Skip to main content

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 22))

Abstract

Albeit synchronous behavior of some fireflies species is one of the paradigmatic examples of synchronization, there are not many efforts to model in a realistic way this astounding phenomenon. One of the most important features of fireflies synchronization is the cooperative behavior of many fireflies giving rise to the emergency of synchronization without any leader, a fact that took a long time to be recognized. In this chapter, we review the main attempts to build models allowing the explanation of how and why fireflies synchronize. The starting point is qualitative models based on simple observations. The latter served to formulate original mathematical models enabling not only to explain fireflies synchronization but also some other collective phenomena. Integrate-and-fire oscillators (IFOs) constitute an emblematic model to describe the fireflies’ synchronous behavior, and they have also inspired ones to build electronic circuits with similar features and adapted to fireflies in the sense that they communicate with each other by means of light-pulses. The above-mentioned electronic circuits received the name of electronic fireflies or more technically, light-controlled oscillators (LCOs). These engines allowed a systematic study of synchronization from experimental, theoretical, and numerical viewpoints. They have also been used in a wide variety of situations ranging from simple cases of identical oscillators to scenarios where populations of dissimilar oscillators whose interaction does explain synchronization as well as the response to synchronization, a widespread phenomenon occurring in fireflies. The obtained results and the well-knowledge of the models allow introducing simplified versions. These simplifying ideas might be taken as toy models in the strict sense of the word because based on these models it is possible to construct a game. This minimalist model is called the “solitary flash” game (SFG), a game where fireflies are the players and they can synchronize, thanks to simple rules. Finally, we discuss briefly the potentials of the fireflies synchronization paying particular attention to its application in communication networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhmet, M. (2011). Analysis of biological integrate-and-fire oscillators. Nonlinear Studies, 18(3), 313–327.

    Google Scholar 

  2. Aprille, J., Lagace, C., Modica-Napolitano, J., & Trimmer, B. (2004). Role of nitric oxide and mitochondria in control of firefly flash. Integrative and Comparative Biology, 44(3), 213–219.

    Google Scholar 

  3. Ariaratnam, J., & Strogatz, S. (2001). Phase diagram for the Winfree model of coupled nonlinear oscillators. Physical Review Letters, 86(19), 4278–4281.

    Google Scholar 

  4. Ballantyne, L., & Lambkin, C. (2013). Systematics and phylogenetics of Indo-Pacific Luciolinae fireflies (Coleoptera: Lampyridae) and the description of new genera. Zootaxa, 3653, 1–162.

    Google Scholar 

  5. Bay, A., Cloetens, P., Suhonen, H., & Vigneron, J. (2013) Improved light extraction in the bioluminescent lantern of a Photuris firefly (lampyridae). Optics Express, 21(1), 764–780.

    Google Scholar 

  6. Bennett, M., Schatz, M., Rockwood, H., & Wiesenfeld, K. (2002). Huygens’s clocks. Proceedings: Mathematical, Physical & Engineering Sciences (The Royal Society), 458(2019), 563–579.

    Google Scholar 

  7. Blair, K. (1915). Luminous insects. Nature, 96, 411–415.

    Google Scholar 

  8. Bojic, I., Podobnik, V., Ljubi, I., Jezic, G., & Kusek, M. (2012). A self-optimizing mobile network: Auto-tuning the network with firefly-synchronized agents. Information Sciences, 182(1), 77–92.

    Google Scholar 

  9. Boon, P., Strackee, J. (1976). A population of coupled oscillators. Journal of Theoretical Biology, 57(2), 491–500.

    Google Scholar 

  10. Buck, J. (1938). Synchronous rhythmic flashing of fireflies. The Quarterly Review of Biology, 13(3), 301–314.

    Google Scholar 

  11. Buck, J. (1988). Synchronous rhythmic flashing of fireflies. II. The Quarterly Review of Biology, 63(3), 265–289.

    Google Scholar 

  12. Buck, J., & Buck, E. (1976). Synchronous fireflies. Scientific American, 234(5), 74–79, 82–85.

    Google Scholar 

  13. Buck, J., & Buck, E. (1978). Toward a functional interpretation of synchronous flashing by fireflies. The American Naturalist, 112(985), 471–492.

    Google Scholar 

  14. Buck, J., Buck, E., Case, J., & Hanson, F. (1981). Control of flashing in fireflies. V. Pacemaker synchronization in Pteroptyx cribellata. Journal of Comparative Physiology. A, 144, 287–298.

    Google Scholar 

  15. Buck, J., Buck, E., Hanson, F., Case, J., Mets, L., & Atta, G. (1981). Control of flashing in fireflies. IV. Free run pacemaking in a synchronic Pteroptyx. Journal of Comparative Physiology. A, 144(3), 277–286.

    Google Scholar 

  16. Buck, J., & Case, J. (1961). Control of flashing in fireflies. I. The lantern as a neuroeffector organ. The Biological Bulletin, 121(2), 234–256.

    Google Scholar 

  17. Buck, J., Case, J., & Hanson, F. (1963). Control of flashing in fireflies. III. Peripheral excitation. The Biological Bulletin,125(2), 251–269.

    Google Scholar 

  18. Camazine, S., Deneubourg, J. L., Franks, N., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2001). Self-organization in biological systems. Princeton: Princeton University Press.

    Google Scholar 

  19. Carlson, A. (2004). Is the firefly flash regulated by calcium? Integrative and Comparative Biology, 44(3), 220–224.

    Google Scholar 

  20. Carlson, A., & Copeland, J.: Photic inhibition of brain stimulated firefly flashes. Integrative and Comparative Biology, 12(3), 479–487 (1972)

    Google Scholar 

  21. Case, J., & Buck, J. (1963). Control of flashing in fireflies II. Role of central nervous system. The Biological Bulletin, 125, 234–250.

    Google Scholar 

  22. Christensen, A., O’Grady, R., & Dorigo, M. (2009). From fireflies to fault-tolerant swarms of robots. IEEE Transactions on Evolutionary Computation, 13(4), 754–766.

    Google Scholar 

  23. Conde-Saavedra, G., & Ramírez-Ávila, G. M. (2018). Experimental oscillation death in two mutually light-controlled oscillators. Chaos, 28(4), 043112.

    Google Scholar 

  24. Craig, W. (1916). Synchronism in the rhythmic activities of animals. Science, 44(1144), 784.

    Google Scholar 

  25. Czolczynski, K., Perlikowski, P., Stefanski, A., & Kapitaniak, T. (2009). Clustering and synchronization of n Huygens’ clocks. Physica A, 388(24), 5013–5023.

    Google Scholar 

  26. Edmunds, J. (1963). The relation between temperature and flashing intervals in adult male fireflies, Photinus pyralis. Annals of the Entomological Society of America, 56(5), 716–718.

    Google Scholar 

  27. Ermentrout, B. (1991). An adaptive model for synchrony in the firefly Pteroptyx malaccae. Journal of Mathematical Biology, 29(6), 571–585.

    Google Scholar 

  28. Ermentrout, G., & Chow, C. (2002). Modeling neural oscillations. Physiology and Behavior, 77(4–5), 629–633.

    Google Scholar 

  29. Fister, I., Fister Jr, I., Yang, X. S., & Brest, J. (2013). A comprehensive review of firefly algorithms. Swarm and Evolutionary Computation, 13, 34–46.

    Google Scholar 

  30. Fujiwara, N., Kurths, J., & Díaz-Guilera, A. (2016). Synchronization of mobile chaotic oscillator networks. Chaos, 26(9), 094824.

    Google Scholar 

  31. Goel, P., & Ermentrout, B. (2002). Synchrony, stability, and firing patterns in pulse-coupled oscillators. Physica D, 163(3–4), 191–216.

    Google Scholar 

  32. Guevara, M., & Glass, L. (1982). Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: A theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias. Journal of Mathematical Biology, 14(1), 1–23.

    Google Scholar 

  33. Hall, D., Sander, S., Pallansch, J., & Stanger-Hall, K. (2016). The evolution of adult light emission color in North American fireflies. Evolution, 70(9), 2033–2048.

    Google Scholar 

  34. Hoogeboom, F., Pogromsky, A., & Nijmeijer, H. (2016). Huygens’ inspired multi-pendulum setups: Experiments and stability analysis. Chaos, 26(11), 116304.

    Google Scholar 

  35. Kapitaniak, M., Czolczynski, K., Perlikowski, P., Stefanski, A., & Kapitaniak, T. (2012). Synchronization of clocks. Physics Reports, 517(1), 1–69.

    Google Scholar 

  36. Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence. Berlin: Springer.

    Google Scholar 

  37. Laurent, P. (1917). The supposed synchronal flashing of fireflies. Science, 45(1150), 44.

    Google Scholar 

  38. Lewis, S., & Cratsley, C. (2008). Flash signal evolution, mate choice, and predation in fireflies. Annual Review of Entomology, 53(1), 293–321.

    Google Scholar 

  39. Li, P., Lin, W., & Efstathiou, K. (2017). Isochronous dynamics in pulse coupled oscillator networks with delay. Chaos, 27(5), 053103.

    Google Scholar 

  40. Lloyd, J. (1966). Studies on the flash communication system in Photinus fireflies. Michigan: Museum of Zoology/University of Michigan.

    Google Scholar 

  41. Lloyd, J. (1966). Two cryptic new firefly species in the genus Photinus (Coleoptera: Lampyridae). The Coleopterists Bulletin, 20(2), 43–46.

    Google Scholar 

  42. Lloyd, J. (1973). Model for the mating protocol of synchronously flashing fireflies. Nature, 245, 268–270.

    Google Scholar 

  43. Lloyd, J. (1975). Aggressive mimicry in Photuris fireflies: Signal repertoires by femmes fatales. Science, 187(4175), 452.

    Google Scholar 

  44. Manrubia, S., Mikhailov, A., & Zanette, D. (2004). Emergence of dynamical order. Singapore: World Scientific Publishing.

    Google Scholar 

  45. Martin, G., Branham, M., Whiting, M., & Bybee, S. (2017). Total evidence phylogeny and the evolution of adult bioluminescence in fireflies (Coleoptera: Lampyridae). Molecular Phylogenetics and Evolution, 107, 564–575.

    Google Scholar 

  46. McDermott, F. (1910). A note on the light-emission of some American lampyridæ: The photogenic function as a mating adaptation; 5th paper. Canadian Entomologist, 42(11), 357–363.

    Google Scholar 

  47. Mirollo, R., & Strogatz, S. (1990). Synchronization of pulse-coupled biological oscillators. SIAM Journal on Applied Mathematics, 50(6), 1645–1662.

    Google Scholar 

  48. Moiseff, A., & Copeland, J. (2010). Firefly synchrony: A behavioral strategy to minimize visual clutter. Science, 329(5988), 181.

    Google Scholar 

  49. Moore Md, R. (1997). Circadian rhythms: Basic neurobiology and clinical applications. Annual Review of Medicine, 48(1), 253–266.

    Google Scholar 

  50. Morse, E. (1916). Fireflies flashing in unison. Science 43(1101), 169.

    Google Scholar 

  51. Oliveira, H., & Melo, L. (2015). Huygens synchronization of two clocks. Scientific Reports, 5, 11548.

    Google Scholar 

  52. Ott, E., & Antonsen, T. (2017). Frequency and phase synchronization in large groups: Low dimensional description of synchronized clapping, firefly flashing, and cricket chirping. Chaos, 27(5), 051101.

    Google Scholar 

  53. Peña Ramirez, J., Fey, R., Aihara, K., & Nijmeijer, H. (2014). An improved model for the classical Huygens’ experiment on synchronization of pendulum clocks. Journal of Sound and Vibration, 333(26), 7248–7266.

    Google Scholar 

  54. Perkel, D., Schulman, J., Bullock, T., Moore, G., & Segundo, J. (1964). Pacemaker neurons: Effects of regularly spaced synaptic input. Science, 145(3627), 61.

    Google Scholar 

  55. Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Synchronization: A universal concept in nonlinear sciences. New York: Cambridge University Press.

    Google Scholar 

  56. Prignano, L., Sagarra, O., & Díaz-Guilera, A. (2013). Tuning synchronization of integrate-and-fire oscillators through mobility. Physical Review Letters, 110(11), 114101.

    Google Scholar 

  57. Rabha, M., Sharma, U., Goswami, A., & Gohain Barua, A. (2017). Bioluminescence emissions of female fireflies of the species Luciola praeusta. Journal of Photochemistry and Photobiology. B, 170, 134–139.

    Google Scholar 

  58. Ramírez-Ávila, G. M., Deneubourg, J. L., Guisset, J. L., Wessel, N., & Kurths, J. (2011). Firefly courtship as the basis of the synchronization-response principle. Europhysics Letters, 94(6), 60007.

    Google Scholar 

  59. Ramírez-Ávila, G. M., Guisset, J. L., & Deneubourg, J. L. (2003). Synchronization in light-controlled oscillators. Physica D, 182(3–4), 254–273.

    Google Scholar 

  60. Ramírez-Ávila, G. M., Guisset, J. L., & Deneubourg, J. L. (2007). Influence of uniform noise on two light-controlled oscillators. International Journal of Bifurcation and Chaos, 17(12), 4453–4462.

    Google Scholar 

  61. Ramírez-Ávila, G. M., & Kurths, J. (2016). Unraveling the primary mechanisms leading to synchronization response in dissimilar oscillators. The European Physical Journal Special Topics, 225(13), 2487–2506.

    Google Scholar 

  62. Ramírez-Ávila, G. M., Kurths, J., & Deneubourg, J. L. (2018). Fireflies: a paradigm in synchronization. In M. Edelman, E. N. N. Macau, & M. A. F. Sanjuán (Eds.), Chaotic, fractional, and complex dynamics: New insights and perspectives. Cham: Springer.

    Google Scholar 

  63. Ramírez-Ávila, G. M., Kurths, J., Guisset, J. L., & Deneubourg, J. L. (2010). When does noise destroy or enhance synchronous behavior in two mutually coupled light-controlled oscillators? Physical Review E, 82(5), 056207.

    Google Scholar 

  64. Ramírez-Ávila, G. M., Kurths, J., Guisset, J. L., & Deneubourg, J. L. (2014). How do small differences in nonidentical pulse-coupled oscillators induce great changes in their synchronous behavior? The European Physical Journal Special Topics, 223(13), 2759–2773.

    Google Scholar 

  65. Rapp, P. (1987). Why are so many biological systems periodic? Progress in Neurobiology, 29(3), 261–273.

    Google Scholar 

  66. Reid, J. (1969). The cardiac pacemaker: Effects of regularly spaced nervous input. American Heart Journal, 78(1), 58–64.

    Google Scholar 

  67. Rubido, N., Cabeza, C., Kahan, S., Ramírez-Ávila, G. M., & Martí, A. C. (2011). Synchronization regions of two pulse-coupled electronic piecewise linear oscillators. European Physical Journal D, 62(1), 51–56.

    Google Scholar 

  68. Rubido, N., Cabeza, C., Martí, A. C., & Ramírez-Ávila, G. M. (2009). Experimental results on synchronization times and stable states in locally coupled light-controlled oscillators. Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences, 367, 3267–3280.

    Google Scholar 

  69. Santillán, M. (2016). Periodic forcing of a 555-IC based electronic oscillator in the strong coupling limit. International Journal of Bifurcation and Chaos, 26(03), 1630007.

    Google Scholar 

  70. Schena, A., Griss, R., & Johnsson, K. (2015). Modulating protein activity using tethered ligands with mutually exclusive binding sites. Nature Communications, 6, 7830.

    Google Scholar 

  71. Sommerfeld, A. (1952). Mechanics: Lectures on theoretical physics (Vol. 1). New York: Academic Press.

    Google Scholar 

  72. Stanger-Hall, K., & Lloyd, J. (2015). Flash signal evolution in Photinus fireflies: Character displacement and signal exploitation in a visual communication system. Evolution, 69(3), 666–682.

    Google Scholar 

  73. Stewart, I., & Strogatz, S. (2004). Synchronisation, rythmes et allures. Pour la science (dossier hors-série), 44(July/September), 90–93.

    Google Scholar 

  74. Trautwein, W., & Kassebaum, D. (1961). On the mechanism of spontaneous impulse generation in the pacemaker of the heart. The Journal of General Physiology, 45(2), 317.

    Google Scholar 

  75. Tsai, Y. L., Li, C. W., Hong, T. M., Ho, J. Z., Yang, E. C., Wu, W. Y., et al. (2014). Firefly light flashing: Oxygen supply mechanism. Physical Review Letters, 113(25), 258103.

    Google Scholar 

  76. Turek, F. (1985). Circadian neural rhythms in mammals. Annual Review of Physiology, 47(1), 49–64.

    Google Scholar 

  77. Tyrrell, A., Auer, G., & Bettstetter, C. (2010). Emergent slot synchronization in wireless networks. IEEE T Mobile Comput, 9(5), 719–732.

    Google Scholar 

  78. Wilensky, U. (1997). NetLogo Fireflies model. Evanston, IL: Center for Connected Learning and Computer-Based Modeling, Northwestern University.

    Google Scholar 

  79. Wilensky, U. (1999). NetLogo. Evanston, IL: Center for Connected Learning and Computer-Based Modeling.

    Google Scholar 

  80. Winfree, A. (1967). Biological rhythms and the behavior of populations of coupled oscillators. Journal of Theoretical Biology, 16, 15–42.

    Google Scholar 

  81. Winfree, A. (1975). Unclocklike behaviour of biological clocks. Nature, 253(5490), 315–319.

    Google Scholar 

  82. Yoder, J. (2004). Unrolling time: Christiaan Huygens and the mathematization of nature. Cambridge: Cambridge University Press.

    Google Scholar 

  83. Zorn Jr, L., & Carlson, A. (1978). Effect of mating on response of female Photuris firefly. Animal Behaviour, 26, Part 3, 843–847.

    Google Scholar 

Download references

Acknowledgements

J.K. acknowledges IRTG 1740 (DFG). J.-L.D. is senior research associate from the Belgian National Fund for Scientific Research (FNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Marcelo Ramírez-Ávila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramírez-Ávila, G.M., Kurths, J., Depickère, S., Deneubourg, JL. (2019). Modeling Fireflies Synchronization. In: Macau, E. (eds) A Mathematical Modeling Approach from Nonlinear Dynamics to Complex Systems . Nonlinear Systems and Complexity, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-78512-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78512-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78511-0

  • Online ISBN: 978-3-319-78512-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics