Skip to main content

Safety Verification of Hybrid Systems Using Barrier Certificates

  • Conference paper
Hybrid Systems: Computation and Control (HSCC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2993))

Included in the following conference series:

Abstract

This paper presents a novel methodology for safety verification of hybrid systems. For proving that all trajectories of a hybrid system do not enter an unsafe region, the proposed method uses a function of state termed a barrier certificate. The zero level set of a barrier certificate separates the unsafe region from all possible trajectories starting from a given set of initial conditions, hence providing an exact proof of system safety. No explicit computation of reachable sets is required in the construction of barrier certificates, which makes nonlinearity, uncertainty, and constraints can be handled directly within this framework. The method is also computationally tractable, since barrier certificates can be constructed using the sum of squares decomposition and semidefinite programming. Some examples are provided to illustrate the use of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Oliviero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alur, R., Dang, T., Ivancic, F.: Progress on reachability analysis of hybrid systems using predicate abstraction. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 4–19. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Anai, H., Weispfenning, V.: Reach set computations using real quantifier elimination. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 63–76. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Bemporad, A., Torrisi, F.D., Morari, M.: Optimization-based verification and stability characterization of piecewise affine and hybrid systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 45–58. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Botchkarev, O., Tripakis, S.: Verification of hybrid systems with linear differential inclusions using ellipsoidal approximations. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 73–88. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)

    MATH  Google Scholar 

  8. Branicky, M.S.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Automatic Control 43(4), 475–482 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chutinan, A., Krogh, B.H.: Computational techniques for hybrid system verification. IEEE Trans. Automatic Control 48(1), 64–75 (2003)

    Article  MathSciNet  Google Scholar 

  10. Clarke, E.M., Kurshan, R.P.: Computer-aided verification. IEEE Spectrum 33(6), 61–67 (1996)

    Article  Google Scholar 

  11. Johansson, M., Rantzer, A.: Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Trans. Automat. Control 43(4), 555–559 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Khalil, H.K.: Nonlinear Systems, 2nd edn. Prentice-Hall, Inc., Upper Saddle River (1996)

    Google Scholar 

  13. Kurzhanski, A., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 203–213. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computations for families of linear vector fields. J. Symbolic Computation 32(3), 231–253 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Megretski, A., Rantzer, A.: System analysis via integral quadratic constraints. IEEE Trans. Automatic Control 42(6), 819–830 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Murray, R.M. (ed.): Control in an Information Rich World: Report of the Panel on Future Directions in Control, Dynamics, and Systems. SIAM, Philadelphia (2003), Available at http://www.cds.caltech.edu/~murray/cdspanel

    MATH  Google Scholar 

  17. Papachristodoulou, A., Prajna, S.: On the construction of Lyapunov functions using the sum of squares decomposition. In: Proceedings IEEE CDC (2002)

    Google Scholar 

  18. Parrilo, P.A.: Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. PhD thesis, Caltech, Pasadena, CA (2000)

    Google Scholar 

  19. Prajna, S.: Barrier certificates for nonlinear model validation. In: Proceedings IEEE Conference on Decision and Control (2003)

    Google Scholar 

  20. Prajna, S., Papachristodoulou, A., Parrilo, P.A.: Introducing SOSTOOLS: A general purpose sum of squares programming solver. In: Proceedings IEEE CDC (2002), Available at http://www.cds.caltech.edu/sostools and http://www.aut.ee.ethz.ch/~parrilo/sostools

  21. Shor, N.Z.: Class of global minimum bounds of polynomial functions. Cybernetics 23(6), 731–734 (1987)

    Article  MATH  Google Scholar 

  22. Tiwari, A.: Approximate reachability for linear systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 514–525. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Tomlin, C.J., Mitchell, I., Bayen, A.M., Oishi, M.: Computational techniques for the verification of hybrid systems. Proc. of the IEEE 91(7), 986–1001 (2003)

    Article  Google Scholar 

  24. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Review 38(1), 49–95 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yazarel, H., Pappas, G.: Geometric programming relaxations for linear systems reachability. Submitted to the American Control Conference (2004)

    Google Scholar 

  26. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice-Hall, Inc., Upper Saddle River (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prajna, S., Jadbabaie, A. (2004). Safety Verification of Hybrid Systems Using Barrier Certificates. In: Alur, R., Pappas, G.J. (eds) Hybrid Systems: Computation and Control. HSCC 2004. Lecture Notes in Computer Science, vol 2993. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24743-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24743-2_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21259-1

  • Online ISBN: 978-3-540-24743-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics