

  • Wermuth CG (2004) Selective optimization of side activities: another way for drug discovery. J Med Chem 47:1303–1314

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Ikeda S, Kondo H, Inoue S (2002) Design and synthesis of dual inhibitors for matrix metalloproteinase and cathepsin. Bioorg Med Chem Lett 12:375–378

    Article  PubMed  CAS  Google Scholar 

  • Ye HF, O’Reilly KE, Koh JT (2001) A subtype-selective thyromimetic designed to bind a mutant thyroid hormone receptor implicated in resistance to thyroid hormone. J Am Chem Soc 123:1521–1522

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kubinyi, H. (2006). Chemogenomics in Drug Discovery. In: Jaroch, S., Weinmann, H. (eds) Chemical Genomics. Ernst Schering Research Foundation Workshop, vol 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37635-4_1

Download citation

Publish with us

Policies and ethics