Skip to main content

Rhododendron

  • Chapter
  • First Online:

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 11))

Abstract

Genus Rhododendron, which includes plants commonly referred to as rhododendrons and azaleas, contains over 800 immensely diverse and ornamental species. For the past 200 years, this natural variability has provided the raw material for Western plant breeders who have recombined ornamental and adaptive traits in novel hybrids, which number over 25,000 at the present time. Overwhelmingly, the focus has been on aesthetic attributes because hybridizing is mostly done by enthusiasts and collectors who are doing it for enjoyment’s sake rather than for public consumption or commercial reward. This chapter draws attention to a need for better adapted plants that will perform well in challenging conditions and to functional diversity in the wild that can provide these adaptations for breeding purposes. Increased tolerance of abiotic stresses such as temperature and moisture extremes, alkaline soils, or high salt concentrations, in addition to improved resistance to pathogens and pests, will benefit public horticulture by making landscape rhododendrons and azaleas easier to grow and suitable for broader markets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aerts R (1995) The advantages of being evergreen. Trends Ecol Evol 10:402–407

    Article  PubMed  CAS  Google Scholar 

  • Agrios GN (1997) Plant pathology. Academic, New York, pp 266–226

    Google Scholar 

  • Alexander P (2008) Are INKARHO rhododendrons more lime tolerant than traditional calcifuge rhododendrons? SEESOIL 17:8–17

    Google Scholar 

  • American Rhododendron Society. https://www.rhododendron.org/search_intro.asp

  • Ammal EKJ (1950) Polyploidy in the genus Rhododendron. Rhododendron Year Book 5:92–98

    Google Scholar 

  • Ammal EKJ, Enoch IC, Bridgwater M (1950) Chromosome numbers in species of Rhododendron. Rhododendron Year Book 5:78–91

    Google Scholar 

  • Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen, pollution, climate change, and agrotechnology drivers. Trends Ecol Evol 19:535–544

    Article  PubMed  Google Scholar 

  • APHIS (2013) www.aphis.usda.gov/plant_health/plant_pest_info/pram/downloads/pdf_files/usdaprlist.pdf

  • Arisumi K, Matsuo E, Sakata Y, Tottoribe T (1986) Breeding for heat resistant rhododendrons. Part 2: differences in heat resistance among species and hybrids. J Am Rhod Soc 40:215–219

    Google Scholar 

  • Arora R, Wisniewski ME, Scorza R (1992) Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch). I. Seasonal changes in cold hardiness and polypeptides of bark and xylem tissues. Plant Physiol 99:1562–1568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arora R, Rowland LJ, Panta GR (1997) Chill-responsive dehydrins in blueberry: Are they associated with cold hardiness or dormancy transitions? Physiol Plant 101:8–16

    Article  CAS  Google Scholar 

  • Atkinson R, Jong K, Argent G (2000) Chromosome numbers of some tropical rhododendrons (section Vireya). Edinburgh J Bot 57:1–7

    Article  Google Scholar 

  • Bao F, Du AY, Yang W, Wang J, Cheng T et al (2017) Overexpression of Prunus mume dehydrin genes in tobacco enhances tolerance to cold and drought. Front Plant Sci 8:151. https://doi.org/10.3389/fpls.2017.00151

    Article  PubMed  PubMed Central  Google Scholar 

  • Barlup J (2002) Let’s talk hybridizing: hybridizing with elepidote polyploid rhododendrons. J Am Rhod Soc 76:75–77

    Google Scholar 

  • Bennett MD (2004) Perspectives on polyploidy in plants – ancient and neo. Bio J Linn Soc 18:411–423

    Article  Google Scholar 

  • Benson DM (1980) Resistance of evergreen azalea to root rot caused by Phytophthora cinnamomi. Plant Dis 64:214–215

    Article  Google Scholar 

  • Benson DM (1987) Occurrence of Phytophthora cinnamomi on roots of azalea treated with pre-inoculation and post-inoculation applications of metalaxyl. Plant Dis 71:818–820

    Article  Google Scholar 

  • Bergot M, Cloppet E, Perarnaud V, Deque M, Marcaiss B, Desprez-Loustau ML (2004) Simulation of potential range expansion of oak disease caused by Phytophthora cinnamomi under climate change. Glob Chang Biol 10:1539–1552

    Article  Google Scholar 

  • Blaker NS, MacDonald JD (1981) Predisposing effects of soil moisture extremes on the susceptibility of rhododendron to Phytophthora root and crown rot. Phytopathology 71:831–834

    Article  Google Scholar 

  • Bostock RM, Pye MF, Roubstova TV (2014) Predisposition in plant disease; exploiting the nexus in abiotic and biotic stress perception and response. Annu Rev Phytopathol 52:517–549

    Article  PubMed  CAS  Google Scholar 

  • Brasier CM, Scott JK (1994) European oak declines and global warming: a theoretical assessment with special reference to the activity of Phytophthora cinnamomi. EPPO Bull 25:221–232

    Article  Google Scholar 

  • Brasier CM, Beales PA, Kirk SA, Denman S, Rose J (2005) Phytophthora kernoviae sp. nov., an invasive pathogen causing bleeding stem lesions on forest trees and foliar necrosis of ornamentals in the UK. Mycol Res 109:853–859

    Article  PubMed  Google Scholar 

  • Brasier CM, Vettraino AM, Chang TT, Vannini A (2010) Phytophthora lateralis discovered in an old growth Chaemaecyparis forest in Taiwan. Plant Pathol 59:595–603

    Article  CAS  Google Scholar 

  • Burgess TI, Scott JK, McDougall KL, Stukely MJ, Crane C, Dunstan WA, Brigg F, Andjic V, White D, Rudman T, Arentz F, Ota N, Hardy GE St J (2016) Current and projected global distribution of Phytophthora cinnamomi, one of the world’s worst plant pathogens. Climate Change Biol 23:1661–1674

    Google Scholar 

  • Bush EA, Hong C, Stromberg EL (2003) Fluctuations of Phytophthora and Pythium spp. in components of a recycling irrigation system. Plant Dis 87:1500–1506

    Article  PubMed  Google Scholar 

  • Chaanin A (1998) Lime tolerance in rhododendron. Combined Proc Int Plant Prop Soc 48:180–182

    Google Scholar 

  • Chaanin A, Preil W (1994) Influence of bicarbonate on iron deficiency chlorosis in Rhododendron. Acta Hortic 364:71–77

    Article  Google Scholar 

  • Chung JD, Lin TP, Chen YL, Chen YP, Hwang SY (2007) Phylogeographic study reveals the origin and evolutionary history of a Rhododendron species complex in Taiwan. Mol Phylogenet Evol 42:14–24. https://doi.org/10.1016/j.ympev.2006.06.027

    Article  PubMed  CAS  Google Scholar 

  • Contreras RN, Ranney TG, Tallury SP (2007) Reproductive behavior of diploid and allotetraploid Rhododendron L. ‘Fragrant Affinity’. Hortscience 42:31–34

    Google Scholar 

  • Cox PA (1979) The larger species of Rhododendron. BT Batsford, London

    Google Scholar 

  • Cox PA (1985) The smaller rhododendrons. Timber Press, Portland

    Google Scholar 

  • Cox PA (1993) The cultivation of rhododendrons. BT Batsford, LTD, London

    Google Scholar 

  • Creech JL (1978) A distribution note on Rhododendron tamurae. J Am Rhod Soc 32:100

    Google Scholar 

  • Daugherty ML, Benson DM (2001) Rhododendron diseases. In: Jones RK, Benson DM (eds) Diseases of woody ornamentals and trees in nurseries. APS Press, St. Paul, pp 334–335

    Google Scholar 

  • De Dobbelaere I, Vercauteren A, Speybroek N, Berkvens D, Van Bockstaele E, Maes M, Heungens K (2010) Effect of host factors on the susceptibility of Rhododendron to Phytophthora ramorum. Plant Pathol 59:301–312

    Article  Google Scholar 

  • De Schepper S, Leus L, Mertens M, Van Bockstaele E, De Loose M, Debergh P, Heursel J (2001) Flow cytometric analysis of ploidy in Rhododendron subgenus Tsustusi. Hortscience 36:125–127

    Google Scholar 

  • Die JV, Arora R, Rowland LJ (2017) Proteome dynamics of cold-acclimating Rhododendron species contrasting in their freezing tolerance and thermonasty behavior. PLoS One 12(5):e0177389. https://doi.org/10.1371/journal.pone.0177389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DiLeo MV, Pye MF, Roubstova TV, Duniway JM, MacDonald JD, Rizzo DM, Bostock RM (2010) Abscisic acid in salt stress predisposition to Phytophthora root rot and crown rot in tomato and chrysanthemum. Phytopathology 100:871–879

    Article  PubMed  CAS  Google Scholar 

  • Doss RP (1984) Role of glandular scales of lepidote rhododendrons in insect resistance. J Chem Ecol 10:1787–1798

    Article  PubMed  CAS  Google Scholar 

  • Dunemann F, Kahnau R, Stange I (1999) Analysis of complex leaf and flower characters in Rhododendron using a molecular linkage map. Theor Appl Genet 98:1146–1155

    Article  CAS  Google Scholar 

  • Elliott M, Sumampong G, Varga A, Shamoun SF, James D, Masri S, Grünwald NJ (2011) Phenotypic differences among three clonal lineages of Phytophthora ramorum. For Pathol 41:7–14. https://doi.org/10.1111/j.1439-0329.2009.00627.x

    Article  Google Scholar 

  • Galle FC (1985) Azaleas. Timber Press, Portland

    Google Scholar 

  • Garbelotto M, Hayden KJ (2012) Sudden Oak Death: interactions of the exotic oomycete Phytophthora ramorum with naïve North American hosts. Eukaryot Cell 11:1313–1323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • George MF, Burke MJ, Weiser CJ (1974) Supercooling in overwintering azalea flower buds. Plant Physiol 54:29–35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giel P, Bojarczuk K (2011) Effects of high concentrations of calcium salts in the substrate and its pH on the growth of selected rhododendron cultivars. Acta Soc Bot Pol 80:105–111

    Article  CAS  Google Scholar 

  • Goetsch L, Eckert AJ, Hall BD (2005) The molecular systematics of Rhododendron (Ericaceae): a phylogeny based upon RPB2 gene sequences. Syst Bot 30:616–626

    Article  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Ann Rev Plant Physiol 41:187–223

    Article  CAS  Google Scholar 

  • Hanger BC, Bjarnson EN, Osborn RK (1981) The growth of rhododendrons in containers in soil, treated with either CaCO3 or Ca SO4. Plant Soil 61:479–483

    Article  CAS  Google Scholar 

  • Harris GC, Antoine V, Chan M, Nevidomskyte D, KoÈniger M (2006) Seasonal changes in photosynthesis, protein composition and mineral content in Rhododendron leaves. Plant Sci 170:314–325

    Article  CAS  Google Scholar 

  • Hayden KJ, Garbelotto M, Dodd R, Wright JW (2013) Scaling up from greenhouse resistance to fitness in the field for a host of an emerging forest disease. Evol Appl 6:970–982

    Article  PubMed  PubMed Central  Google Scholar 

  • Heursel J, De Roo R (1981) Polyploidy in evergreen azaleas. Hortscience 16:765–766

    Google Scholar 

  • Hoitink HAJ, Schmitthenner AF (1974) Resistance of rhododendron species and hybrids to Phytophthora root rot. Plant Dis Rep 58:650–653

    Google Scholar 

  • Hoitink HA, Van Doren JDM Jr, Schmitthenner AF (1977) Suppression of Phytophthora cinnamomi in composted hardwood bark potting medium. Phytopathology 67:561–565

    Article  Google Scholar 

  • Hoitink HAJ, Benson DM, Schmitthenner AF (1986) Diseases caused by fungi: Phytophthora root rot. In: Coyier DL, Roane MK (eds) Compendium of rhododendron and azalea diseases. APS Press, St. Paul, pp 4–8

    Google Scholar 

  • Hokanson SC, McNamara S, Zuzek K, Rose N (2005) Rhododendron ‘Candy Lights’ and ‘Lilac Lights’. Hortscience 40:1925–1927

    Google Scholar 

  • Hosoda T, Moriya A, Sarahima S (1953) Chromosome numbers of satsuki, Rhododendron lateritium. Genetica 26:407–409

    Article  PubMed  CAS  Google Scholar 

  • Houde M, Dallaire S, N'Dong D, Sarhan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J 2:381–387

    Article  PubMed  CAS  Google Scholar 

  • Irving E, Hebda R (1993) Concerning the origin and distribution of Rhododendron. J Am Rhod Soc 47:139–162

    Google Scholar 

  • Ishikawa M, Sakai A (1981) Freezing avoidance mechanisms by supercooling in some Rhododendron flower buds with reference to water relations. Plant Cell Physiol 22:953–967

    Google Scholar 

  • Ismail AM, Hall AE, Close TJ (1999) Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. PNAS 96:1356–13570

    Article  Google Scholar 

  • Johnson GR, Hirsch AG (1995) Validity of screening for foliage cold hardiness in the laboratory. J Environ Hortic 13:26–30

    Google Scholar 

  • Jones JR, Ranney TG, Lynch NP, Krebs SL (2007) Ploidy levels and relative genome sizes of diverse species, hybrids, and cultivars of Rhododendron. J Am Rhod Soc 61:220–227

    Google Scholar 

  • Kaisheva, ME (2006) The effect of metals and soil pH on the growth of Rhododendron and other alpine plants in limestone soil. Dissertation. University of Edinburgh www.era.lib.ed.ac.uk/handle/1842/2606

  • Kaku S (1993) Monitoring stress sensitivity by water proton NMR relaxation times in leaves of azaleas that originated in different ecological habitats. Plant Cell Physiol 34:535–541

    Google Scholar 

  • Kehr AE (1976) Polyploids in rhododendron breeding. J Am Rhod Soc 50:215–217

    Google Scholar 

  • Kehr AE (1977) Azaleodendron breeding. J Am Rhod Soc 31:226–232

    Google Scholar 

  • Kho WH, Chang S, Su CH (1978) Isolates of Phytophthora cinnamomi from Taiwan as evidence for an Asian origin of the species. Trans Br Mycol Soc 71:496–499

    Article  Google Scholar 

  • Kong P, Hong CX, Richardson PA (2003) Rapid detection of Phytophthora cinnamomi using PCR with primers derived from the Lpv putative storage protein genes. Plant Pathol 52:681–693

    Article  CAS  Google Scholar 

  • Krebs SL (1996) Normal segregation of allozyme markers in complex rhododendron hybrids. J Hered 87:131–135

    Article  CAS  Google Scholar 

  • Krebs SL (2005) Loss of winter hardiness in R. ‘Supernova’, an artificial polyploid. J Am Rhod Soc 59:74–75

    Google Scholar 

  • Krebs SL (2009) Breeding rhododendrons resistant to Phytophthora root rot disease. In: Roy J (ed) The world of Rhododendrons: Proceedings of the 2008 conference at the Royal Botanic Garden Edinburgh. RBGE Yearbook No. 11, Edinburgh, UK, pp 53–58

    Google Scholar 

  • Krebs SL (2013) Resistance to Phytophthora root rot varies among rhododendrons subjected to repeated flooding in the field. Acta Hortic 990:243–252

    Article  Google Scholar 

  • Krebs, SL (2018). Heat-induced predisposition to Phytophthora root rot disease in Rhododendron. Acta Horticulturae 1191:59–68

    Google Scholar 

  • Krebs SL, Wilson MD (2002) Resistance to Phytophthora root rot in contemporary rhododendron cultivars. Hortscience 37:790–792

    Google Scholar 

  • Lane CR, Beales P, Hughes KJD, Webber J (2003) First outbreak of Phytophthora ramorum in England, on Viburnum tinus. Plant Pathol 52:414. https://doi.org/10.1046/j.1365-3059.2003.00835.x

    Article  Google Scholar 

  • Leach DG (1961) Rhododendrons of the world and how to grow them. Sribner’s Sons, New York

    Google Scholar 

  • Lee JA, Woolhouse HW (1969) A comparative study of bicarbonate inhibition of root growth in calcicole and calcifuge grasses. New Phytol 68:1–11

    Article  CAS  Google Scholar 

  • Leiser AT (1957) Rhododendron occidentale on alkaline soil. Rhododendron Camellia Yearbook 11:47–51

    Google Scholar 

  • Leslie A (2004) The international Rhododendron register and checklist, 2nd edn. Royal Horticultural Society, London

    Google Scholar 

  • Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122:1–25

    Article  Google Scholar 

  • Li H (1957) Chromosome studies in the azaleas of eastern North America. Am J Bot 44:8–14

    Article  Google Scholar 

  • Lim CC, Arora R, Townsend ED (1998a) Comparing Gompertz and Richards functions to estimate freezing injury in Rhododendron using electrolyte leakage. J Am Soc Hortic Sci 123:246–252

    Google Scholar 

  • Lim CC, Arora R, Krebs SL (1998b) Genetic study of freezing tolerance in Rhododendron populations: implications for cold hardiness breeding. J Am Rhod Soc 52:143–148

    Google Scholar 

  • Lim CC, Krebs SL, Arora R (1999) A 25-kDa dehydrin associated with genotype- and age-dependent leaf freezing-tolerance in Rhododendron: a genetic marker for cold hardiness? Theor Appl Genet 99:912–920. https://doi.org/10.1007/s001220051312

    Article  CAS  Google Scholar 

  • Lim CC, Krebs SL, Arora R (2014) Cold hardiness increases with age in juvenile Rhododendron populations. Front Plant Sci 5:542. https://doi.org/10.3389/fpls.2014.00542

    Article  PubMed  PubMed Central  Google Scholar 

  • Lipp CC, Nilsen ET (1997) The impact of subcanopy light environment on the hydraulic vulnerability of Rhododendron maximum to freeze-thaw cycles and drought. Plant Cell Environ 20:1264–1272

    Article  Google Scholar 

  • Livingston PH, West FH (eds) (1978) Hybrids and Hybridizers; rhododendrons and azaleas for eastern North America. Harrowood Books, Newtown Square

    Google Scholar 

  • Lunin J, Stewart FB (1961) Soil salinity tolerance of azaleas and camellias. Proc Am Soc Hortic Sci 77:528–532

    CAS  Google Scholar 

  • MacDonald JD (1982) Effect of salinity stress on the development of Phytophthora root rot of Chrysanthemum. Phytopathology 72:214–219

    Article  Google Scholar 

  • MacDonald JD (1991) Heat stress enhances Phytophthora root rot severity in container-grown chrysanthemums. J Am Soc Hortic Sci 116:36–41

    Google Scholar 

  • Madsen K (2000) In pursuit of ironclads. Arnoldia 60:29–32

    Google Scholar 

  • Marian CO, Krebs SL, Arora R (2004) Dehydrin variability among rhododendron species: a 25-kDa dehydrin is conserved and associated with cold acclimation across diverse species. New Phytol 97:773–780. https://doi.org/10.1111/j.1469-8137.2003.01001.x

    Article  CAS  Google Scholar 

  • Mason AS, Nelson MN, Yan G, Cowling WA (2011) Production of viable male unreduced gametes in Brassica interspecific hybrids is genotype specific and stimulated by cold temperatures. BMC Plant Biol 11:103. https://doi.org/10.1186/1471-2229-11-103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McAleese AJ, Rankin DWH (2000) Growing rhododendrons on limestone soils: is it really possible? J Am Rhod Soc 54:126–134

    Google Scholar 

  • McDougall KL, Hobbs RJ, Hardy GESJ (2005) Distribution of understory species in forest affected by Phytophthora in south-western Western Australia. Aus J Bot 55:813–819

    Article  Google Scholar 

  • Milbocker DC (1988) Salt tolerance of azalea cultivars. J Am Soc Hortic Sci 113:79–84

    Google Scholar 

  • Milne R, Abbott RJ (2000) Origin and evolution of invasive naturalized material of Rhododendron ponticum L. in the British isles. Mol Ecol 9:541–556

    Article  PubMed  CAS  Google Scholar 

  • Min SK, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. Nature 470:378–381. https://doi.org/10.1038/nature09763

    Article  PubMed  CAS  Google Scholar 

  • Moe S, Pellett H (1986) Breeding for cold hardy azaleas in the land of the northern lights. J Am Rhod Soc 40:203–205

    Google Scholar 

  • Mohr PG, Cahill DM (2007) Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct Integr Genomics 7:181–191

    Article  PubMed  CAS  Google Scholar 

  • Moons A, Bauw G, Prinsen E, Van Montagu M, Van der Straeten D (1995) Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties. Plant Physiol 107:177–186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mordhorst AP, Kullik C, Preil W (1993) Ca uptake and distribution in Rhododendron selected for lime tolerance. Gartenbauwissenschaft 58:111–116

    Google Scholar 

  • Nakamura M (1931) Cytological studies on the genus Rhododendron. J Soc Trop Agric 3:103–109

    Google Scholar 

  • Nelson S (2000) The Pacific rhododendron story; the hybridizers, collectors, and gardens. Binford and Mort Publishers Hillsboro, Portland

    Google Scholar 

  • Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462

    Article  PubMed  CAS  Google Scholar 

  • Overland JE, Dethloff K, Francis JA, Hall RJ, Hanna E, Kimm SJ, Screen JA, Shepherd TG, Vihma T (2016) Nonlinear response of mid-latitude weather to the changing Arctic. Nat Clim Chang 6:992–999. https://doi.org/10.1038/nclimate3121

    Article  Google Scholar 

  • Pan A, Hayes PM, Chen F, Blake T, Chen THH, Wright TTS, Karsai I, Bedo Z (1994) Genetic analysis of the components of winter hardiness in barley (Hordeum vulgare L.). Theor Appl Genet 89:900–910

    PubMed  CAS  Google Scholar 

  • Panta GR, Rowland LJ, Arora R, Ogden EL, Lim CC (2004) Inheritance of cold hardiness and dehydrin genes in diploid mapping populations of blueberry. J Crop Improv 10:37–52. https://doi.org/10.1300/J411v10n01_04

    Article  CAS  Google Scholar 

  • Peng Y, Lin W, Wei H, Krebs SL, Arora R (2008a) Phylogenetic analysis and seasonal cold acclimation-associated expression of early light-induced protein genes of Rhododendron catawbiense. Physiol Plant 132:44–52

    PubMed  CAS  Google Scholar 

  • Peng Y, Reyes JL, Wei H, Yang Y, Karlson D, Covarrubias AA, Krebs SL, Fessehaie A, Arora R (2008b) RcDhn5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants. Physiol Plant 134:583–559. https://doi.org/10.1111/j.1399-3054.2008.01164.x

    Article  PubMed  CAS  Google Scholar 

  • Perkins S, Perkins J, Castro M, De Oliveira JC, Castro S, Loureiro J (2015) More weighings: exploring the ploidy of hybrid elepidote rhododendrons. The Azalean 37:28–42

    Google Scholar 

  • Preil W, Ebbinghaus R (1994) Breeding of lime tolerant Rhododendron rootstocks. Acta Hortic 364:61–70

    Article  Google Scholar 

  • Pryor RL, Frazier LC (1970) Triploid azaleas of the Belgian-Indian series. Hortscience 5:114–115

    Google Scholar 

  • Qiu H, Zhang L, Liu C et al (2014) Cloning and characterization of a novel dehydrin gene, SiDhn2, from Saussurea involucrata Kar. et Kir. Plant Mol Biol 84:707–718. https://doi.org/10.1007/s11103-013-0164-7

    Article  PubMed  CAS  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploidy formation in flowering plants. Ann Rev Ecol Syst 29:467–501

    Article  Google Scholar 

  • Ranney TG, Blazich FA, Warren SL (1995) Heat tolerance of selected species and populations of Rhododendron. J Am Soc Hortic Sci 120:423–428

    Google Scholar 

  • Rizzo DM, Garbelotto M, Davidson JM, Slaughter GW, Koike ST (2002) Phytophthora ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus densiflorus in California. Plant Dis 86:205–214

    Article  PubMed  Google Scholar 

  • Roubtsova TV, Bostock RM (2009) Episodic abiotic stress as a potential contributing factor to onset and severity of disease caused by Phytophthora ramorum in Rhododendron and Viburnum. Plant Dis 93:912–918

    Article  PubMed  Google Scholar 

  • Rouse JL, Williams EG, Knox RB (1988) A vireya azaleodendrdon in flower. J Am Rhod Soc 42:166–167

    Google Scholar 

  • Sakai A, Fuchigami L, Weiser CJ (1986) Cold hardiness in the genus Rhododendron. J Am Soc Hortic Sci 111:273–280

    Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants: responses and adaptations to freezing stress. Ecol Stud 62. Springer, Berlin

    Google Scholar 

  • Salley HE, Greer HE (1986) Rhododendron hybrids; a guide to their origins. Timber Press, Portland

    Google Scholar 

  • Sax K (1930) Chromosome stability in the genus rhododendron. Am J Bot 17:247–251

    Article  Google Scholar 

  • Shuichiro Tagane, Michikazu Hiramatsu, Hiroshi Okubo, (2008) Hybridization and asymmetric introgression between Rhododendron eriocarpum and R. indicum on Yakushima Island, southwest Japan. Journal of Plant Research 121 (4):387–395

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, de Pamphilis CW, Kerr Wall P, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348. https://doi.org/10.3732/ajb.0800079

    Article  PubMed  Google Scholar 

  • Soltis PS, Liu X, Marchant DB, Visger CJ, Soltis DE (2014) Polyploidy and novelty: Gottlieb’s legacy. Phil Trans R Soc B 369. https://doi.org/10.1098/rstb.2013.0351

  • Sun L, Perlwitz J, Hoerling M (2016) What caused the recent “Warm Arctic, Cold Continents” trend pattern in winter temperatures? Geophys Res Lett 43:1–8. https://doi.org/10.1002/2016GL069024

    Article  Google Scholar 

  • Susko AQ, Bradeen JM, Hokanson SC (2016) Towards broader adaptability of North American deciduous azaleas. Arnoldia 74:15–27

    Google Scholar 

  • Thammina C, He M, Lu L, Cao K, Yu H, Chen Y, Tian L, Chen J, McAvoy R, Ellis D, Wang Y, Zhang X, Li Y (2011) In vitro regeneration of triploid plants of Euonymus alatus ‘Compactus’ (burning bush) from endosperm tissues. Hortscience 46:1141–1147

    CAS  Google Scholar 

  • Thomashaw MF (1990) Molecular genetics of cold acclimation in higher plants. Adv Genet 28:99–131

    Google Scholar 

  • Thorn WA, Zentmyer GA (1952) Hosts of Phytophthora cinnamomi Rands, the causal organism of avocado root rot. Calif Avocado Society Yearbook 37:196–200

    Google Scholar 

  • Thornton JT (1990) Breeding rhododendrons for the Gulf South. J Am Rhod Soc 44:91–93

    Google Scholar 

  • Tigerstedt PMA, Uosukainen M (1996) Breeding cold hardy rhododendrons. J Am Rhod Soc 50:185–189

    Google Scholar 

  • Tooley PW, Kyde KL, Englander L (2004) Susceptibility of selected ericaceous ornamental host species to Phytophthora ramorum. Plant Dis 88:993–999

    Article  PubMed  Google Scholar 

  • Trueblood CE, Ranney TG, Lynch NP (2010) Evaluating fertility of triploid clones of Hypericum androsaemum L. for use as non-invasive landscape plants. Hortscience 45:1026–1028

    Google Scholar 

  • Uosukainen M (1992) Rhododendron brachycarpum sub-sp. tigerstedtii Nitz. – a transmitter of extreme frost hardiness. Acta Hortic 320:77–83

    Article  Google Scholar 

  • Väinölä A (2000) Genetic and physiological aspects of cold hardiness in Rhododendron. Dissertation, University of Helsinki https://helda.helsinki.fi/handle/10138/20766

  • Väinölä A, Repo T (1999) Cold hardiness of diploid and corresponding autotetraploid rhododendrons. J Hortic Sci Biotechnol 74:541–546

    Article  Google Scholar 

  • Väinölä A, Repo T (2000) Impedance spectroscopy in frost hardiness evaluation of Rhododendron leaves. Ann Bot 86:799–805

    Article  Google Scholar 

  • van Zee K, Chen FQ, Hayes PM, Close TJ, Chen THH (1995) Cold-specific induction of a dehydrin gene family member in barley. Plant Physiol 108:1233–1239

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei H, Dhanaraj AL, Rowland LJ, Fu Y, Krebs SL, Arora R (2005) Comparative analysis of expressed sequence tags from cold-acclimated and non-acclimated leaves of Rhododendron catawbiense Michx. Planta 221:406–416. https://doi.org/10.1007/s00425-004-1440-1

    Article  PubMed  CAS  Google Scholar 

  • Werres S, Marwitz R, Man In’t Veld WA, de Cock AWAM, Bonants PJM, de Weerdt M, Themann K, Ilieva E, Baayen RP (2001) Phytophthora ramorum sp. nov., a new pathogen on Rhododendron and Viburnum. Mycol Res 105:1155–1165

    Article  CAS  Google Scholar 

  • Widrlechner MP, Larson RA (1993) Exploring the deciduous azaleas and elepidote rhododendrons of the Midwestern United States. J Am Rhod Soc 47:153–156

    Google Scholar 

  • Williams EG, Rouse JL, Palser BF, Knox RB (1990) Reproductive biology of rhododendrons. Hortic Rev 12:1–67

    Google Scholar 

  • Wisniewski M, Fuller M, Palta J, Carter J, Arora R (2004) Ice nucleation, propagation, and deep supercooling in woody plants. J Crop Improv 10:5–16

    Article  Google Scholar 

  • Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T, Maruyama-Nakashita A, Kudo T, Shinozaki K, Yoshida S, Nakashita H (2008) Antagonistic interaction between systemic acquired resistance and the abscisic acid–mediated abiotic stress response in Arabidopsis. Plant Cell 20:1678–1692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin Z, Rorat T, Szabala BM, Ziółkowska A, Malepszy S (2006) Expression of a Solanum sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings. Plant Sci 170:1164–1172. https://doi.org/10.1016/j.plantsci.2006.02.002

    Article  CAS  Google Scholar 

  • Zentmyer GA (1988) Origins and distribution of four species of Phytophthora. Trans Br Mycol Soc 91:367–378

    Article  Google Scholar 

  • Zörb C, Geilfus CM, Mühling KH, Ludwig-Müller J (2013) The influence of salt stress on ABA and auxin concentrations in two maize cultivars differing in salt resistance. J Plant Physiol 170:220–224

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen L. Krebs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krebs, S.L. (2018). Rhododendron. In: Van Huylenbroeck, J. (eds) Ornamental Crops. Handbook of Plant Breeding, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-90698-0_26

Download citation

Publish with us

Policies and ethics