Skip to main content

Evidence of Adaptations and Counter-Adaptations Before the Parasite Lays Its Egg: The Frontline of the Arms Race

  • Chapter
  • First Online:

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

The interactions between avian brood parasites and their hosts provide tractable model systems to study coevolutionary processes under natural conditions. Here, I review evidence of reciprocal adaptations and counter-adaptations in brood parasites and hosts that are deployed prior to the parasite depositing its egg in the host nest: the ‘frontline’ of the arms race. Unlike interactions at latter stages of the nesting cycle, frontline interactions primarily concern adult brood parasites and adult hosts, offering opportunities to study how exchanges between these species influence adult phenotypes. Placing emphasis on recent advances, I discuss how frontline interactions have shaped the life histories, behaviours, morphologies and physiologies of adult brood parasites and adult hosts. Similar to latter stages of the nesting cycle, frontline interactions comprise diverse adaptations and counter-adaptations that appear to be a product of coevolution and are important for determining the outcome of the exchanges between these species. Further investigation of these interactions is essential for categorizing the diversity of adaptations and counter-adaptations at this stage of the nesting cycle and expanding our understanding of how adaptations and counter-adaptations at all stages of the nesting cycle evolve in relation to one another.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Álvarez F (1993) Proximity of trees facilitates parasitism by cuckoos Cuculus canorus on rufous warblers Cercotrichas galactotes. Ibis 135:331–331

    Article  Google Scholar 

  • Álvarez F (1996) Model cuckoo Cuculus canorus eggs accepted by rufous bush chats Cercotrichas galactotes during the parasite’s absence from the breeding area. Ibis 138:340–342

    Article  Google Scholar 

  • Astié AA, Scardamaglia RC, Muzio RN, Reboreda JC (2015) Sex differences in retention after a visual or a spatial discrimination learning task in brood parasitic shiny cowbirds. Behav Process 119:99–104

    Article  Google Scholar 

  • Avilés JM, Stokke BG, Moksnes A et al (2006) Rapid increase in cuckoo egg matching in a recently parasitized reed warbler population. J Evol Biol 19:1901–1910

    Article  PubMed  Google Scholar 

  • Banks AJ, Martin TE (2001) Host activity and the risk of nest parasitism by brown-headed cowbirds. Behav Ecol 12:31–40

    Article  Google Scholar 

  • Birkhead TR, Hemmings N, Spottiswoode CN et al (2011) Internal incubation and early hatching in brood parasitic birds. Proc R Soc Lond [Biol] 278:1019–1024

    Article  CAS  Google Scholar 

  • Boves TJ, Sperry JH, Comolli K, Weatherhead PJ (2014) Brood parasitism of Black-capped Vireos: frontline and post-laying behavioral responses and effects on productivity. J Field Ornithol 85:364–378

    Article  Google Scholar 

  • Brooker MG, Brooker LC (1989) Cuckoo hosts in Australia. Aust Zool Rev 2:1–67

    Google Scholar 

  • Brown M, Lawes MJ (2007) Colony size and nest density predict the likelihood of parasitism in the colonial southern red bishop Euplectes orix – diederik cuckoo Chrysococcyx caprius system. Ibis 149:321–327

    Article  Google Scholar 

  • Burhans DE (1997) Habitat and microhabitat features associated with cowbird parasitism in two forest edge cowbird hosts. Condor 99:866–872

    Article  Google Scholar 

  • Campobello D, Sealy SG (2011) Use of social over personal information enhances nest defense against avian brood parasitism. Behav Ecol 22:422–428

    Article  Google Scholar 

  • Campomizzi AJ, Mathewson HA, Morrison ML et al (2013) Understanding nest success and brood parasitism in the endangered black-capped vireo: comparisons with two sympatric songbirds. Wilson J Ornithol 125:709–719

    Article  Google Scholar 

  • Canestrari D, Marcos JM, Baglione V (2009) Cooperative breeding in carrion crows reduces the rate of brood parasitism by great spotted cuckoos. Anim Behav 77:1337–1344

    Article  Google Scholar 

  • Canestrari D, Bolopo D, Turlings TCJ et al (2014) From parasitism to mutualism: unexpected interactions between a cuckoo and its host. Science 343:1350–1352

    Article  PubMed  CAS  Google Scholar 

  • Clark KL, Robertson RJ (1979) Spatial and temporal multi-species nesting aggregations in birds as anti-parasite and anti-predator defenses. Behav Ecol Sociobiol 5:359–371

    Article  Google Scholar 

  • Clarke AL, Oien IJ, Honza M et al (2001) Factors affecting reed warbler risk of brood parasitism by the common cuckoo. Auk 118:534

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species. Murray, London

    Google Scholar 

  • Davies NB (2000) Cuckoos, cowbirds and other cheats. T. & A.D. Poyer, London

    Google Scholar 

  • Davies NB, Brooke M de L (1988) Cuckoos versus reed warblers: adaptations and counteradaptations. Anim Behav 36:262–284

    Google Scholar 

  • Davies NB, Welbergen JA (2008) Cuckoo-hawk mimicry? An experimental test. Proc R Soc Lond [Biol] 275:1817–1822

    Article  CAS  Google Scholar 

  • Davies NB, Welbergen JA (2009) Social transmission of a host defense against cuckoo parasitism. Science 324:1318–1320

    Article  PubMed  CAS  Google Scholar 

  • Davies NB, Butchart SHM, Burke TA et al (2003) Reed warblers guard against cuckoos and cuckoldry. Anim Behav 65:285–295

    Article  Google Scholar 

  • de la Colina MA, Hauber ME, Strausberger BM et al (2016) Molecular tracking of individual host use in the shiny cowbird – a generalist brood parasite. Ecol Evol 6:4684–2696

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubina KM, Peer BD (2012) Egg pecking and discrimination by female and male brown-headed cowbirds. J Ornithol 154:553–557

    Article  Google Scholar 

  • Duckworth JW (1997) Mobbing of a drongo cuckoo, Surniculus lugubris. Ibis 139:190–192

    Article  Google Scholar 

  • Dufty AM, Goldsmith AR, Wingfield JC (1987) Prolactin secretion in a brood parasite, the brown-headed cowbird, Molothrus ater. J Zool 212:669–675

    Article  CAS  Google Scholar 

  • Feeney WE, Langmore NE (2013) Social learning of a brood parasite by its host. Biol Lett 9:20130443

    Article  PubMed  PubMed Central  Google Scholar 

  • Feeney WE, Langmore NE (2015) Superb Fairy-wrens (Malurus cyaneus) increase vigilance near their nest with the perceived risk of brood parasitism. Auk 132:359–364

    Article  Google Scholar 

  • Feeney WE, Welbergen JA, Langmore NE (2012) The frontline of avian brood parasite–host coevolution. Anim Behav 84:3–12

    Article  Google Scholar 

  • Feeney WE, Medina I, Somveille M et al (2013) Brood parasitism and the evolution of cooperative breeding in birds. Science 342:1506–1508

    Article  PubMed  CAS  Google Scholar 

  • Feeney WE, Welbergen JA, Langmore NE (2014) Advances in the study of coevolution between avian brood parasites and their hosts. Annu Rev Ecol Evol Syst 45:227–246

    Article  Google Scholar 

  • Feeney WE, Troscianko J, Langmore NE, Spottiswoode CN (2015) Evidence for aggressive mimicry in an adult brood parasitic bird, and generalized defences in its host. Proc R Soc Lond [Biol] 282:20150795

    Article  Google Scholar 

  • Fiorini VD, Gloag R, Kacelnik A, Reboreda JC (2014) Strategic egg destruction by brood-parasitic cowbirds? Anim Behav 93:229–235

    Article  Google Scholar 

  • Garamszegi L, Avilés J (2005) Brood parasitism by brown-headed cowbirds and the expression of sexual characters in their hosts. Oecologia 143:167–177

    Article  PubMed  Google Scholar 

  • Gill SA, Sealy SG (2004) Functional reference in an alarm signal given during nest defence: seet calls of yellow warblers denote brood-parasitic brown-headed cowbirds. Behav Ecol Sociobiol 56:71–80

    Article  Google Scholar 

  • Gill SA, Neudorf DL, Sealy SG (1997) Host responses to cowbirds near the nest: cues for recognition. Anim Behav 53:1287–1293

    Article  PubMed  CAS  Google Scholar 

  • Gill SA, Neudorf DLH, Sealy SG (2008) Do hosts discriminate between sexually dichromatic male and female brown-headed cowbirds? Ethology 114:548–556

    Article  Google Scholar 

  • Gloag R, Fiorini VD, Reboreda JC, Kacelnik A (2013) The wages of violence: mobbing by mockingbirds as a frontline defence against brood-parasitic cowbirds. Anim Behav 86:1023–1029

    Article  Google Scholar 

  • Gluckman T-L, Mundy NI (2013) Cuckoos in raptors’ clothing: barred plumage illuminates a fundamental principle of Batesian mimicry. Anim Behav 86:1165–1181

    Article  Google Scholar 

  • Grant ND, Sealy SG (2002) Selection of red-winged blackbird (Agelaius phoeniceus) hosts by the brown-headed cowbird (Molothrus ater). Bird Behav 15:21–30

    Google Scholar 

  • Gray J, Fraser I (2013) Australian bird names: a complete guide. Csiro Publishing, Collingwood

    Google Scholar 

  • Grim T, Samaš P, Moskát C et al (2011) Constraints on host choice: why do parasitic birds rarely exploit some common potential hosts? J Anim Ecol 80:508–518

    Article  PubMed  Google Scholar 

  • Guigueno MF, Snow DA, MacDougall-Shackleton SA, Sherry DF (2014) Female cowbirds have more accurate spatial memory than males. Biol Lett 10:20140026

    Article  PubMed  PubMed Central  Google Scholar 

  • Guigueno MF, MacDougall-Shackleton SA, Sherry DF (2015) Sex differences in spatial memory in brown-headed cowbirds: males outperform females on a touchscreen task. PLoS One 10:e0128302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hahn DC, Summers SG, Genovese KJ et al (2013) Obligate brood parasites show more functionally effective innate immune responses: an eco-immunological hypothesis. Evol Biol 40:544–561

    Article  Google Scholar 

  • Hauber ME (2003) Interspecific brood parasitism and the evolution of host clutch sizes. Evol Ecol Res 5:559–570

    Google Scholar 

  • Hauber ME, Russo SA (2000) Perch proximity correlates with higher rates of cowbird parasitism of ground nesting song sparrows. Wilson Bull 112:150–153

    Article  Google Scholar 

  • Hobson KA, Sealy SG (1989) Responses of yellow warblers to the threat of cowbird parasitism. Anim Behav 38:510–519

    Article  Google Scholar 

  • Honza M, Taborsky B, Taborsky M et al (2002) Behaviour of female common cuckoos, Cuculus canorus, in the vicinity of host nests before and during egg laying: a radiotelemetry study. Anim Behav 64:861–868

    Article  Google Scholar 

  • Honza M, Šicha V, Procházka P, Ležalová R (2006) Host nest defense against a color-dimorphic brood parasite: great reed warblers (Acrocephalus arundinaceus) versus common cuckoos (Cuculus canorus). J Ornithol 147:629–637

    Article  Google Scholar 

  • Hoover JP, Robinson SK (2007) Retaliatory mafia behavior by a parasitic cowbird favors host acceptance of parasitic eggs. Proc Natl Acad Sci USA 104:4479–4483

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jelínek V, Procházka P, Požgayová M, Honza M (2014) Common cuckoos Cuculus canorus change their nest-searching strategy according to the number of available host nests. Ibis 156:189–197

    Article  Google Scholar 

  • Jung W-J, Kim M-S, Noh H-J et al (2016) Hormone profiles of obligate avian brood parasites during the breeding season. Ibis 158:371–379

    Article  Google Scholar 

  • Kattan GH (1997) Shiny cowbirds follow the ‘shotgun’ strategy of brood parasitism. Anim Behav 53:647–654

    Article  Google Scholar 

  • Kilner RM (2005) The evolution of virulence in brood parasites. Ornithol Sci 4:55–64

    Article  Google Scholar 

  • Krüger O, Davies NB, Sorenson MD (2007) The evolution of sexual dimorphism in parasitic cuckoos: sexual selection or coevolution? Proc R Soc Lond [Biol] 274:1553–1560

    Article  Google Scholar 

  • Lai CM (1998) Messenger of spring and morality: cuckoo lore in Chinese sources. J Am Orient Soc 118:530–542

    Article  Google Scholar 

  • Langmore NE, Kilner RM (2007) Breeding site and host selection by Horsfield’s bronze-cuckoos, Chalcites basalis. Anim Behav 74:995–1004

    Article  Google Scholar 

  • Langmore NE, Cockburn A, Russell AF, Kilner RM (2009) Flexible cuckoo chick-rejection rules in the superb fairy-wren. Behav Ecol 20:978–984

    Article  Google Scholar 

  • Langmore NE, Feeney WE, Crowe-Riddell J et al (2012) Learned recognition of brood parasitic cuckoos in the superb fairy-wren Malurus cyaneus. Behav Ecol 23:798–805

    Article  Google Scholar 

  • Louder MIM, Schelsky WM, Albores AN, Hoover JP (2015a) A generalist brood parasite modifies use of a host in response to reproductive success. Proc R Soc Lond B Biol Sci 282:20151615

    Article  Google Scholar 

  • Louder MIM, Schelsky WM, Benson TJ, Hoover JP (2015b) Brown-headed cowbirds exploit a host’s compensatory behavioral response to fecundity reduction. Behav Ecol 26:255–261

    Article  Google Scholar 

  • Macías-Sánchez E, Martínez JG, Avilés JM, Soler M (2013) Sexual differences in colour and size in the great spotted cuckoo Clamator glandarius. Ibis 155:605–610

    Article  Google Scholar 

  • Martínez JG, Soler M, Soler JJ (1996) The effect of magpie breeding density and synchrony on brood parasitism by great spotted cuckoos. Condor 98:272–278

    Article  Google Scholar 

  • Massoni V, Reboreda JC (1999) Egg puncture allows shiny cowbirds to assess host egg development and suitability for parasitism. Proc R Soc Lond [Biol] 266:1871–1874

    Article  Google Scholar 

  • Massoni V, Reboreda JC (2001) Number of close spatial and temporal neighbors decreases the probability of nest failure and shiny cowbird parasitism in colonial yellow-winged blackbirds. Condor 103:521–529

    Article  Google Scholar 

  • McLaren CM, Sealy SG (2003) Factors influencing susceptibility of host nests to brood parasitism. Ethol Ecol Evol 15:343–353

    Article  Google Scholar 

  • Medina I, Langmore NE (2015) Coevolution is linked with phenotypic diversification but not speciation in avian brood parasites. Proc R Soc Lond [Biol] 282:20152056

    Article  Google Scholar 

  • Medina I, Langmore NE (2016) Batten down the thatches: front-line defences in an apparently defenceless cuckoo host. Anim Behav 112:195–201

    Article  Google Scholar 

  • Mermoz ME, Reboreda JC (2003) Reproductive success of shiny cowbird (Molothrus bonariensis) parasitizing the larger brown-and-yellow marshbird (Pseudoleistes virescens) in Argentina. Auk 120:1128–1139

    Article  Google Scholar 

  • Merrill L, O’Loghlen AL, Wingfield JC, Rothstein SI (2013) Immune function in an avian brood parasite and its nonparasitic relative. Physiol Biochem Zool 86:61–72

    Article  PubMed  CAS  Google Scholar 

  • Middleton ALA (1977) Effect of cowbird parasitism on American Goldfinch nesting. Auk 94:304–307

    Google Scholar 

  • Moksnes A, Røskaft E (1995) Egg-morphs and host preference in the common cuckoo (Cuculus canorus): an analysis of cuckoo and host eggs from European museum collections. J Zool 236:625–648

    Article  Google Scholar 

  • Moksnes A, Røskaft E, Hagen LG et al (2000) Common cuckoo Cuculus canorus and host behaviour at reed warbler Acrocephalus scirpaceus nests. Ibis 142:247–258

    Article  Google Scholar 

  • Møller AP, Antonov A, Stokke BG et al (2011a) Isolation by time and habitat and coexistence of distinct host races of the common cuckoo. J Evol Biol 24:676–684

    Article  PubMed  Google Scholar 

  • Møller AP, Saino N, Adamík P et al (2011b) Rapid change in host use of the common cuckoo Cuculus canorus linked to climate change. Proc R Soc Lond [Biol] 278:733–738

    Article  Google Scholar 

  • Møller AP, Stokke BG, Samia DSM (2015) Hawk models, hawk mimics, and antipredator behavior of prey. Behav Ecol 26:1039–1044

    Article  Google Scholar 

  • Møller AP, Morelli F, Tryjanowski P (2017) Cuckoo folklore and human well-being: cuckoo calls predict how long farmers live. Ecol Indic 72:766–768

    Article  Google Scholar 

  • Moskát C, Honza M (2000) Effect of nest and nest site characteristics on the risk of cuckoo Cuculus canorus parasitism in the great reed warbler Acrocephalus arundinaceus. Ecography 23:335–341

    Article  Google Scholar 

  • Neudorf DL, Sealy SG (1992) Reactions of four passerine species to threats of predation and cowbird parasitism: enemy recognition or generalized responses. Behaviour 123:84–105

    Article  Google Scholar 

  • Øien IJ, Honza M, Moksnes A, Røskaft E (1996) The risk of parasitism in relation to the distance from reed warbler nests to cuckoo perches. J Anim Ecol 65:147–153

    Article  Google Scholar 

  • Payne RB (1967) Interspecific communication signals in parasitic birds. Am Nat 101:363–375

    Article  Google Scholar 

  • Peer BD, Sealy SG (1999) Parasitism and egg puncture behaviour by bronzed and brown-headed cowbirds in sympatry. Stud Avian Biol 18:235–240

    Google Scholar 

  • Peer BD, Sealy SG (2004) Correlates of egg rejection in hosts of the brown-headed cowbird. Condor 106:580–599

    Article  Google Scholar 

  • Peer BD, Rivers JW, Rothstein SI (2013) Cowbirds, conservation, and coevolution: potential misconceptions and directions for future research. Chin Birds 4:15–30

    Article  Google Scholar 

  • Péron G, Altwegg R, Jamie GA, Spottiswoode CN (2016) Coupled range dynamics of brood parasites and their hosts responding to climate and vegetation changes. J Anim Ecol 85:1191–1199

    Article  PubMed  Google Scholar 

  • Polačiková L, Procházka P, Cherry M, Honza M (2009) Choosing suitable hosts: common cuckoos Cuculus canorus parasitize great reed warblers Acrocephalus arundinaceus of high quality. Evol Ecol 23:879–891

    Article  Google Scholar 

  • Robertson RJ, Norman RF (1976) Behavioral defenses to brood parasitism by potential hosts of the brown-headed cowbird. Condor 78:166–173

    Article  Google Scholar 

  • Rothstein SI (1990) A model system for coevolution: avian brood parasitism. Annu Rev Ecol Evol Syst 21:481–508

    Article  Google Scholar 

  • Rutila J, Latja R, Koskela K (2002) The common cuckoo Cuculus canorus and its cavity nesting host, the redstart Phoenicurus phoenicurus: a peculiar cuckoo-host system? J Avian Biol 33:414–419

    Article  Google Scholar 

  • Saino N, Rubolini D, Lehikoinen E et al (2009) Climate change effects on migration phenology may mismatch brood parasitic cuckoos and their hosts. Biol Lett 5:539–541

    Article  PubMed  PubMed Central  Google Scholar 

  • Skjelseth S, Moksnes A, Røskaft E et al (2004) Parentage and host preference in the common cuckoo Cuculus canorus. J Avian Biol 35:21–24

    Article  Google Scholar 

  • Soler M (2014) Long-term coevolution between avian brood parasites and their hosts. Biol Rev Camb Philos Soc 89:688–704

    Article  PubMed  Google Scholar 

  • Soler M, Martínez JG (2000) Is egg-damaging behaviour by great spotted cuckoos an accident or an adaptation? Behav Ecol 11:495–501

    Article  Google Scholar 

  • Soler JJ, Soler M, Moller AP, Martínez JG (1995a) Does the great spotted cuckoo choose magpie hosts according to their parenting ability? Behav Ecol Sociobiol 36:201–206

    Article  Google Scholar 

  • Soler M, Soler JJ, Martínez JG, Moller AP (1995b) Magpie host manipulation by great spotted cuckoos: evidence for an avian mafia? Evolution 49:770–775

    Article  PubMed  CAS  Google Scholar 

  • Soler J, Møller A, Soler M (1998) Nest building, sexual selection and parental investment. Evol Ecol 12:427–441

    Article  Google Scholar 

  • Soler JJ, Martínez JG, Soler M, Møller AP (1999) Host sexual selection and cuckoo parasitism: an analysis of nest size in sympatric and allopatric magpie Pica pica populations parasitized by the great spotted cuckoo Clamator glandarius. Proc R Soc Lond [Biol] 266:1765–1771

    Article  Google Scholar 

  • Soler JJ, de Neve L, Martínez JG, Soler M (2001) Nest size affects clutch size and the start of incubation in magpies: an experimental study. Behav Ecol 12:301–307

    Article  Google Scholar 

  • Soler M, Martín-Vivaldi M, Fernández-Morante J (2012) Conditional response by hosts to parasitic eggs: the extreme case of the rufous-tailed scrub robin. Anim Behav 84:421–426

    Article  Google Scholar 

  • Soler JJ, Avilés JM, Martin-Gálvez D et al (2014a) Eavesdropping cuckoos: further insights on great spotted cuckoo preference by magpie nests and egg colour. Oecologia 175:105–115

    Article  PubMed  Google Scholar 

  • Soler M, Pérez-Contreras T, de Neve L (2014b) Great spotted cuckoos frequently lay their eggs while their magpie host is incubating. Ethology 120:965–972

    Article  Google Scholar 

  • Sorenson MD, Payne RB (2005) A molecular genetic analysis of cuckoo phylogeny. In: Payne RB (ed) The cuckoos. Oxford University Press, Oxford, pp 68–94

    Google Scholar 

  • Sorenson MD, Sefc KM, Payne RB (2003) Speciation by host switch in brood parasitic indigobirds. Nature 424:928–931

    Article  PubMed  CAS  Google Scholar 

  • Spottiswoode CN, Colebrook-Robjent JFR (2007) Egg puncturing by the brood parasitic Greater Honeyguide and potential host counteradaptations. Behav Ecol 18:792–799

    Article  Google Scholar 

  • Spottiswoode CN, Begg KS, Begg CM (2016) Reciprocal signaling in honeyguide-human mutualism. Science 353:387–389

    Article  PubMed  CAS  Google Scholar 

  • Strausberger BM (1998) Evident nest-searching behavior of female brown-headed cowbirds while attended by males. Wilson Bull 110:133–136

    Google Scholar 

  • Strausberger BM, Ashley MV (2005) Host use strategies of individual female brown-headed cowbirds Molothrus ater in a diverse avian community. J Avian Biol 36:313–321

    Article  Google Scholar 

  • Swan DC, Zanette LY, Clinchy M (2015) Brood parasites manipulate their hosts: experimental evidence for the farming hypothesis. Anim Behav 105:29–35

    Article  Google Scholar 

  • Tanaka KD (2016) Polymorphism in avian brood parasitism: a coevolutionary perspective. Ornithol Sci 15:133–140

    Article  Google Scholar 

  • Thorogood R, Davies NB (2012) Cuckoos combat socially transmitted defenses of reed warbler hosts with a plumage polymorphism. Science 337:578–580

    Article  PubMed  CAS  Google Scholar 

  • Thorogood R, Davies NB (2013) Hawk mimicry and the evolution of polymorphic cuckoos. Chin Birds 4:39–50

    Article  Google Scholar 

  • Thorogood R, Davies NB (2016) Combining personal with social information facilitates host defences and explains why cuckoos should be secretive. Sci Rep 6:19872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trnka A, Prokop P (2011) Polygynous great reed warblers Acrocephalus arundinaceus suffer more cuckoo Cuculus canorus parasitism than monogamous pairs. J Avian Biol 42:192–195

    Article  Google Scholar 

  • Trnka A, Prokop P (2012) The effectiveness of hawk mimicry in protecting cuckoos from aggressive hosts. Anim Behav 83:263–268

    Article  Google Scholar 

  • Trnka A, Trnka M, Grim T (2015) Do rufous common cuckoo females indeed mimic a predator? An experimental test. Biol J Linn Soc 116:134–143

    Article  Google Scholar 

  • Ursino CA, Mársico MCD, Sued M et al (2011) Brood parasitism disproportionately increases nest provisioning and helper recruitment in a cooperatively breeding bird. Behav Ecol Sociobiol 65:2279–2286

    Article  Google Scholar 

  • Uyehara JC, Narins PM (1995) Nest defense by willow flycatchers to brood-parasitic intruders. Condor 97:361–368

    Article  Google Scholar 

  • Welbergen JA, Davies NB (2008) Reed warblers discriminate cuckoos from sparrowhawks with graded alarm signals that attract mates and neighbours. Anim Behav 76:811–822

    Article  Google Scholar 

  • Welbergen JA, Davies NB (2009) Strategic variation in mobbing as a front line of defense against brood parasitism. Curr Biol 19:235–240

    Article  PubMed  CAS  Google Scholar 

  • Welbergen JA, Davies NB (2012) Direct and indirect assessment of parasitism risk by a cuckoo host. Behav Ecol 23:783–789

    Article  Google Scholar 

  • White DJ, Ho L, Freed-Brown G (2009) Counting chicks before they hatch female cowbirds can time readiness of a host nest for parasitism. Psychol Sci 20:1140–1145

    Article  PubMed  Google Scholar 

  • Wiley JW (2012) Anti-brood parasite strategies of naïve populations of nesting birds in Puerto Rico. J Caribbean Ornithol 25:41–63

    Google Scholar 

  • Woolfenden BE, Gibbs HL, Sealy SG, McMaster DG (2003) Host use and fecundity of individual female brown-headed cowbirds. Anim Behav 66:95–106

    Article  Google Scholar 

Download references

Acknowledgements

WEF would like to thank M. Soler for an invitation to contribute a chapter to this book, as well as B.D. Peer, M. Soler, S.G. Sealy and T. Ryan for helpful comments on the draft. WEF is funded by the Hermon Slade Foundation and the University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Feeney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feeney, W.E. (2017). Evidence of Adaptations and Counter-Adaptations Before the Parasite Lays Its Egg: The Frontline of the Arms Race. In: Soler, M. (eds) Avian Brood Parasitism. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-73138-4_17

Download citation

Publish with us

Policies and ethics