Skip to main content

The Genetic Evolution of Melanoma

  • Chapter
  • First Online:
Melanoma

Abstract

Melanoma tumors are driven by a hyperactivated mitogen-activated protein kinase (MAPK) signalling pathway, and therefore can generally be classified by mutations within the B-Raf proto-oncogene (BRAF), RAS family of proto-oncogenes, neurofibromin 1 (NF1), or other genes. At the transcriptional level, several genetic classifications of melanoma have converged on the distinction between melanogenesis (previously microphthalmia) associated transcription factor (MITF)-low and MITF-high phenotypes and expression of immune-related genes. Mutation-based melanoma subtypes are not prognostic, nor are they associated to transcriptomic subtypes, which are in turn prognostic. Intratumoral heterogeneity of melanoma cells adds another layer of complexity, with recent findings of mutational and transcriptional heterogeneity within melanoma tumors. Furthermore, multiple genetic changes have been associated with different stages of melanoma progression. Mutational signatures may also be differentiated at early and late stages of melanoma progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

cAMP:

Cyclic adenosine monophosphate

CDK:

Cyclin-dependent kinase

COSMIC:

Catalogue of Somatic Mutations in Cancer

CSD:

Chronic sun damage

DNA:

Deoxyribonucleic acid

EMA:

European Medicines Agency

FDA:

US Food and Drug Administration

ITH:

Intratumor heterogeneity

MAPK:

Mitogen-activated protein kinase

TCGA:

The Cancer Genome Atlas

UVB:

Ultraviolet B radiation

UVR:

Ultraviolet radiation

References

  1. Cancer Genome Atlas N. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96. https://doi.org/10.1016/j.cell.2015.05.044.

    Article  CAS  Google Scholar 

  2. Cirenajwis H, Lauss M, Ekedahl H, Torngren T, Kvist A, Saal LH, et al. NF1-mutated melanoma tumors harbor distinct clinical and biological characteristics. Mol Oncol. 2017;11(4):438–51. https://doi.org/10.1002/1878-0261.12050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54. https://doi.org/10.1038/nature00766. nature00766 [pii].

    Article  PubMed  CAS  Google Scholar 

  4. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA. Highly recurrent TERT promoter mutations in human melanoma. Science. 2013;339(6122):957–9. https://doi.org/10.1126/science.1229259.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, Gast A, et al. TERT promoter mutations in familial and sporadic melanoma. Science. 2013;339(6122):959–61. https://doi.org/10.1126/science.1230062.

    Article  PubMed  CAS  Google Scholar 

  6. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21. https://doi.org/10.1038/nature12477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bonilla X, Parmentier L, King B, Bezrukov F, Kaya G, Zoete V, et al. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat Genet. 2016;48(4):398–406. https://doi.org/10.1038/ng.3525.

    Article  PubMed  CAS  Google Scholar 

  8. Cancer Genome Atlas Research N. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90. https://doi.org/10.1016/j.cell.2014.09.050.

    Article  CAS  Google Scholar 

  9. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7. https://doi.org/10.1038/nature11252.

    Article  CAS  Google Scholar 

  10. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  PubMed  CAS  Google Scholar 

  11. Shain AH, Bastian BC. From melanocytes to melanomas. Nat Rev Cancer. 2016;16(6):345–58. https://doi.org/10.1038/nrc.2016.37.

    Article  PubMed  CAS  Google Scholar 

  12. Shain AH, Yeh I, Kovalyshyn I, Sriharan A, Talevich E, Gagnon A, et al. The genetic evolution of melanoma from precursor lesions. N Engl J Med. 2015;373(20):1926–36. https://doi.org/10.1056/NEJMoa1502583.

    Article  PubMed  CAS  Google Scholar 

  13. Harbst K, Lauss M, Cirenajwis H, Isaksson K, Rosengren F, Torngren T, et al. Multiregion whole-exome sequencing uncovers the genetic evolution and mutational heterogeneity of early-stage metastatic melanoma. Cancer Res. 2016;76(16):4765–74. https://doi.org/10.1158/0008-5472.CAN-15-3476.

    Article  PubMed  CAS  Google Scholar 

  14. Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature. 2000;406(6795):536–40. https://doi.org/10.1038/35020115.

    Article  PubMed  CAS  Google Scholar 

  15. Jonsson G, Busch C, Knappskog S, Geisler J, Miletic H, Ringner M, et al. Gene expression profiling-based identification of molecular subtypes in stage IV melanomas with different clinical outcome. Clin Cancer Res. 2010;16(13):3356–67. https://doi.org/10.1158/1078-0432.CCR-09-2509.

    Article  PubMed  Google Scholar 

  16. Cirenajwis H, Ekedahl H, Lauss M, Harbst K, Carneiro A, Enoksson J, et al. Molecular stratification of metastatic melanoma using gene expression profiling: prediction of survival outcome and benefit from molecular targeted therapy. Oncotarget. 2015;6(14):12297–309.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Harbst K, Staaf J, Lauss M, Karlsson A, Masback A, Johansson I, et al. Molecular profiling reveals low- and high-grade forms of primary melanoma. Clin Cancer Res. 2012;18(15):4026–36. https://doi.org/10.1158/1078-0432.CCR-12-0343.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lauss M, Nsengimana J, Staaf J, Newton-Bishop J, Jonsson G. Consensus of melanoma gene expression subtypes converges on biological entities. J Invest Dermatol. 2016;136(12):2502–5. https://doi.org/10.1016/j.jid.2016.05.119.

    Article  PubMed  CAS  Google Scholar 

  19. Bertolotto C, Lesueur F, Giuliano S, Strub T, de Lichy M, Bille K, et al. A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature. 2011;480(7375):94–8. https://doi.org/10.1038/nature10539.

    Article  PubMed  CAS  Google Scholar 

  20. Yokoyama S, Woods SL, Boyle GM, Aoude LG, MacGregor S, Zismann V, et al. A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature. 2011;480(7375):99–103. https://doi.org/10.1038/nature10630.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wellbrock C, Arozarena I. Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy. Pigment Cell Melanoma Res. 2015;28(4):390–406. https://doi.org/10.1111/pcmr.12370.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hoek KS, Schlegel NC, Brafford P, Sucker A, Ugurel S, Kumar R, et al. Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res. 2006;19(4):290–302. https://doi.org/10.1111/j.1600-0749.2006.00322.x.

    Article  PubMed  CAS  Google Scholar 

  23. Widmer DS, Cheng PF, Eichhoff OM, Belloni BC, Zipser MC, Schlegel NC, et al. Systematic classification of melanoma cells by phenotype-specific gene expression mapping. Pigment Cell Melanoma Res. 2012;25(3):343–53. https://doi.org/10.1111/j.1755-148X.2012.00986.x.

    Article  PubMed  CAS  Google Scholar 

  24. Howlin J, Cirenajwis H, Lettiero B, Staaf J, Lauss M, Saal L, et al. Loss of CITED1, an MITF regulator, drives a phenotype switch in vitro and can predict clinical outcome in primary melanoma tumours. Peer J. 2015;3:e788. https://doi.org/10.7717/peerj.788.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352(6282):189–96. https://doi.org/10.1126/science.aad0501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Mandruzzato S, Callegaro A, Turcatel G, Francescato S, Montesco MC, Chiarion-Sileni V, et al. A gene expression signature associated with survival in metastatic melanoma. J Transl Med. 2006;4:50. https://doi.org/10.1186/1479-5876-4-50.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bogunovic D, O'Neill DW, Belitskaya-Levy I, Vacic V, Yu YL, Adams S, et al. Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival. Proc Natl Acad Sci U S A. 2009;106(48):20429–34. https://doi.org/10.1073/pnas.0905139106.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mann GJ, Pupo GM, Campain AE, Carter CD, Schramm SJ, Pianova S, et al. BRAF mutation, NRAS mutation, and the absence of an immune-related expressed gene profile predict poor outcome in patients with stage III melanoma. J Invest Dermatol. 2013;133(2):509–17. https://doi.org/10.1038/jid.2012.283.

    Article  PubMed  CAS  Google Scholar 

  29. Maio M. Melanoma as a model tumour for immuno-oncology. Ann Oncol. 2012;23(Suppl 8):viii10–viii4. https://doi.org/10.1093/annonc/mds257.

    Article  PubMed  Google Scholar 

  30. Wenzel J, Bekisch B, Uerlich M, Haller O, Bieber T, Tuting T. Type I interferon-associated recruitment of cytotoxic lymphocytes: a common mechanism in regressive melanocytic lesions. Am J Clin Pathol. 2005;124(1):37–48. https://doi.org/10.1309/4EJ9KL7CGDENVVLE.

    Article  PubMed  CAS  Google Scholar 

  31. Redondo P, Del Olmo J. Images in clinical medicine. Vitiligo and cutaneous melanoma. N Engl J Med. 2008;359(3):e3. https://doi.org/10.1056/NEJMicm053764.

    Article  PubMed  Google Scholar 

  32. Nordlund JJ, Kirkwood JM, Forget BM, Milton G, Albert DM, Lerner AB. Vitiligo in patients with metastatic melanoma: a good prognostic sign. J Am Acad Dermatol. 1983;9(5):689–96.

    Article  CAS  PubMed  Google Scholar 

  33. Kitamura T, Qian BZ, Pollard JW. Immune cell promotion of metastasis. Nat Rev Immunol. 2015;15(2):73–86. https://doi.org/10.1038/nri3789.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Thor Straten P, Garrido F. Targetless T cells in cancer immunotherapy. J Immunother Cancer. 2016;4:23. https://doi.org/10.1186/s40425-016-0127-z.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shukla SA, Rooney MS, Rajasagi M, Tiao G, Dixon PM, Lawrence MS, et al. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat Biotechnol. 2015;33:1152–8. https://doi.org/10.1038/nbt.3344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Teulings HE, Limpens J, Jansen SN, Zwinderman AH, Reitsma JB, Spuls PI, et al. Vitiligo-like depigmentation in patients with stage III–IV melanoma receiving immunotherapy and its association with survival: a systematic review and meta-analysis. J Clin Oncol. 2015;33(7):773–81. https://doi.org/10.1200/JCO.2014.57.4756.

    Article  PubMed  CAS  Google Scholar 

  37. Riker AI, Enkemann SA, Fodstad O, Liu S, Ren S, Morris C, et al. The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med Genet. 2008;1:13. https://doi.org/10.1186/1755-8794-1-13.

    Article  CAS  Google Scholar 

  38. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92. https://doi.org/10.1056/NEJMoa1113205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I, et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet. 2014;46(3):225–33. https://doi.org/10.1038/ng.2891.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Boutros PC, Fraser M, Harding NJ, de Borja R, Trudel D, Lalonde E, et al. Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat Genet. 2015;47(7):736–45. https://doi.org/10.1038/ng.3315.

    Article  PubMed  CAS  Google Scholar 

  41. Cooper CS, Eeles R, Wedge DC, Van Loo P, Gundem G, Alexandrov LB, et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat Genet. 2015;47(4):367–72. https://doi.org/10.1038/ng.3221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Murugaesu N, Wilson GA, Birkbak NJ, Watkins TB, McGranahan N, Kumar S, et al. Tracking the genomic evolution of esophageal adenocarcinoma through neoadjuvant chemotherapy. Cancer Discov. 2015;5(8):821–31. https://doi.org/10.1158/2159-8290.CD-15-0412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bashashati A, Ha G, Tone A, Ding J, Prentice LM, Roth A, et al. Distinct evolutionary trajectories of primary high-grade serous ovarian cancers revealed through spatial mutational profiling. J Pathol. 2013;231(1):21–34. https://doi.org/10.1002/path.4230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Zhang J, Fujimoto J, Zhang J, Wedge DC, Song X, Zhang J, et al. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science. 2014;346(6206):256–9. https://doi.org/10.1126/science.1256930.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. de Bruin EC, McGranahan N, Mitter R, Salm M, Wedge DC, Yates L, et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science. 2014;346(6206):251–6. https://doi.org/10.1126/science.1253462.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, et al. Tracking the evolution of non-small-cell lung cancer. N Engl J Med. 2017;376(22):2109–21. https://doi.org/10.1056/NEJMoa1616288.

    Article  PubMed  CAS  Google Scholar 

  47. Morris LG, Riaz N, Desrichard A, Senbabaoglu Y, Hakimi AA, Makarov V, et al. Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival. Oncotarget. 2016;7(9):10051–63. https://doi.org/10.18632/oncotarget.7067.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Li Q, Wennborg A, Aurell E, Dekel E, Zou JZ, Xu Y, et al. Dynamics inside the cancer cell attractor reveal cell heterogeneity, limits of stability, and escape. Proc Natl Acad Sci U S A. 2016;113(10):2672–7. https://doi.org/10.1073/pnas.1519210113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Eichhoff OM, Weeraratna A, Zipser MC, Denat L, Widmer DS, Xu M, et al. Differential LEF1 and TCF4 expression is involved in melanoma cell phenotype switching. Pigment Cell Melanoma Res. 2011;24(4):631–42. https://doi.org/10.1111/1755-148X.2011.00871.x.

    Article  PubMed  CAS  Google Scholar 

  50. Hoek KS, Eichhoff OM, Schlegel NC, Dobbeling U, Kobert N, Schaerer L, et al. In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res. 2008;68(3):650–6. https://doi.org/10.1158/0008-5472.CAN-07-2491.

    Article  PubMed  CAS  Google Scholar 

  51. Cleary AS, Leonard TL, Gestl SA, Gunther EJ. Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers. Nature. 2014;508(7494):113–7. https://doi.org/10.1038/nature13187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Muller J, Krijgsman O, Tsoi J, Robert L, Hugo W, Song C, et al. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat Commun. 2014;5:5712. https://doi.org/10.1038/ncomms6712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Konieczkowski DJ, Johannessen CM, Abudayyeh O, Kim JW, Cooper ZA, Piris A, et al. A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discov. 2014;4(7):816–27. https://doi.org/10.1158/2159-8290.CD-13-0424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Harbst K, Lauss M, Cirenajwis H, Winter C, Howlin J, Torngren T, et al. Molecular and genetic diversity in the metastatic process of melanoma. J Pathol. 2014;233(1):39–50. https://doi.org/10.1002/path.4318.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harbst, K., Jönsson, G. (2018). The Genetic Evolution of Melanoma. In: Riker, A. (eds) Melanoma. Springer, Cham. https://doi.org/10.1007/978-3-319-78310-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78310-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78309-3

  • Online ISBN: 978-3-319-78310-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics