Skip to main content

Protein Mover’s Distance: A Geometric Framework for Solving Global Alignment of PPI Networks

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10627))

Abstract

A protein-protein interaction (PPI) network is an unweighted and undirected graph representing the interactions among proteins, where each node denotes a protein and each edge connecting two nodes indicates their interaction. Given two PPI networks, finding their alignment is a fundamental problem and has many important applications in bioinformatics. However, it often needs to solve some generalized version of subgraph isomorphism problem which is challenging and NP-hard. Following our previous geometric approach [21], we propose a unified algorithmic framework for PPI networks alignment. We first define a general concept called “Protein Mover’s Distance (PMD)” to evaluate the alignment of two PPI networks. PMD is similar to the well known “Earth Mover’s Distance”; however, we also incorporate some other information, e.g., the functional annotation of proteins. Our algorithmic framework consists of two steps, Embedding and Matching. For the embedding step, we apply three different graph embedding techniques to preserve the topological structures of the original PPI networks. For the matching step, we compute a rigid transformation for one of the embedded PPI networks so as to minimize its PMD to the other PPI network; by using the flow values of the resulting PMD as the matching scores, we are able to obtain the desired alignment. Also, our framework can be easily extended to joint alignment of multiple PPI networks. The experimental results on two popular benchmark datasets suggest that our method outperforms existing approaches in terms of the quality of alignment.

The research of this work was supported in part by NSF through grant CCF-1656905 and a start-up fund from Michigan State University. Ding also wants to thank Profs. Bonnie Berger and Roded Sharan for their helpful discussions at Simons Institute, UC Berkeley.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aladağ, A.E., Erten, C.: Spinal: scalable protein interaction network alignment. Bioinformatics 29(7), 917–924 (2013)

    Article  Google Scholar 

  2. Alkan, F., Erten, C.: Beams: backbone extraction and merge strategy for the global many-to-many alignment of multiple PPI networks. Bioinformatics 30(4), 531–539 (2013)

    Article  Google Scholar 

  3. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Robotics-DL Tentative, pp. 586–606. International Society for Optics and Photonics (1992)

    Google Scholar 

  4. Cho, H., Berger, B., Peng, J.: Diffusion component analysis: unraveling functional topology in biological networks. In: Przytycka, T.M. (ed.) RECOMB 2015. LNCS, vol. 9029, pp. 62–64. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16706-0_9

    Google Scholar 

  5. Ciriello, G., Mina, M., Guzzi, P.H., Cannataro, M., Guerra, C.: Alignnemo: a local network alignment method to integrate homology and topology. PLoS ONE 7(6), e38107 (2012)

    Article  Google Scholar 

  6. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms, 2nd edn. McGraw-Hill Higher Education, New York (2001)

    MATH  Google Scholar 

  7. Flannick, J., Novak, A., Do, C.B., Srinivasan, B.S., Batzoglou, S.: Automatic parameter learning for multiple network alignment. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS, vol. 4955, pp. 214–231. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78839-3_19

    Chapter  Google Scholar 

  8. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM (2016)

    Google Scholar 

  9. Hashemifar, S., Huang, Q., Xu, J.: Joint alignment of multiple protein-protein interaction networks via convex optimization. J. Comput. Biol. 23(11), 903–911 (2016)

    Article  Google Scholar 

  10. Hashemifar, S., Ma, J., Naveed, H., Canzar, S., Xu, J.: Modulealign: module-based global alignment of protein-protein interaction networks. Bioinformatics 32(17), 658–664 (2016)

    Article  Google Scholar 

  11. Hashemifar, S., Xu, J.: HubAlign: an accurate and efficient method for global alignment of protein-protein interaction networks. Bioinformatics 30(17), i438–i444 (2014)

    Article  Google Scholar 

  12. Higham, D.J., Rasajski, M., Przulj, N.: Fitting a geometric graph to a protein-protein interaction network. Bioinformatics 24(8), 1093–1099 (2008)

    Article  Google Scholar 

  13. Hu, J., Kehr, B., Reinert, K.: NetCoffee: a fast and accurate global alignment approach to identify functionally conserved proteins in multiple networks. Bioinformatics 30(4), 540–548 (2013)

    Article  Google Scholar 

  14. Kalaev, M., Bafna, V., Sharan, R.: Fast and accurate alignment of multiple protein networks. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS, vol. 4955, pp. 246–256. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78839-3_21

    Chapter  Google Scholar 

  15. Koyutürk, M., Kim, Y., Topkara, U., Subramaniam, S., Szpankowski, W., Grama, A.: Pairwise alignment of protein interaction networks. J. Comput. Biol. 13(2), 182–199 (2006)

    Article  MathSciNet  Google Scholar 

  16. Kruskal, J.B., Wish, M.: Multidimensional Scaling, vol. 11. Sage, Newbury Park (1978)

    Book  Google Scholar 

  17. Kuchaiev, O., Pržulj, N.: Integrative network alignment reveals large regions of global network similarity in yeast and human. Bioinformatics 27(10), 1390–1396 (2011)

    Article  Google Scholar 

  18. Kuchaiev, O., Rasajski, M., Higham, D.J., Przulj, N.: Geometric de-noising of protein-protein interaction networks. PLoS Comput. Biol. 5(8), e1000454 (2009)

    Article  MathSciNet  Google Scholar 

  19. Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: International Conference on Machine Learning, pp. 957–966 (2015)

    Google Scholar 

  20. Liao, C.-S., Lu, K., Baym, M., Singh, R., Berger, B.: IsoRankN: spectral methods for global alignment of multiple protein networks. Bioinformatics 25(12), i253–i258 (2009)

    Article  Google Scholar 

  21. Liu, Y., Ding, H., Chen, D., Xu, J.: Novel geometric approach for global alignment of PPI networks. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 4–9 February 2017, San Francisco, pp. 31–37 (2017)

    Google Scholar 

  22. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  23. Neyshabur, B., Khadem, A., Hashemifar, S., Arab, S.S.: NETAL: a new graph-based method for global alignment of protein-protein interaction networks. Bioinformatics 29(13), 1654–1662 (2013)

    Article  Google Scholar 

  24. Park, D., Singh, R., Baym, M., Liao, C.-S., Berger, B.: IsoBase: a database of functionally related proteins across PPI networks. Nucl. Acids Res. 39(suppl 1), D295–D300 (2011)

    Article  Google Scholar 

  25. Patro, R., Kingsford, C.: Global network alignment using multiscale spectral signatures. Bioinformatics 28(23), 3105–3114 (2012)

    Article  Google Scholar 

  26. Pele, O., Werman, M.: Fast and robust earth mover’s distances. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 460–467 (2009)

    Google Scholar 

  27. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)

    Article  MATH  Google Scholar 

  28. Sahraeian, S.M.E., Yoon, B.-J.: SMETANA: accurate and scalable algorithm for probabilistic alignment of large-scale biological networks. PLoS ONE 8(7), e67995 (2013)

    Article  Google Scholar 

  29. Saraph, V., Milenković, T.: MAGNA: maximizing accuracy in global network alignment. Bioinformatics 30(20), 2931–2940 (2014)

    Article  Google Scholar 

  30. Sayed Mohammad, E.S., Yoon, B.-J.: A network synthesis model for generating protein interaction network families. PLoS ONE 7, e41474 (2012)

    Article  Google Scholar 

  31. Shaw, B., Jebara, T.: Structure preserving embedding. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 937–944. ACM (2009)

    Google Scholar 

  32. Singh, R., Xu, J., Berger, B.: Global alignment of multiple protein interaction networks with application to functional orthology detection. Proc. Natl. Acad. Sci. 105(35), 12763–12768 (2008)

    Article  Google Scholar 

  33. Tatusova, T.A., Madden, T.L.: BLAST 2 sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol. Lett. 174(2), 247–250 (1999)

    Article  Google Scholar 

  34. Todor, A., Dobra, A., Kahveci, T.: Probabilistic biological network alignment. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 10(1), 109–121 (2013)

    Article  Google Scholar 

  35. Online Computational Biology Textbook. http://compbio.pbworks.com/w/page/16252899/Mass

  36. Protein. http://www.hemostasis.com/protein/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, M., Ding, H. (2017). Protein Mover’s Distance: A Geometric Framework for Solving Global Alignment of PPI Networks. In: Gao, X., Du, H., Han, M. (eds) Combinatorial Optimization and Applications. COCOA 2017. Lecture Notes in Computer Science(), vol 10627. Springer, Cham. https://doi.org/10.1007/978-3-319-71150-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71150-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71149-2

  • Online ISBN: 978-3-319-71150-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics