Skip to main content

Overview on Ascariasis in Humans in South Asia

  • Chapter
  • First Online:
Neglected Tropical Diseases - South Asia

Part of the book series: Neglected Tropical Diseases ((NTD))

Abstract

Ascaris lumbricoides, a member of the soil-transmitted helminths, infects a staggering 800 million people yearly [1, 2]. It is hard to fully comprehend the worldwide impact of this nematode, but Dr. Peter Hotez, an acknowledged expert on neglected tropical diseases (NTDs), described it best as “the most important disease you have never heard of” [3]. Despite these high numbers, it is still classified as a neglected tropical disease [1, 2]. Neglected tropical diseases affect poor communities disproportionately but are often forgotten when it comes to resources and research funding [4]. Many research questions therefore remain unanswered, such as, why are children disproportionately infected? What is the role of host genetics in predisposition? What is the true degree of cognitive impairment suffered by children because of A. lumbricoides? What is the immune response against Ascaris?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, Jacobson J. Helminth infections: the great neglected tropical diseases. J Clin Invest. 2008;118(4):1311–21. https://doi.org/10.1172/JCI34261. PubMed PMID: 18382743; PubMed Central PMCID: PMCPMC2276811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Ascaris. The neglected parasite. Amsterdam: Elsevier; 2013.

    Google Scholar 

  3. Hotez P. Foreword. Ascaris: the neglected parasite. Amsterdam: Elsevier; 2013. p. xiii–xiv.

    Book  Google Scholar 

  4. Kvalsvig J, Albonico M. Effects of geohelminth infections on neurological development. In: Garcia HH, Tanowitz HB, Del Brutto OH, editors. Neuroparasitology and tropical neurology. Handbook of clinical neurology. Amsterdam: Elsevier; 2013.

    Google Scholar 

  5. Stephenson LS, Latham MC, Ottesen EA. Malnutrition and parasitic helminth infections. Parasitology. 2000;121(Suppl):S23–38. PubMed PMID: 11386688

    Article  PubMed  Google Scholar 

  6. Olsen A, Magnussen P, Ouma JH, Andreassen J, Friis H. The contribution of hookworm and other parasitic infections to haemoglobin and iron status among children and adults in western Kenya. Trans R Soc Trop Med Hyg. 1998;92(6):643–9. PubMed PMID: 10326110

    Article  CAS  PubMed  Google Scholar 

  7. Watkins WE, Pollitt E. “Stupidity or worms”: do intestinal worms impair mental performance? Psychol Bull. 1997;121(2):171–91. PubMed PMID: 9100486

    Article  CAS  PubMed  Google Scholar 

  8. Holland CV. Predisposition to ascariasis: patterns, mechanisms and implications. Parasitology. 2009;136(12):1537–47. https://doi.org/10.1017/S0031182009005952. PubMed PMID: 19450374

    Article  CAS  PubMed  Google Scholar 

  9. Croll NA, Ghadirian E. Wormy persons: contributions to the nature and patterns of overdispersion with Ascaris lumbricoides, Ancylostoma duodenale, Necator americanus and Trichuris trichiura. Trop Geogr Med. 1981;33(3):241–8. PubMed PMID: 7314236

    CAS  PubMed  Google Scholar 

  10. WHO. Soil-transmitted helminthiases: eliminating as public health problem soil-transmitted helminthiases in children: progress report 2001–2010 and strategic plan 2011–2020. Geneva: World Health Organization; 2012.

    Google Scholar 

  11. Anderson RM, Truscott JE, Pullan RL, Brooker SJ, Hollingsworth TD. How effective is school-based deworming for the community-wide control of soil-transmitted helminths? PLoS Negl Trop Dis. 2013;7(2):e2027. https://doi.org/10.1371/journal.pntd.0002027. PubMed PMID: 23469293; PubMed Central PMCID: PMCPMC3585037

    Article  PubMed Central  PubMed  Google Scholar 

  12. Martin J, Keymer A, Isherwood RJ, Wainwright SM. The prevalence and intensity of Ascaris lumbricoides infections in Moslem children from northern Bangladesh. Trans R Soc Trop Med Hyg. 1983;77(5):5.

    Article  Google Scholar 

  13. Hall A, Holland C. Geographical variation in Ascaris lumbricoides fecundity and its implications for helminth control. Parasitol Today. 2000;16(12):540–4. PubMed PMID: 11121853

    Article  CAS  PubMed  Google Scholar 

  14. Hall A, Anwar KS, Tomkins A, Rahman L. The distribution of Ascaris lumbricoides in human hosts: a study of 1765 people in Bangladesh. Trans R Soc Trop Med Hyg. 1999;93(5):503–10. PubMed PMID: 10696405

    Article  CAS  PubMed  Google Scholar 

  15. Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit Vectors. 2014;7:37. https://doi.org/10.1186/1756-3305-7-37. PubMed PMID: 24447578; PubMed Central PMCID: PMCPMC3905661

    Article  PubMed Central  PubMed  Google Scholar 

  16. Torgerson PR, Devleesschauwer B, Praet N, Speybroeck N, Willingham AL, Kasuga F, et al. World Health Organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases, 2010: a data synthesis. PLoS Med. 2015;12(12):e1001920. https://doi.org/10.1371/journal.pmed.1001920. PubMed PMID: 26633705; PubMed Central PMCID: PMCPMC4668834

    Article  PubMed Central  PubMed  Google Scholar 

  17. Brooker SJ, Pullan RL. Chapter 13—Ascaris lumbricoides and Ascariasis: estimating numbers infected and burden of disease. In: Holland C, editor. Ascaris: the neglected parasite. Amsterdam: Elsevier; 2013. p. 343–62.

    Chapter  Google Scholar 

  18. Henry FJ. Reinfection with Ascaris lumbricoides after chemotherapy: a comparative study in three villages with varying sanitation. Trans R Soc Trop Med Hyg. 1988;82(3):460–4. PubMed PMID: 3232186

    Article  CAS  PubMed  Google Scholar 

  19. Mata L. Sociocultural factors in the control and prevention of parasitic diseases. Rev Infect Dis. 1982;4(4):871–9. PubMed PMID: 6214836

    Article  CAS  PubMed  Google Scholar 

  20. Sorensen E, Ismail M, Amarasinghe DK, Hettiarachchi I, Dassenaieke TS. The effect of the availability of latrines on soil-transmitted nematode infections in the plantation sector in Sri Lanka. Am J Trop Med Hyg. 1994;51(1):36–9. PubMed PMID: 8059913

    Article  CAS  PubMed  Google Scholar 

  21. Traub RJ, Robertson ID, Irwin P, Mencke N, Andrew Thompson RC. The prevalence, intensities and risk factors associated with geohelminth infection in tea-growing communities of Assam, India. Trop Med Int Health. 2004;9(6):688–701. https://doi.org/10.1111/j.1365-3156.2004.01252.x. PubMed PMID: 15189459

    Article  PubMed  Google Scholar 

  22. Gunawardena K, Kumarendran B, Ebenezer R, Gunasingha MS, Pathmeswaran A, de Silva N. Soil-transmitted helminth infections among plantation sector schoolchildren in Sri Lanka: prevalence after ten years of preventive chemotherapy. PLoS Negl Trop Dis. 2011;5(9):e1341. https://doi.org/10.1371/journal.pntd.0001341. PubMed PMID: 21980549; PubMed Central PMCID: PMCPMC3181244

    Article  PubMed Central  PubMed  Google Scholar 

  23. Haswell-Elkins M, Elkins D, Anderson RM. The influence of individual, social group and household factors on the distribution of Ascaris lumbricoides within a community and implications for control strategies. Parasitology. 1989;98(Pt 1):125–34. PubMed PMID: 2717212

    Article  PubMed  Google Scholar 

  24. Benjamin-Chung J, Nazneen A, Halder AK, Haque R, Siddique A, Uddin MS, et al. The interaction of deworming, improved sanitation, and household flooring with soil-transmitted helminth infection in rural Bangladesh. PLoS Negl Trop Dis. 2015;9(12):e0004256. https://doi.org/10.1371/journal.pntd.0004256. PubMed PMID: 26624994; PubMed Central PMCID: PMCPMC4666415

    Article  PubMed Central  PubMed  Google Scholar 

  25. Holland CV, Taren DL, Crompton DW, Nesheim MC, Sanjur D, Barbeau I, et al. Intestinal helminthiases in relation to the socioeconomic environment of Panamanian children. Soc Sci Med. 1988;26(2):209–13. PubMed PMID: 3347848

    Article  CAS  PubMed  Google Scholar 

  26. Kightlinger LK, Seed JR, Kightlinger MB. Ascaris lumbricoides intensity in relation to environmental, socioeconomic, and behavioral determinants of exposure to infection in children from southeast Madagascar. J Parasitol. 1998;84(3):480–4. PubMed PMID: 9645843

    Article  CAS  PubMed  Google Scholar 

  27. Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet. 2006;367(9521):1521–32. https://doi.org/10.1016/S0140-6736(06)68653-4. PubMed PMID: 16679166

    Article  PubMed  Google Scholar 

  28. Holland CV, Asaolu SO, Crompton DW, Stoddart RC, Macdonald R, Torimiro SE. The epidemiology of Ascaris lumbricoides and other soil-transmitted helminths in primary school children from Ile-Ife, Nigeria. Parasitology. 1989;99(Pt 2):275–85. PubMed PMID: 2594419

    Article  PubMed  Google Scholar 

  29. Elkins DB, Haswell-Elkins M, Anderson RM. The epidemiology and control of intestinal helminths in the Pulicat Lake region of Southern India. I. Study design and pre- and post-treatment observations on Ascaris lumbricoides infection. Trans R Soc Trop Med Hyg. 1986;80(5):774–92. PubMed PMID: 3603617

    Article  CAS  PubMed  Google Scholar 

  30. Thein-Hlaing T-S, Htay-Htay-Aye M-L, Thein-Maung-Myint. Epidemiology and transmission dynamics of Ascaris lumbricoides in Okpo village, rural Burma. Trans R Soc Trop Med Hyg. 1984;78(4):497–504. PubMed PMID: 6237473

    Article  CAS  PubMed  Google Scholar 

  31. Forrester JE, Scott ME, Bundy DA, Golden MH. Clustering of Ascaris lumbricoides and Trichuris trichiura infections within households. Trans R Soc Trop Med Hyg. 1988;82(2):282–8. PubMed PMID: 3188157

    Article  CAS  PubMed  Google Scholar 

  32. Croll NA, Anderson RM, Gyorkos TW, Ghadirian E. The population biology and control of Ascaris lumbricoides in a rural community in Iran. Trans R Soc Trop Med Hyg. 1982;76(2):187–97. PubMed PMID: 7101403

    Article  CAS  PubMed  Google Scholar 

  33. Crofton HD. A quantitative approach to parasitism. Parasitology. 1971;63:343–64.

    Article  CAS  PubMed  Google Scholar 

  34. Seo BS, Cho SY, Chai JY. Frequency distribution of Ascaris Lumbricoides in rural Koreans with special reference on the effect of changing endemicity. Kisaengchunghak Chapchi. 1979;17(2):105–13. PubMed PMID: 12902750

    PubMed  Google Scholar 

  35. Anderson RM, May RM. Population dynamics of human helminth infections: control by chemotherapy. Nature. 1982;297(5867):557–63. PubMed PMID: 7088139

    Article  CAS  PubMed  Google Scholar 

  36. Boes J, Medley GF, Eriksen L, Roepstorff A, Nansen P. Distribution of Ascaris suum in experimentally and naturally infected pigs and comparison with Ascaris lumbricoides infections in humans. Parasitology. 1998;117(Pt 6):589–96. PubMed PMID: 9881384

    Article  PubMed  Google Scholar 

  37. McCallum HI. Covariance in parasite burdens: the effect of predisposition to infection. Parasitology. 1990;100(Pt 1):153–9. PubMed PMID: 2179831

    Article  PubMed  Google Scholar 

  38. Lewis R, Behnke JM, Stafford P, Holland CV. The development of a mouse model to explore resistance and susceptibility to early Ascaris suum infection. Parasitology. 2006;132:289–300.

    Google Scholar 

  39. Walker M, Hall A. Basáñez. Ascaris lumbricoides: new epidemiological insights and mathematical approaches. In: Holland C, editor. Ascaris: the neglected parasite. Amsterdam: Elsevier; 2013.

    Google Scholar 

  40. Deslyper G, Colgan TJ, Cooper AJ, Holland CV, Carolan JC. A proteomic investigation of hepatic resistance to Ascaris in a murine model. PLoS Negl Trop Dis. 2016;10(8):e0004837. https://doi.org/10.1371/journal.pntd.0004837. PubMed PMID: 27490109

    Article  PubMed Central  PubMed  Google Scholar 

  41. Adam-Vizi V. Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal. 2005;7(9–10):1140–9. https://doi.org/10.1089/ars.2005.7.1140. PubMed PMID: 16115017

    Article  CAS  PubMed  Google Scholar 

  42. Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE. Mitochondria and reactive oxygen species. Free Radic Biol Med. 2009;47(4):333–43. https://doi.org/10.1016/j.freeradbiomed.2009.05.004. PubMed PMID: 19427899

    Article  CAS  PubMed  Google Scholar 

  43. Holland CV, Crompton DW, Asaolu SO, Crichton WB, Torimiro SE, Walters DE. A possible genetic factor influencing protection from infection with Ascaris lumbricoides in Nigerian children. J Parasitol. 1992;78(5):915–6. PubMed PMID: 1403439

    Article  CAS  PubMed  Google Scholar 

  44. Williams-Blangero S, Subedi J, Upadhayay RP, Manral DB, Rai DR, Jha B, et al. Genetic analysis of susceptibility to infection with Ascaris lumbricoides. Am J Trop Med Hyg. 1999;60(6):921–6. PubMed PMID: 10403321

    Article  CAS  PubMed  Google Scholar 

  45. Williams-Blangero S, VandeBerg JL, Subedi J, Aivaliotis MJ, Rai DR, Upadhayay RP, et al. Genes on chromosomes 1 and 13 have significant effects on Ascaris infection. Proc Natl Acad Sci USA. 2002;99(8):5533–8. https://doi.org/10.1073/pnas.082115999. PubMed PMID: 11960011; PubMed Central PMCID: PMCPMC122804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Williams-Blangero S, Vandeberg JL, Subedi J, Jha B, Corrêa-Oliveira R, Blangero J. Localization of multiple quantitative trait loci influencing susceptibility to infection with Ascaris lumbricoides. J Infect Dis. 2008;197(1):66–71. https://doi.org/10.1086/524060. PubMed PMID: 18171287

    Article  PubMed  Google Scholar 

  47. Acevedo N, Mercado D, Vergara C, Sánchez J, Kennedy MW, Jiménez S, et al. Association between total immunoglobulin E and antibody responses to naturally acquired Ascaris lumbricoides infection and polymorphisms of immune system-related LIG4, TNFSF13B and IRS2 genes. Clin Exp Immunol. 2009;157(2):282–90. https://doi.org/10.1111/j.1365-2249.2009.03948.x. PubMed PMID: 19604268; PubMed Central PMCID: PMCPMC2730854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Peisong G, Yamasaki A, Mao XQ, Enomoto T, Feng Z, Gloria-Bottini F, et al. An asthma-associated genetic variant of STAT6 predicts low burden of ascaris worm infestation. Genes Immun. 2004;5(1):58–62. https://doi.org/10.1038/sj.gene.6364030. PubMed PMID: 14735150

    Article  CAS  PubMed  Google Scholar 

  49. Walker M, Hall A, Basáñez MG. Individual predisposition, household clustering and risk factors for human infection with Ascaris lumbricoides: new epidemiological insights. PLoS Negl Trop Dis. 2011;5(4):e1047. https://doi.org/10.1371/journal.pntd.0001047. PubMed PMID: 21541362; PubMed Central PMCID: PMCPMC3082514

    Article  PubMed Central  PubMed  Google Scholar 

  50. Hall A, Anwar KS, Tomkins AM. Intensity of reinfection with Ascaris lumbricoides and its implications for parasite control. Lancet. 1992;339(8804):1253–7. PubMed PMID: 1349668

    Article  CAS  PubMed  Google Scholar 

  51. Holland CV, Behnke JM, Dold C. Larval Ascariasis: impact, significance, and model organisms. In: Holland CV, editor. Ascaris: the neglected parasite. Oxford: Newnes; 2013. p. 108–25.

    Google Scholar 

  52. Davaine J. Nouvelles recherches sur le développement et la propagation de l'ascaride lombricoide et du trichocéphale de l'homme. Compt Rend Soc Biol. 1863;3(4):261–5.

    Google Scholar 

  53. Stewart FH. On the development of Ascaris lumbricoides Lin. and Ascaris suilla Duj. in the rat and mouse. Parasitology. 1917;9(02):213–27. https://doi.org/10.1017/S0031182000006053.

    Article  Google Scholar 

  54. Slotved HC, Eriksen L, Murrell KD, Nansen P. Early Ascaris suum migration in mice as a model for pigs. J Parasitol. 1998;84(1):16–8. PubMed PMID: 9488331

    Article  CAS  PubMed  Google Scholar 

  55. Murrell KD, Eriksen L, Nansen P, Slotved HC, Rasmussen T. Ascaris suum: a revision of its early migratory path and implications for human ascariasis. J Parasitol. 1997;83(2):255–60. PubMed PMID: 9105307

    Article  CAS  PubMed  Google Scholar 

  56. Douvres FW, Tromba FG. Comparative development of Ascaris suum in rabbits, guinea pigs, mice and swine in 11 days. Proc Helminthol Soc Wash. 1971;38:246–52.

    Google Scholar 

  57. Roepstorff A, Eriksen L, Slotved HC, Nansen P. Experimental Ascaris suum infection in the pig: worm population kinetics following single inoculations with three doses of infective eggs. Parasitology. 1997;115(Pt 4):443–52. PubMed PMID: 9364572

    Article  PubMed  Google Scholar 

  58. Mitchell GF, Hogarth-Scott RS, Lewers HM, Edwards RD, Cousins G, Moore T. Studies on immune response to parasite antigens in mice. I. Ascaris suum larvae numbers and antiphosphorylcholine responses in infected mice of various strains and hypothymic nu/nu mice. Int Arch Allergy Immunol. 1976;56:64–78.

    Article  Google Scholar 

  59. Maung M. Ascaris lumbricoides Linné, 1758 and Ascaris suum Goeze, 1782: morphological differences between specimens obtained from man and pig. Southeast Asian J Trop Med Public Health. 1973;4(1):41–5. PubMed PMID: 4718127

    CAS  PubMed  Google Scholar 

  60. Leles D, Gardner SL, Reinhard K, Iñiguez A, Araujo A. Are Ascaris lumbricoides and Ascaris suum a single species? Parasit Vectors. 2012;5:42. https://doi.org/10.1186/1756-3305-5-42. PubMed PMID: 22348306; PubMed Central PMCID: PMCPMC3293767

    Article  PubMed Central  PubMed  Google Scholar 

  61. Peng W, Criscione CD. Ascariasis in people and pigs: new inferences from DNA analysis of worm populations. Infect Genet Evol. 2012;12(2):227–35. https://doi.org/10.1016/j.meegid.2012.01.012. PubMed PMID: 22306815

    Article  PubMed  Google Scholar 

  62. Ansel M, Thibaut M. Value of the specific distinction between tascaris lumbricoïdes Linnè 1758 and Ascaris suum Goeze 1782. Int J Parasitol. 1973;3(3):317–9. PubMed PMID: 4732028

    Article  CAS  PubMed  Google Scholar 

  63. Sprent JF. Anatomical distinction between human and pig strains of Ascaris. Nature. 1952;170(4328):627–8. PubMed PMID: 13002394

    Article  CAS  PubMed  Google Scholar 

  64. Cavallero S, Snabel V, Pacella F, Perrone V, D'Amelio S. Phylogeographical studies of Ascaris spp. based on ribosomal and mitochondrial DNA sequences. PLoS Negl Trop Dis. 2013;7(4):e2170. https://doi.org/10.1371/journal.pntd.0002170. PubMed PMID: 23593529; PubMed Central PMCID: PMCPMC3623706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Blouin MS. Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. Int J Parasitol. 2002;32(5):527–31. PubMed PMID: 11943225

    Article  CAS  PubMed  Google Scholar 

  66. Blouin MS, Yowell CA, Courtney CH, Dame JB. Substitution bias, rapid saturation, and the use of mtDNA for nematode systematics. Mol Biol Evol. 1998;15(12):1719–27. PubMed PMID: 9866206

    Article  CAS  PubMed  Google Scholar 

  67. Stevenson LA, Chilton NB, Gasser RB. Differentiation of Haemonchus placei from H. contortus (Nematoda: Trichostrongylidae) by the ribosomal DNA second internal transcribed spacer. Int J Parasitol. 1995;25(4):483–8. PubMed PMID: 7635624

    Article  CAS  PubMed  Google Scholar 

  68. Nadler SA, Hudspeth DS. Phylogeny of the Ascaridoidea (Nematoda: Ascaridida) based on three genes and morphology: hypotheses of structural and sequence evolution. J Parasitol. 2000;86(2):380–93. https://doi.org/10.1645/0022-3395(2000)086[0380:POTANA]2.0.CO;2. PubMed PMID: 10780561

    Article  CAS  PubMed  Google Scholar 

  69. Zhu X, Chilton NB, Jacobs DE, Boes J, Gasser RB. Characterisation of Ascaris from human and pig hosts by nuclear ribosomal DNA sequences. Int J Parasitol. 1999;29(3):469–78. PubMed PMID: 10333331

    Article  CAS  PubMed  Google Scholar 

  70. Anderson TJ, Romero-Abal ME, Jaenike J. Genetic structure and epidemiology of Ascaris populations: patterns of host affiliation in Guatemala. Parasitology. 1993;107(Pt 3):319–34. PubMed PMID: 7901831

    Article  PubMed  Google Scholar 

  71. Liu GH, CY W, Song HQ, Wei SJ, MJ X, Lin RQ, et al. Comparative analyses of the complete mitochondrial genomes of Ascaris lumbricoides and Ascaris suum from humans and pigs. Gene. 2012;492(1):110–6. https://doi.org/10.1016/j.gene.2011.10.043. PubMed PMID: 22075400

    Article  CAS  PubMed  Google Scholar 

  72. Betson M, Nejsum P, Bendall RP, Deb RM, Stothard JR. Molecular epidemiology of ascariasis: a global perspective on the transmission dynamics of Ascaris in people and pigs. J Infect Dis. 2014;210(6):932–41. https://doi.org/10.1093/infdis/jiu193. PubMed PMID: 24688073; PubMed Central PMCID: PMCPMC4136802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Anderson TJ. Ascaris infections in humans from North America: molecular evidence for cross-infection. Parasitology. 1995;110(Pt 2):215–9. PubMed PMID: 7885739

    Article  PubMed  Google Scholar 

  74. Nejsum P, Parker ED, Frydenberg J, Roepstorff A, Boes J, Haque R, et al. Ascariasis is a zoonosis in Denmark. J Clin Microbiol. 2005;43(3):1142–8. https://doi.org/10.1128/JCM.43.3.1142-1148.2005. PubMed PMID: 15750075; PubMed Central PMCID: PMCPMC1081283

    Article  PubMed Central  PubMed  Google Scholar 

  75. Arizono N, Yoshimura Y, Tohzaka N, Yamada M, Tegoshi T, Onishi K, et al. Ascariasis in Japan: is pig-derived Ascaris infecting humans? Jpn J Infect Dis. 2010;63(6):447–8. PubMed PMID: 21099099

    PubMed  Google Scholar 

  76. Criscione CD, Anderson JD, Sudimack D, Peng W, Jha B, Williams-Blangero S, et al. Disentangling hybridization and host colonization in parasitic roundworms of humans and pigs. Proc Biol Sci. 2007;274(1626):2669–77. https://doi.org/10.1098/rspb.2007.0877. PubMed PMID: 17725977; PubMed Central PMCID: PMCPMC2279219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Zhou C, Li M, Yuan K, Deng S, Peng W. Pig Ascaris: an important source of human ascariasis in China. Infect Genet Evol. 2012;12(6):1172–7. https://doi.org/10.1016/j.meegid.2012.04.016. PubMed PMID: 22561394

    Article  PubMed  Google Scholar 

  78. Anderson TJ. The dangers of using single locus markers in parasite epidemiology: Ascaris as a case study. Trends Parasitol. 2001;17(4):183–8. PubMed PMID: 11282508

    Article  CAS  PubMed  Google Scholar 

  79. Arnold ML. Natural hybridization and the evolution of domesticated, pest and disease organisms. Mol Ecol. 2004;13(5):997–1007. https://doi.org/10.1111/j.1365-294X.2004.02145.x. PubMed PMID: 15078439

    Article  CAS  PubMed  Google Scholar 

  80. Betson M, Nejsum P, Stothard JR. Chapter 10—from the twig tips to the deeper branches: new insights into evolutionary history and phylogeography of Ascaris. Ascaris: the neglected parasite. Amsterdam: Elsevier; 2013. p. 265–85.

    Google Scholar 

  81. Anderson TJ, Jaenike J. Host specificity, evolutionary relationships and macrogeographic differentiation among Ascaris populations from humans and pigs. Parasitology. 1997;115(Pt 3):325–42. PubMed PMID: 9300471

    Article  PubMed  Google Scholar 

  82. Søe MJ, Kapel CM, Nejsum P. Ascaris from humans and pigs appear to be reproductively isolated species. PLoS Negl Trop Dis. 2016;10(9):e0004855. https://doi.org/10.1371/journal.pntd.0004855. PubMed PMID: 27583548; PubMed Central PMCID: PMCPMC5008633

    Article  PubMed Central  PubMed  Google Scholar 

  83. Dold C, Holland CV. Ascaris and ascariasis. Microbes Infect. 2011;13(7):632–7. https://doi.org/10.1016/j.micinf.2010.09.012. PubMed PMID: 20934531

    Article  PubMed  Google Scholar 

  84. Geenen PL, Bresciani J, Boes J, Pedersen A, Eriksen L, Fagerholm HP, et al. The morphogenesis of Ascaris suum to the infective third-stage larvae within the egg. J Parasitol. 1999;85(4):616–22. PubMed PMID: 10461940

    Article  CAS  PubMed  Google Scholar 

  85. Pilitt PA, Lichtenfels JR, Tromba FG, Madden PA. Differentiation of late fourth and early fifth stages of Ascaris suum Goeze, 1782 (Nematoda: Ascaridoidea) in swine. Proc Helminthol Soc Wash. 1987;48:1–7.

    Google Scholar 

  86. Olsen LS, Kelley GW, Sen HG. Longevity and egg-production of Ascaris suum. Trans Am Microscop Soc. 1958;77:380–3.

    Article  Google Scholar 

  87. Anderson R, May R. Infectious diseases of humans: dynamics and control. Oxford: Oxford University Press; 1992.

    Google Scholar 

  88. Sinniah B. Daily egg production of Ascaris lumbricoides: the distribution of eggs in the faeces and the variability of egg counts. Parasitology. 1982;84(1):167–75. PubMed PMID: 7063252

    Article  CAS  PubMed  Google Scholar 

  89. Gaasenbeek CP, Borgsteede FH. Studies on the survival of Ascaris suum eggs under laboratory and simulated field conditions. Vet Parasitol. 1998;75(2–3):227–34. PubMed PMID: 9637224

    Article  CAS  PubMed  Google Scholar 

  90. Kagei N. Techniques for the measurement of environmental pollution by infective stage of soil-transmitted helminths. In: Yokogawa M, Hayashi S, Kobayashi A, Kagei N, Suzuki N, Kunii C, editors. Collected papers on the control of soil-transmitted helminthiases, vol. 11. Tokyo: Asian Parasite Control Organization; 1983. p. 27–46.

    Google Scholar 

  91. Crompton D. Biology of Ascaris lumbricoides. In: Crompton D, Nesheim M, Pawlowski Z, editors. Ascariasis and its prevention and control. London: Taylor & Francis; 1989. p. 9–44.

    Google Scholar 

  92. Hall A, Hewitt G, Tuffrey V, de Silva N. A review and meta-analysis of the impact of intestinal worms on child growth and nutrition. Matern Child Nutr. 2008;4(Suppl 1):118–236. https://doi.org/10.1111/j.1740-8709.2007.00127.x. PubMed PMID: 18289159

    Article  PubMed  Google Scholar 

  93. Wong MS, Bundy DA, Golden MH. The rate of ingestion of Ascaris lumbricoides and Trichuris trichiura eggs in soil and its relationship to infection in two children’s homes in Jamaica. Trans R Soc Trop Med Hyg. 1991;85(1):89–91. PubMed PMID: 2068773

    Article  CAS  PubMed  Google Scholar 

  94. WHO. Control of Ascariasis (report of WHO Committee). Technical Report Series 1967. p. 1–39.

    Google Scholar 

  95. Bidinger PD, Crompton DW, Arnold S. Aspects of intestinal parasitism in villagers from rural peninsular India. Parasitology. 1981;83(Pt 2):373–80. PubMed PMID: 7329725

    Article  CAS  PubMed  Google Scholar 

  96. Kroeger A, Schulz S, Witte B, Skewes-Ramm R, Etzler A. Helminthiasis and cultural change in the Peruvian rainforest. J Trop Med Hyg. 1992;95(2):104–13. PubMed PMID: 1560477

    CAS  PubMed  Google Scholar 

  97. Smyth J. Introduction to animal parasitology. 3rd ed. New York: Cambridge University Press; 1994.

    Google Scholar 

  98. Read AF, Skorping A. The evolution of tissue migration by parasitic nematode larvae. Parasitology. 1995;111(Pt 3):359–71. PubMed PMID: 7567104

    Article  PubMed  Google Scholar 

  99. Mulcahy G, O'Neill S, Fanning J, McCarthy E, Sekiya M. Tissue migration by parasitic helminths—an immunoevasive strategy? Trends Parasitol. 2005;21(6):273–7. https://doi.org/10.1016/j.pt.2005.04.003. PubMed PMID: 15922248

    Article  PubMed  Google Scholar 

  100. Jungersen G, Fagerholm HP, Nansen P, Eriksen L. Development of patent Ascaris suum infections in pigs following intravenous administration of larvae hatched in vitro. Parasitology. 1999;119(Pt 5):503–8. PubMed PMID: 10599082

    Article  PubMed  Google Scholar 

  101. de Silva NR, Guyatt HL, Bundy DA. Worm burden in intestinal obstruction caused by Ascaris lumbricoides. Trop Med Int Health. 1997;2(2):189–90. PubMed PMID: 9472304

    Article  PubMed  Google Scholar 

  102. Thein-Hlaing, Thane-Toe, Than-Saw, Myat-Lay-Kyin, Myint-Lwin. A controlled chemotherapeutic intervention trial on the relationship between Ascaris lumbricoides infection and malnutrition in children. Trans R Soc Trop Med Hyg. 1991;85(4):523–8. PubMed PMID: 1755063

    Article  PubMed  Google Scholar 

  103. Brooker S. Estimating the global distribution and disease burden of intestinal nematode infections: adding up the numbers—a review. Int J Parasitol. 2010;40(10):1137–44. https://doi.org/10.1016/j.ijpara.2010.04.004. PubMed PMID: 20430032; PubMed Central PMCID: PMCPMC3034165

    Article  PubMed Central  PubMed  Google Scholar 

  104. de Silva NR, Guyatt HL, Bundy DA. Morbidity and mortality due to Ascaris-induced intestinal obstruction. Trans R Soc Trop Med Hyg. 1997;91(1):31–6. PubMed PMID: 9093623

    Article  PubMed  Google Scholar 

  105. de Silva NR, Chan MS, Bundy DA. Morbidity and mortality due to ascariasis: re-estimation and sensitivity analysis of global numbers at risk. Trop Med Int Health. 1997;2(6):519–28. PubMed PMID: 9236818

    Article  PubMed  Google Scholar 

  106. Stephenson L. Pathophysiology of intestinal nematodes. In: Holland C, Kennede M, editors. The Geohelminths: Ascaris, Trichuris and hookworm. New York: Springer; 2002.

    Google Scholar 

  107. O'Lorcain P, Holland CV. The public health importance of Ascaris lumbricoides. Parasitology. 2000;121(Suppl):S51–71. PubMed PMID: 11386692

    Article  PubMed  Google Scholar 

  108. Awasthi S, Pande VK. Six-monthly de-worming in infants to study effects on growth. Indian J Pediatr. 2001;68(9):823–7. PubMed PMID: 11669028

    Article  CAS  PubMed  Google Scholar 

  109. Ezeamama AE, McGarvey ST, Hogan J, Lapane KL, Bellinger DC, Acosta LP, et al. Treatment for Schistosoma japonicum, reduction of intestinal parasite load, and cognitive test score improvements in school-aged children. PLoS Negl Trop Dis. 2012;6(5):e1634. https://doi.org/10.1371/journal.pntd.0001634. PubMed PMID: 22563514; PubMed Central PMCID: PMCPMC3341324

    Article  PubMed Central  PubMed  Google Scholar 

  110. Bundy DA, Kremer M, Bleakley H, Jukes MC, Miguel E. Deworming and development: asking the right questions, asking the questions right. PLoS Negl Trop Dis. 2009;3(1):e362. https://doi.org/10.1371/journal.pntd.0000362. PubMed PMID: 19172186; PubMed Central PMCID: PMCPMC2627944

    Article  PubMed Central  PubMed  Google Scholar 

  111. Taylor-Robinson DC, Maayan N, Soares-Weiser K, Donegan S, Garner P. Deworming drugs for soil-transmitted intestinal worms in children: effects on nutritional indicators, haemoglobin, and school performance. Cochrane Database Syst Rev. 2015;(7):CD000371. https://doi.org/10.1002/14651858.CD000371.pub6. PubMed PMID: 26202783; PubMed Central PMCID: PMCPMC4523932

  112. Jardim-Botelho A, Raff S, Rodrigues R DÁ, Hoffman HJ, Diemert DJ, Corrêa-Oliveira R, et al. Hookworm, Ascaris lumbricoides infection and polyparasitism associated with poor cognitive performance in Brazilian schoolchildren. Trop Med Int Health. 2008;13(8):994–1004. https://doi.org/10.1111/j.1365-3156.2008.02103.x. PubMed PMID: 18627581

    Article  PubMed  Google Scholar 

  113. Holliday MA. Body composition and energy needs during growth. In: Falkner F, Tanner JM, editors. Human growth: a comprehensive treatise, vol. 2. New York, NY: Plenum; 1986. p. 101–17.

    Google Scholar 

  114. Eppig C, Fincher CL, Thornhill R. Parasite prevalence and the worldwide distribution of cognitive ability. Proc Biol Sci. 2010;277(1701):3801–8. https://doi.org/10.1098/rspb.2010.0973. PubMed PMID: 20591860; PubMed Central PMCID: PMCPMC2992705

    Article  PubMed Central  PubMed  Google Scholar 

  115. Medley G, Turner H, Baggaley R, Holland C, Hollingsworth T. The role of more sensitive helminth diagnostics in mass drug administration campaigns: elimination and health impacts. In: Anderson R, Basanez M, editors. Mathematical models for neglected tropical diseases: essential tools for control and elimination, Part B. Advances in parasitology, vol. 94. New York: Academic; 2016.

    Google Scholar 

  116. Stephenson LS, Pond WG, Nesheim MC, Krook LP, Crompton DW. Ascaris suum: nutrient absorption, growth, and intestinal pathology in young pigs experimentally infected with 15-day-old larvae. Exp Parasitol. 1980;49(1):15–25. PubMed PMID: 7350001

    Article  CAS  PubMed  Google Scholar 

  117. Villamizar E, Méndez M, Bonilla E, Varon H, de Onatra S. Ascaris lumbricoides infestation as a cause of intestinal obstruction in children: experience with 87 cases. J Pediatr Surg. 1996;31(1):201–4. discussion 4-5. PubMed PMID: 8632280

    Article  CAS  PubMed  Google Scholar 

  118. Khuroo MS, Zargar SA, Mahajan R. Hepatobiliary and pancreatic ascariasis in India. Lancet. 1990;335(8704):1503–6. PubMed PMID: 1972440

    Article  CAS  PubMed  Google Scholar 

  119. Pawloski Z, Arfaa F. Ascariasis. In: Warren K, Mahmoud A, editors. Tropical and geographical medicine. New York: McGraw Hill; 1984. p. 347–58.

    Google Scholar 

  120. Coles G. Allergy and immunopathology of ascariasis. In: Crompton D, Nesheim M, Pawloski Z, editors. Ascariasis and its public health significance. London and Philadelphia: Taylor and Francis; 1985. p. 167–84.

    Google Scholar 

  121. Pawłowski ZS. Ascariasis. Clin Gastroenterol. 1978;7(1):157–78. PubMed PMID: 627097

    PubMed  Google Scholar 

  122. Loeffler W. Zur Differentialdiagnose der Lungen-infiltrierungen. II Ueber fluchtige Succedanininfiltrate (mit Eosinophilie). Beiträge zur Klinik der Tuberkulose. 1932;79:368–82.

    Article  Google Scholar 

  123. Loeffler W. Transient lung infiltrations with blood eosinophilia. Int Arch Allergy Appl Immunol. 1956;8(1–2):54–9. PubMed PMID: 13331628

    Article  Google Scholar 

  124. McSharry C, Xia Y, Holland CV, Kennedy MW. Natural immunity to Ascaris lumbricoides associated with immunoglobulin E antibody to ABA-1 allergen and inflammation indicators in children. Infect Immun. 1999;67(2):484–9. PubMed PMID: 9916049; PubMed Central PMCID: PMCPMC96345

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Donnelly S, O'Neill SM, Sekiya M, Mulcahy G, Dalton JP. Thioredoxin peroxidase secreted by Fasciola hepatica induces the alternative activation of macrophages. Infect Immun. 2005;73(1):166–73. https://doi.org/10.1128/IAI.73.1.166-173.2005. PubMed PMID: 15618151; PubMed Central PMCID: PMCPMC538930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Gourbal BE, Guillou F, Mitta G, Sibille P, Thèron A, Pointier JP, et al. Excretory-secretory products of larval Fasciola hepatica investigated using a two-dimensional proteomic approach. Mol Biochem Parasitol. 2008;161(1):63–6. https://doi.org/10.1016/j.molbiopara.2008.05.002. PubMed PMID: 18556074

    Article  CAS  PubMed  Google Scholar 

  127. Spolski RJ, Corson J, Thomas PG, Kuhn RE. Parasite-secreted products regulate the host response to larval Taenia crassiceps. Parasite Immunol. 2000;22(6):297–305. PubMed PMID: 10849309

    Article  CAS  PubMed  Google Scholar 

  128. Chehayeb JF, Robertson AP, Martin RJ, Geary TG. Proteomic analysis of adult Ascaris suum fluid compartments and secretory products. PLoS Negl Trop Dis. 2014;8(6):e2939. https://doi.org/10.1371/journal.pntd.0002939. PubMed PMID: 24901219; PubMed Central PMCID: PMCPMC4046973

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  129. Kennedy MW. Ascaris—antigens, allergens, immunogenetics, protein structures. In: Holland C, editor. Ascaris: the neglected parasite. Amsterdam: Elsevier; 2013. p. 51–79.

    Chapter  Google Scholar 

  130. Antunes MF, Titz TO, Batista IF, Marques-Porto R, Oliveira CF, Alves de Araujo CA, et al. Immunosuppressive PAS-1 is an excretory/secretory protein released by larval and adult worms of the ascarid nematode Ascaris suum. J Helminthol. 2015;89(3):367–74. https://doi.org/10.1017/S0022149X14000200. PubMed PMID: 24703095

    Article  CAS  PubMed  Google Scholar 

  131. Wang T, Van Steendam K, Dhaenens M, Vlaminck J, Deforce D, Jex AR, et al. Proteomic analysis of the excretory-secretory products from larval stages of Ascaris suum reveals high abundance of glycosyl hydrolases. PLoS Negl Trop Dis. 2013;7(10):e2467. https://doi.org/10.1371/journal.pntd.0002467. PubMed PMID: 24098821; PubMed Central PMCID: PMCPMC3789772

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  132. McGonigle S, Loschiavo M, Pearce EJ. 14-3-3 proteins in Schistosoma mansoni; identification of a second epsilon isoform. Int J Parasitol. 2002;32(6):685–93. PubMed PMID: 12062487

    Article  CAS  PubMed  Google Scholar 

  133. Jex AR, Liu S, Li B, Young ND, Hall RS, Li Y, et al. Ascaris suum draft genome. Nature. 2011;479(7374):529–33. https://doi.org/10.1038/nature10553. PubMed PMID: 22031327

    Article  CAS  PubMed  Google Scholar 

  134. Maizels RM, Yazdanbakhsh M. Immune regulation by helminth parasites: cellular and molecular mechanisms. Nat Rev Immunol. 2003;3(9):733–44. https://doi.org/10.1038/nri1183. PubMed PMID: 12949497

    Article  CAS  PubMed  Google Scholar 

  135. Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 2010;464(7293):1367–70. https://doi.org/10.1038/nature08900. PubMed PMID: 20200518; PubMed Central PMCID: PMCPMC2862165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Maizels RM, Hewitson JP, Smith KA. Susceptibility and immunity to helminth parasites. Curr Opin Immunol. 2012;24(4):459–66. https://doi.org/10.1016/j.coi.2012.06.003. PubMed PMID: 22795966; PubMed Central PMCID: PMCPMC3437973

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  137. Allen JE, Maizels RM. Diversity and dialogue in immunity to helminths. Nat Rev Immunol. 2011;11(6):375–88. https://doi.org/10.1038/nri2992. PubMed PMID: 21610741

    Article  CAS  PubMed  Google Scholar 

  138. van Liempt E, van Vliet SJ, Engering A, García Vallejo JJ, Bank CM, Sanchez-Hernandez M, et al. Schistosoma mansoni soluble egg antigens are internalized by human dendritic cells through multiple C-type lectins and suppress TLR-induced dendritic cell activation. Mol Immunol. 2007;44(10):2605–15. https://doi.org/10.1016/j.molimm.2006.12.012. PubMed PMID: 17241663

    Article  PubMed  CAS  Google Scholar 

  139. Yoshida A, Nagayasu E, Horii Y, Maruyama H. A novel C-type lectin identified by EST analysis in tissue migratory larvae of Ascaris suum. Parasitol Res. 2012;110(4):1583–6. https://doi.org/10.1007/s00436-011-2677-9. PubMed PMID: 22006188

    Article  PubMed  Google Scholar 

  140. Kondo M, Tamaoki J, Takeyama K, Nakata J, Nagai A. Interleukin-13 induces goblet cell differentiation in primary cell culture from Guinea pig tracheal epithelium. Am J Respir Cell Mol Biol. 2002;27(5):536–41. https://doi.org/10.1165/rcmb.4682. PubMed PMID: 12397012

    Article  CAS  PubMed  Google Scholar 

  141. Hasnain SZ, Evans CM, Roy M, Gallagher AL, Kindrachuk KN, Barron L, et al. Muc5ac: a critical component mediating the rejection of enteric nematodes. J Exp Med. 2011;208(5):893–900. https://doi.org/10.1084/jem.20102057. PubMed PMID: 21502330; PubMed Central PMCID: PMCPMC3092342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Herbert DR, Yang JQ, Hogan SP, Groschwitz K, Khodoun M, Munitz A, et al. Intestinal epithelial cell secretion of RELM-beta protects against gastrointestinal worm infection. J Exp Med. 2009;206(13):2947–57. https://doi.org/10.1084/jem.20091268. PubMed PMID: 19995957; PubMed Central PMCID: PMCPMC2806463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Artis D, Wang ML, Keilbaugh SA, He W, Brenes M, Swain GP, et al. RELMbeta/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract. Proc Natl Acad Sci U S A. 2004;101(37):13596–600. https://doi.org/10.1073/pnas.0404034101. PubMed PMID: 15340149; PubMed Central PMCID: PMCPMC518800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  144. Balic A, Harcus Y, Holland MJ, Maizels RM. Selective maturation of dendritic cells by Nippostrongylus brasiliensis-secreted proteins drives Th2 immune responses. Eur J Immunol. 2004;34(11):3047–59. https://doi.org/10.1002/eji.200425167. PubMed PMID: 15468056

    Article  CAS  PubMed  Google Scholar 

  145. MacDonald AS, Pearce EJ. Cutting edge: polarized Th cell response induction by transferred antigen-pulsed dendritic cells is dependent on IL-4 or IL-12 production by recipient cells. J Immunol. 2002;168(7):3127–30. PubMed PMID: 11907061

    Article  CAS  PubMed  Google Scholar 

  146. Phythian-Adams AT, Cook PC, Lundie RJ, Jones LH, Smith KA, Barr TA, et al. CD11c depletion severely disrupts Th2 induction and development in vivo. J Exp Med. 2010;207(10):2089–96. https://doi.org/10.1084/jem.20100734. PubMed PMID: 20819926; PubMed Central PMCID: PMCPMC2947067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  147. Masure D, Vlaminck J, Wang T, Chiers K, Van den Broeck W, Vercruysse J, et al. A role for eosinophils in the intestinal immunity against infective Ascaris suum larvae. PLoS Negl Trop Dis. 2013;7(3):e2138. https://doi.org/10.1371/journal.pntd.0002138. PubMed PMID: 23556022; PubMed Central PMCID: PMCPMC3605247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Rosenberg HF, Phipps S, Foster PS. Eosinophil trafficking in allergy and asthma. J Allergy Clin Immunol. 2007;119(6):1303–10. https://doi.org/10.1016/j.jaci.2007.03.048. quiz 11-2; PubMed PMID: 17481712

    Article  CAS  PubMed  Google Scholar 

  149. Malik A, Batra JK. Antimicrobial activity of human eosinophil granule proteins: involvement in host defence against pathogens. Crit Rev Microbiol. 2012;38(2):168–81. https://doi.org/10.3109/1040841X.2011.645519. PubMed PMID: 22239733

    Article  CAS  PubMed  Google Scholar 

  150. Ronéus O. Studies on the aetiology and pathogenesis of white spots in the liver of pigs. Acta Vet Scand. 1966;7(Suppl 16):1–112. PubMed PMID: 5949007

    Google Scholar 

  151. Javid G, Wani NA, Gulzar GM, Khan BA, Shah AH, Shah OJ, et al. Ascaris-induced liver abscess. World J Surg. 1999;23(11):1191–4. PubMed PMID: 10501884

    Article  CAS  PubMed  Google Scholar 

  152. Pérez J, García PM, Mozos E, Bautista MJ, Carrasco L. Immunohistochemical characterization of hepatic lesions associated with migrating larvae of Ascaris suum in pigs. J Comp Pathol. 2001;124(2–3):200–6. https://doi.org/10.1053/jcpa.2000.0455. PubMed PMID: 11222018

    Article  PubMed  Google Scholar 

  153. Jenne CN, Kubes P. Immune surveillance by the liver. Nat Immunol. 2013;14(10):996–1006. https://doi.org/10.1038/ni.2691. PubMed PMID: 24048121

    Article  CAS  PubMed  Google Scholar 

  154. Bertolino P, Bowen DG. Malaria and the liver: immunological hide-and-seek or subversion of immunity from within? Front Microbiol. 2015;6:41. https://doi.org/10.3389/fmicb.2015.00041. PubMed PMID: 25741320; PubMed Central PMCID: PMCPMC4332352

    PubMed Central  PubMed  Google Scholar 

  155. Nogueira DS, Gazzinelli-Guimarães PH, Barbosa FS, Resende NM, Silva CC, de Oliveira LM, et al. Multiple exposures to Ascaris suum induce tissue injury and mixed Th2/Th17 immune response in mice. PLoS Negl Trop Dis. 2016;10(1):e0004382. https://doi.org/10.1371/journal.pntd.0004382. PubMed PMID: 26814713; PubMed Central PMCID: PMCPMC4729520

    Article  PubMed Central  PubMed  Google Scholar 

  156. Lewis R, Behnke JM, Cassidy JP, Stafford P, Murray N, Holland CV. The migration of Ascaris suum larvae, and the associated pulmonary inflammatory response in susceptible C57BL/6j and resistant CBA/Ca mice. Parasitology. 2007;134(Pt 9):1301–14. https://doi.org/10.1017/S0031182007002582. PubMed PMID: 17381887

    Article  CAS  PubMed  Google Scholar 

  157. Gazzinelli-Guimarães PH, Gazzinelli-Guimarães AC, Silva FN, Mati VL, Dhom-Lemos LC, Barbosa FS, et al. Parasitological and immunological aspects of early Ascaris spp. infection in mice. Int J Parasitol. 2013;43(9):697–706. https://doi.org/10.1016/j.ijpara.2013.02.009. PubMed PMID: 23665127

    Article  PubMed  CAS  Google Scholar 

  158. Enobe CS, Araújo CA, Perini A, Martins MA, Macedo MS, Macedo-Soares MF. Early stages of Ascaris suum induce airway inflammation and hyperreactivity in a mouse model. Parasite Immunol. 2006;28(9):453–61. https://doi.org/10.1111/j.1365-3024.2006.00892.x. PubMed PMID: 16916369

    Article  CAS  PubMed  Google Scholar 

  159. Hagel I, Lynch NR, Di Prisco MC, Rojas E, Pérez M, Alvarez N. Ascaris reinfection of slum children: relation with the IgE response. Clin Exp Immunol. 1993;94(1):80–3. PubMed PMID: 8403522; PubMed Central PMCID: PMCPMC1534372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  160. Paterson JC, Garside P, Kennedy MW, Lawrence CE. Modulation of a heterologous immune response by the products of Ascaris suum. Infect Immun. 2002;70(11):6058–67. PubMed PMID: 12379682; PubMed Central PMCID: PMCPMC130290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Gounni AS, Lamkhioued B, Ochiai K, Tanaka Y, Delaporte E, Capron A, et al. High-affinity IgE receptor on eosinophils is involved in defence against parasites. Nature. 1994;367(6459):183–6. https://doi.org/10.1038/367183a0. PubMed PMID: 8114916

    Article  CAS  PubMed  Google Scholar 

  162. Palmer DR, Hall A, Haque R, Anwar KS. Antibody isotype responses to antigens of Ascaris lumbricoides in a case-control study of persistently heavily infected Bangladeshi children. Parasitology. 1995;111(Pt 3):385–93. PubMed PMID: 7567106

    Article  PubMed  Google Scholar 

  163. Miquel N, Roepstorff A, Bailey M, Eriksen L. Host immune reactions and worm kinetics during the expulsion of Ascaris suum in pigs. Parasite Immunol. 2005;27(3):79–88. https://doi.org/10.1111/j.1365-3024.2005.00752.x. PubMed PMID: 15882234

    Article  CAS  PubMed  Google Scholar 

  164. Mantis NJ, Rol N, Corthésy B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 2011;4(6):603–11. https://doi.org/10.1038/mi.2011.41. PubMed PMID: 21975936; PubMed Central PMCID: PMCPMC3774538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Turner JD, Faulkner H, Kamgno J, Cormont F, Van Snick J, Else KJ, et al. Th2 cytokines are associated with reduced worm burdens in a human intestinal helminth infection. J Infect Dis. 2003;188(11):1768–75. https://doi.org/10.1086/379370. PubMed PMID: 14639550

    Article  CAS  PubMed  Google Scholar 

  166. Cooper PJ, Chico ME, Sandoval C, Espinel I, Guevara A, Kennedy MW, et al. Human infection with Ascaris lumbricoides is associated with a polarized cytokine response. J Infect Dis. 2000;182(4):1207–13. https://doi.org/10.1086/315830. PubMed PMID: 10979919

    Article  CAS  PubMed  Google Scholar 

  167. Anthony RM, Rutitzky LI, Urban JF, Stadecker MJ, Gause WC. Protective immune mechanisms in helminth infection. Nat Rev Immunol. 2007;7(12):975–87. https://doi.org/10.1038/nri2199. PubMed PMID: 18007680; PubMed Central PMCID: PMCPMC2258092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  168. Chen D, Luo X, Xie H, Gao Z, Fang H, Huang J. Characteristics of IL-17 induction by Schistosoma japonicum infection in C57BL/6 mouse liver. Immunology. 2013;139(4):523–32. https://doi.org/10.1111/imm.12105. PubMed PMID: 23551262; PubMed Central PMCID: PMCPMC3719069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  169. Matera G, Giancotti A, Scalise S, Pulicari MC, Maselli R, Piizzi C, et al. Ascaris lumbricoides-induced suppression of total and specific IgE responses in atopic subjects is interleukin 10-independent and associated with an increase of CD25(+) cells. Diagn Microbiol Infect Dis. 2008;62(3):280–6. https://doi.org/10.1016/j.diagmicrobio.2008.06.015. PubMed PMID: 18801637

    Article  CAS  PubMed  Google Scholar 

  170. Nascimento WC, Silva RP, Fernandes ES, Silva MC, Holanda GC, Santos PA, et al. Immunomodulation of liver injury by Ascaris suum extract in an experimental model of autoimmune hepatitis. Parasitol Res. 2014;113(9):3309–17. https://doi.org/10.1007/s00436-014-3994-6. PubMed PMID: 24951170

    Article  PubMed  Google Scholar 

  171. Couper KN, Blount DG, Riley EM. IL-10: the master regulator of immunity to infection. J Immunol. 2008;180(9):5771–7. PubMed PMID: 18424693

    Article  CAS  PubMed  Google Scholar 

  172. Reina Ortiz M, Schreiber F, Benitez S, Broncano N, Chico ME, Vaca M, et al. Effects of chronic ascariasis and trichuriasis on cytokine production and gene expression in human blood: a cross-sectional study. PLoS Negl Trop Dis. 2011;5(6):e1157. https://doi.org/10.1371/journal.pntd.0001157. PubMed PMID: 21666788; PubMed Central PMCID: PMCPMC3110165

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  173. Hewitson JP, Maizels RM. Vaccination against helminth parasite infections. Expert Rev Vaccines. 2014;13(4):473–87. https://doi.org/10.1586/14760584.2014.893195. PubMed PMID: 24606541

    Article  CAS  PubMed  Google Scholar 

  174. Oshiro TM, Rafael A, Enobe CS, Fernandes I, Macedo-Soares MF. Comparison of different monoclonal antibodies against immunosuppressive proteins of Ascaris suum. Braz J Med Biol Res. 2004;37(2):223–6. PubMed PMID: 14762577

    Article  CAS  PubMed  Google Scholar 

  175. Nikolay B, Brooker SJ, Pullan RL. Sensitivity of diagnostic tests for human soil-transmitted helminth infections: a meta-analysis in the absence of a true gold standard. Int J Parasitol. 2014;44(11):765–74. https://doi.org/10.1016/j.ijpara.2014.05.009. PubMed PMID: 24992655; PubMed Central PMCID: PMCPMC4186778

    Article  PubMed Central  PubMed  Google Scholar 

  176. WHO. Bench aids for the diagnosis of intestinal parasites. Geneva: World Health Organization; 1994.

    Google Scholar 

  177. Katz N, Chaves A, Pellegrino J. A simple device for quantitative stool thick-smear technique in Schistosomiasis mansoni. Rev Inst Med Trop Sao Paulo. 1972;14(6):397–400. PubMed PMID: 4675644

    CAS  PubMed  Google Scholar 

  178. Levecke B, Behnke JM, Ajjampur SS, Albonico M, Ame SM, Charlier J, et al. A comparison of the sensitivity and fecal egg counts of the McMaster egg counting and Kato-Katz thick smear methods for soil-transmitted helminths. PLoS Negl Trop Dis. 2011;5(6):e1201. https://doi.org/10.1371/journal.pntd.0001201. PubMed PMID: 21695104; PubMed Central PMCID: PMCPMC3114752

    Article  PubMed Central  PubMed  Google Scholar 

  179. WHO. In: WHO/CDS/IPI, editor. Bench Aids for the diagnosis of intestinal helminths. Geneva: World Health Organization; 1992.

    Google Scholar 

  180. WHO. Basic laboratory methods in medical parasitology. Geneva: World Health Organization; 1991.

    Google Scholar 

  181. Engels D, Nahimana S, De Vlas SJ, Gryseels B. Variation in weight of stool samples prepared by the Kato-Katz method and its implications. Trop Med Int Health. 1997;2(3):265–71. PubMed PMID: 9491106

    Article  CAS  PubMed  Google Scholar 

  182. Crompton D. Ascaris lumbricoides. In: Scott M, Smith G, editors. Parasitic and infectious diseases. London and New York: Academic; 1994. p. 175–96.

    Google Scholar 

  183. Hall A. Quantitative variability of nematode egg counts in faeces: a study among rural Kenyans. Trans R Soc Trop Med Hyg. 1981;75(5):682–7. PubMed PMID: 7330922

    Article  CAS  PubMed  Google Scholar 

  184. Walker M, Hall A, Anderson RM, Basáñez MG. Density-dependent effects on the weight of female Ascaris lumbricoides infections of humans and its impact on patterns of egg production. Parasit Vectors. 2009;2(1):11. https://doi.org/10.1186/1756-3305-2-11. PubMed PMID: 19208229; PubMed Central PMCID: PMCPMC2672930

    Article  PubMed Central  PubMed  Google Scholar 

  185. Kotze AC, Kopp SR. The potential impact of density dependent fecundity on the use of the faecal egg count reduction test for detecting drug resistance in human hookworms. PLoS Negl Trop Dis. 2008;2(10):e297. https://doi.org/10.1371/journal.pntd.0000297. PubMed PMID: 18827883; PubMed Central PMCID: PMCPMC2553282

    Article  PubMed Central  PubMed  Google Scholar 

  186. Guyatt HL, Bundy DA, Medley GF, Grenfell BT. The relationship between the frequency distribution of Ascaris lumbricoides and the prevalence and intensity of infection in human communities. Parasitology. 1990;101(Pt 1):139–43. PubMed PMID: 2235069

    Article  PubMed  Google Scholar 

  187. Goodman D, Haji HJ, Bickle QD, Stoltzfus RJ, Tielsch JM, Ramsan M, et al. A comparison of methods for detecting the eggs of Ascaris, Trichuris, and hookworm in infant stool, and the epidemiology of infection in Zanzibari infants. Am J Trop Med Hyg. 2007;76(4):725–31. PubMed PMID: 17426179

    PubMed  Google Scholar 

  188. Ritchie LS. An ether sedimentation technique for routine stool examinations. Bull US Army Med Dep. 1948;8(4):326. PubMed PMID: 18911509

    CAS  Google Scholar 

  189. Garcia L. Diagnostic medical parasitology. Herndon, VA: American Society for Microbiology; 2007.

    Google Scholar 

  190. Cringoli G, Rinaldi L, Maurelli MP, Utzinger J. FLOTAC: new multivalent techniques for qualitative and quantitative copromicroscopic diagnosis of parasites in animals and humans. Nat Protoc. 2010;5(3):503–15. https://doi.org/10.1038/nprot.2009.235. PubMed PMID: 20203667

    Article  CAS  PubMed  Google Scholar 

  191. Barda B, Cajal P, Villagran E, Cimino R, Juarez M, Krolewiecki A, et al. Mini-FLOTAC, Kato-Katz and McMaster: three methods, one goal; highlights from north Argentina. Parasit Vectors. 2014;7:271. https://doi.org/10.1186/1756-3305-7-271. PubMed PMID: 24929554; PubMed Central PMCID: PMCPMC4074144

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  192. Levecke B, De Wilde N, Vandenhoute E, Vercruysse J. Field validity and feasibility of four techniques for the detection of Trichuris in simians: a model for monitoring drug efficacy in public health? PLoS Negl Trop Dis. 2009;3(1):e366. https://doi.org/10.1371/journal.pntd.0000366. PubMed PMID: 19172171; PubMed Central PMCID: PMCPMC2621347

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  193. Maurelli MP, Rinaldi L, Alfano S, Pepe P, Coles GC, Cringoli G. Mini-FLOTAC, a new tool for copromicroscopic diagnosis of common intestinal nematodes in dogs. Parasit Vectors. 2014;7:356. https://doi.org/10.1186/1756-3305-7-356. PubMed PMID: 25095701; PubMed Central PMCID: PMCPMC4262189

    Article  PubMed Central  PubMed  Google Scholar 

  194. Das CJ, Kumar J, Debnath J, Chaudhry A. Imaging of ascariasis. Australas Radiol. 2007;51(6):500–6. https://doi.org/10.1111/j.1440-1673.2007.01887.x. PubMed PMID: 17958683

    Article  CAS  PubMed  Google Scholar 

  195. Wu S. Sonographic findings of Ascaris lumbricoides in the gastrointestinal and biliary tracts. Ultrasound Q. 2009;25(4):207–9. https://doi.org/10.1097/RUQ.0b013e3181c47a2d. PubMed PMID: 19956053

    Article  PubMed  Google Scholar 

  196. Hall A, Romanova T. Ascaris lumbricoides: detecting its metabolites in the urine of infected people using gas-liquid chromatography. Exp Parasitol. 1990;70(1):35–42. PubMed PMID: 2295325

    Article  CAS  PubMed  Google Scholar 

  197. Basuni M, Muhi J, Othman N, Verweij JJ, Ahmad M, Miswan N, et al. A pentaplex real-time polymerase chain reaction assay for detection of four species of soil-transmitted helminths. Am J Trop Med Hyg. 2011;84(2):338–43. https://doi.org/10.4269/ajtmh.2011.10-0499. PubMed PMID: 21292911; PubMed Central PMCID: PMCPMC3029194

    Article  PubMed Central  PubMed  Google Scholar 

  198. Taniuchi M, Verweij JJ, Noor Z, Sobuz SU, Lieshout L, Petri WA, et al. High throughput multiplex PCR and probe-based detection with Luminex beads for seven intestinal parasites. Am J Trop Med Hyg. 2011;84(2):332–7. https://doi.org/10.4269/ajtmh.2011.10-0461. PubMed PMID: 21292910; PubMed Central PMCID: PMCPMC3029193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  199. Chatterjee BP, Santra A, Karmakar PR, Mazumder DN. Evaluation of IgG4 response in ascariasis by ELISA for serodiagnosis. Trop Med Int Health. 1996;1(5):633–9. PubMed PMID: 8911447

    Article  CAS  PubMed  Google Scholar 

  200. Needham CS, Lillywhite JE, Beasley NM, Didier JM, Kihamia CM, Bundy DA. Potential for diagnosis of intestinal nematode infections through antibody detection in saliva. Trans R Soc Trop Med Hyg. 1996;90(5):526–30. PubMed PMID: 8944263

    Article  CAS  PubMed  Google Scholar 

  201. WHO. WHO model lists of essential medicines. Geneva: WHO; 2015.

    Google Scholar 

  202. WHO. WHO model lists of essential medicines for children. Geneva: WHO; 2015.

    Google Scholar 

  203. Lustigman S, Prichard RK, Gazzinelli A, Grant WN, Boatin BA, McCarthy JS, et al. A research agenda for helminth diseases of humans: the problem of helminthiases. PLoS Negl Trop Dis. 2012;6(4):e1582. https://doi.org/10.1371/journal.pntd.0001582. PubMed PMID: 22545164; PubMed Central PMCID: PMCPMC3335854

    Article  PubMed Central  PubMed  Google Scholar 

  204. Basáñez MG, Pion SD, Churcher TS, Breitling LP, Little MP, Boussinesq M. River blindness: a success story under threat? PLoS Med. 2006;3(9):e371. https://doi.org/10.1371/journal.pmed.0030371. PubMed PMID: 17002504; PubMed Central PMCID: PMCPMC1576321

    Article  PubMed Central  PubMed  Google Scholar 

  205. Lacey E. Mode of action of benzimidazoles. Parasitol Today. 1990;6(4):112–5. PubMed PMID: 15463312

    Article  CAS  PubMed  Google Scholar 

  206. Robertson AP, Bjørn HE, Martin RJ. Pyrantel resistance alters nematode nicotinic acetylcholine receptor single-channel properties. Eur J Pharmacol. 2000;394(1):1–8. PubMed PMID: 10771027

    Article  CAS  PubMed  Google Scholar 

  207. Bennett A, Guyatt H. Reducing intestinal nematode infection: efficacy of albendazole and mebendazole. Parasitol Today. 2000;16(2):71–4. PubMed PMID: 10652492

    Article  CAS  PubMed  Google Scholar 

  208. Vercruysse J, Albonico M, Behnke JM, Kotze AC, Prichard RK, McCarthy JS, et al. Is anthelmintic resistance a concern for the control of human soil-transmitted helminths? Int J Parasitol Drugs Drug Resist. 2011;1(1):14–27. https://doi.org/10.1016/j.ijpddr.2011.09.002. PubMed PMID: 24533260; PubMed Central PMCID: PMCPMC3913213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  209. Kwa MS, Veenstra JG, Roos MH. Benzimidazole resistance in Haemonchus contortus is correlated with a conserved mutation at amino acid 200 in beta-tubulin isotype 1. Mol Biochem Parasitol. 1994;63(2):299–303. PubMed PMID: 7911975

    Article  CAS  PubMed  Google Scholar 

  210. Silvestre A, Cabaret J. Mutation in position 167 of isotype 1 beta-tubulin gene of Trichostrongylid nematodes: role in benzimidazole resistance? Mol Biochem Parasitol. 2002;120(2):297–300. PubMed PMID: 11897135

    Article  CAS  PubMed  Google Scholar 

  211. Ghisi M, Kaminsky R, Mäser P. Phenotyping and genotyping of Haemonchus contortus isolates reveals a new putative candidate mutation for benzimidazole resistance in nematodes. Vet Parasitol. 2007;144(3–4):313–20. https://doi.org/10.1016/j.vetpar.2006.10.003. PubMed PMID: 17101226

    Article  CAS  PubMed  Google Scholar 

  212. Barrère V, Alvarez L, Suarez G, Ceballos L, Moreno L, Lanusse C, et al. Relationship between increased albendazole systemic exposure and changes in single nucleotide polymorphisms on the β-tubulin isotype 1 encoding gene in Haemonchus contortus. Vet Parasitol. 2012;186(3–4):344–9. https://doi.org/10.1016/j.vetpar.2011.11.068. PubMed PMID: 22192770

    Article  PubMed  CAS  Google Scholar 

  213. Prichard R. Genetic variability following selection of Haemonchus contortus with anthelmintics. Trends Parasitol. 2001;17(9):445–53. PubMed PMID: 11530357

    Article  CAS  PubMed  Google Scholar 

  214. Diawara A, Halpenny CM, Churcher TS, Mwandawiro C, Kihara J, Kaplan RM, et al. Association between response to albendazole treatment and β-tubulin genotype frequencies in soil-transmitted helminths. PLoS Negl Trop Dis. 2013;7(5):e2247. https://doi.org/10.1371/journal.pntd.0002247. PubMed PMID: 23738029; PubMed Central PMCID: PMCPMC3667785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  215. Diawara A, Drake LJ, Suswillo RR, Kihara J, Bundy DA, Scott ME, et al. Assays to detect beta-tubulin codon 200 polymorphism in Trichuris trichiura and Ascaris lumbricoides. PLoS Negl Trop Dis. 2009;3(3):e397. https://doi.org/10.1371/journal.pntd.0000397. PubMed PMID: 19308251; PubMed Central PMCID: PMCPMC2654341

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  216. Elias D, Wolday D, Akuffo H, Petros B, Bronner U, Britton S. Effect of deworming on human T cell responses to mycobacterial antigens in helminth-exposed individuals before and after bacille Calmette-Guérin (BCG) vaccination. Clin Exp Immunol. 2001;123(2):219–25. PubMed PMID: 11207651; PubMed Central PMCID: PMCPMC1905995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  217. Cooper PJ, Espinel I, Paredes W, Guderian RH, Nutman TB. Impaired tetanus-specific cellular and humoral responses following tetanus vaccination in human onchocerciasis: a possible role for interleukin-10. J Infect Dis. 1998;178(4):1133–8. PubMed PMID: 9806045

    Article  CAS  PubMed  Google Scholar 

  218. Sabin EA, Araujo MI, Carvalho EM, Pearce EJ. Impairment of tetanus toxoid-specific Th1-like immune responses in humans infected with Schistosoma mansoni. J Infect Dis. 1996;173(1):269–72. PubMed PMID: 8537675

    Article  CAS  PubMed  Google Scholar 

  219. Cooper PJ, Chico M, Sandoval C, Espinel I, Guevara A, Levine MM, et al. Human infection with Ascaris lumbricoides is associated with suppression of the interleukin-2 response to recombinant cholera toxin B subunit following vaccination with the live oral cholera vaccine CVD 103-HgR. Infect Immun. 2001;69(3):1574–80. https://doi.org/10.1128/IAI.69.3.1574-1580.2001. PubMed PMID: 11179329; PubMed Central PMCID: PMCPMC98058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  220. Fox JG, Beck P, Dangler CA, Whary MT, Wang TC, Shi HN, et al. Concurrent enteric helminth infection modulates inflammation and gastric immune responses and reduces helicobacter-induced gastric atrophy. Nat Med. 2000;6(5):536–42. https://doi.org/10.1038/75015. PubMed PMID: 10802709

    Article  CAS  PubMed  Google Scholar 

  221. Kullberg MC, Pearce EJ, Hieny SE, Sher A, Berzofsky JA. Infection with Schistosoma mansoni alters Th1/Th2 cytokine responses to a non-parasite antigen. J Immunol. 1992;148(10):3264–70. PubMed PMID: 1533656

    CAS  PubMed  Google Scholar 

  222. Actor JK, Shirai M, Kullberg MC, Buller RM, Sher A, Berzofsky JA. Helminth infection results in decreased virus-specific CD8+ cytotoxic T-cell and Th1 cytokine responses as well as delayed virus clearance. Proc Natl Acad Sci USA. 1993;90(3):948–52. PubMed PMID: 8094248; PubMed Central PMCID: PMCPMC45787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  223. Abanyie F, Lamb TJ. Implications of Ascaris co-infection. In: Holland C, editor. Ascaris: the neglected parasite; 2013.

    Google Scholar 

  224. Modjarrad K, Zulu I, Redden DT, Njobvu L, Lane HC, Bentwich Z, et al. Treatment of intestinal helminths does not reduce plasma concentrations of HIV-1 RNA in coinfected Zambian adults. J Infect Dis. 2005;192(7):1277–83. https://doi.org/10.1086/444543. PubMed PMID: 16136473; PubMed Central PMCID: PMCPMC2730764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  225. Elliott AM, Mawa PA, Joseph S, Namujju PB, Kizza M, Nakiyingi JS, et al. Associations between helminth infection and CD4+ T cell count, viral load and cytokine responses in HIV-1-infected Ugandan adults. Trans R Soc Trop Med Hyg. 2003;97(1):103–8. PubMed PMID: 12886815

    Article  PubMed  Google Scholar 

  226. Abossie A, Petros B. Deworming and the immune status of HIV positive pre-antiretroviral therapy individuals in Arba Minch, Chencha and Gidole hospitals, Southern Ethiopia. BMC Res Notes. 2015;8:483. https://doi.org/10.1186/s13104-015-1461-9. PubMed PMID: 26415705; PubMed Central PMCID: PMCPMC4585997

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  227. Walson JL, Otieno PA, Mbuchi M, Richardson BA, Lohman-Payne B, Macharia SW, et al. Albendazole treatment of HIV-1 and helminth co-infection: a randomized, double-blind, placebo-controlled trial. AIDS. 2008;22(13):1601–9. https://doi.org/10.1097/QAD.0b013e32830a502e. PubMed PMID: 18670219; PubMed Central PMCID: PMCPMC2637615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  228. Wolday D, Mayaan S, Mariam ZG, Berhe N, Seboxa T, Britton S, et al. Treatment of intestinal worms is associated with decreased HIV plasma viral load. J Acquir Immune Defic Syndr. 2002;31(1):56–62. PubMed PMID: 12352151

    Article  CAS  PubMed  Google Scholar 

  229. Chachage M, Podola L, Clowes P, Nsojo A, Bauer A, Mgaya O, et al. Helminth-associated systemic immune activation and HIV co-receptor expression: response to albendazole/praziquantel treatment. PLoS Negl Trop Dis. 2014;8(3):e2755. https://doi.org/10.1371/journal.pntd.0002755. PubMed PMID: 24675895; PubMed Central PMCID: PMCPMC3967945

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  230. Bentwich Z, Kalinkovich A, Weisman Z. Immune activation is a dominant factor in the pathogenesis of African AIDS. Immunol Today. 1995;16(4):187–91. PubMed PMID: 7734046

    Article  CAS  PubMed  Google Scholar 

  231. Nacher M. Interactions between worms and malaria: good worms or bad worms? Malar J. 2011;10:259. https://doi.org/10.1186/1475-2875-10-259. PubMed PMID: 21910854; PubMed Central PMCID: PMCPMC3192711

    Article  PubMed Central  PubMed  Google Scholar 

  232. Kirwan P, Jackson AL, Asaolu SO, Molloy SF, Abiona TC, Bruce MC, et al. Impact of repeated four-monthly anthelmintic treatment on Plasmodium infection in preschool children: a double-blind placebo-controlled randomized trial. BMC Infect Dis. 2010;10:277. https://doi.org/10.1186/1471-2334-10-277. PubMed PMID: 20858280; PubMed Central PMCID: PMCPMC3161357

    Article  PubMed Central  PubMed  Google Scholar 

  233. Brutus L, Watier L, Briand V, Hanitrasoamampionona V, Razanatsoarilala H, Cot M. Parasitic co-infections: does Ascaris lumbricoides protect against Plasmodium falciparum infection? Am J Trop Med Hyg. 2006;75(2):194–8. PubMed PMID: 16896118

    PubMed  Google Scholar 

  234. Wammes LJ, Hamid F, Wiria AE, de Gier B, Sartono E, Maizels RM, et al. Regulatory T cells in human geohelminth infection suppress immune responses to BCG and Plasmodium falciparum. Eur J Immunol. 2010;40(2):437–42. https://doi.org/10.1002/eji.200939699. PubMed PMID: 20063313

    Article  CAS  PubMed  Google Scholar 

  235. Hartgers FC, Obeng BB, Kruize YC, Dijkhuis A, McCall M, Sauerwein RW, et al. Responses to malarial antigens are altered in helminth-infected children. J Infect Dis. 2009;199(10):1528–35. https://doi.org/10.1086/598687. PubMed PMID: 19392626

    Article  CAS  PubMed  Google Scholar 

  236. Nacher M. Worms and malaria: noisy nuisances and silent benefits. Parasite Immunol. 2002;24(7):391–3. PubMed PMID: 12164826

    Article  PubMed  Google Scholar 

  237. Nacher M, Singhasivanon P, Silachamroon U, Treeprasertsu S, Krudsood S, Gay F, et al. Association of helminth infections with increased gametocyte carriage during mild falciparum malaria in Thailand. Am J Trop Med Hyg. 2001;65(5):644–7. PubMed PMID: 11716129

    Article  CAS  PubMed  Google Scholar 

  238. Nacher M, Singhasivanon P, Gay F, Silachomroon U, Phumratanaprapin W, Looareesuwan S. Contemporaneous and successive mixed Plasmodium falciparum and Plasmodium vivax infections are associated with Ascaris lumbricoides: an immunomodulating effect? J Parasitol. 2001;87(4):912–5. https://doi.org/10.1645/0022-3395(2001)087[0912:CASMPF]2.0.CO;2. PubMed PMID: 11534659

    Article  CAS  PubMed  Google Scholar 

  239. Cooper PJ, Chico ME, Rodrigues LC, Ordonez M, Strachan D, Griffin GE, et al. Reduced risk of atopy among school-age children infected with geohelminth parasites in a rural area of the tropics. J Allergy Clin Immunol. 2003;111(5):995–1000. PubMed PMID: 12743563

    Article  PubMed  Google Scholar 

  240. Scrivener S, Yemaneberhan H, Zebenigus M, Tilahun D, Girma S, Ali S, et al. Independent effects of intestinal parasite infection and domestic allergen exposure on risk of wheeze in Ethiopia: a nested case-control study. Lancet. 2001;358(9292):1493–9. https://doi.org/10.1016/S0140-6736(01)06579-5. PubMed PMID: 11705561

    Article  CAS  PubMed  Google Scholar 

  241. Palmer LJ, Celedón JC, Weiss ST, Wang B, Fang Z, Xu X. Ascaris lumbricoides infection is associated with increased risk of childhood asthma and atopy in rural China. Am J Respir Crit Care Med. 2002;165(11):1489–93. https://doi.org/10.1164/rccm.2107020. PubMed PMID: 12045121

    Article  PubMed  Google Scholar 

  242. Buendía E, Zakzuk J, Mercado D, Alvarez A, Caraballo L. The IgE response to Ascaris molecular components is associated with clinical indicators of asthma severity. World Allergy Organ J. 2015;8(1):8. https://doi.org/10.1186/s40413-015-0058-z. PubMed PMID: 25780492; PubMed Central PMCID: PMCPMC4347909

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  243. Cooper PJ. Interactions between helminth parasites and allergy. Curr Opin Allergy Clin Immunol. 2009;9(1):29–37. https://doi.org/10.1097/ACI.0b013e32831f44a6. PubMed PMID: 19106698; PubMed Central PMCID: PMCPMC2680069

    Article  PubMed Central  PubMed  Google Scholar 

  244. Hunninghake GM, Soto-Quiros ME, Avila L, Ly NP, Liang C, Sylvia JS, et al. Sensitization to Ascaris lumbricoides and severity of childhood asthma in Costa Rica. J Allergy Clin Immunol. 2007;119(3):654–61. https://doi.org/10.1016/j.jaci.2006.12.609. PubMed PMID: 17336615

    Article  PubMed  Google Scholar 

  245. Takeuchi H, Zaman K, Takahashi J, Yunus M, Chowdhury HR, Arifeen SE, et al. High titre of anti-Ascaris immunoglobulin E associated with bronchial asthma symptoms in 5-year-old rural Bangladeshi children. Clin Exp Allergy. 2008;38(2):276–82. https://doi.org/10.1111/j.1365-2222.2007.02890.x. PubMed PMID: 18070165

    Article  CAS  PubMed  Google Scholar 

  246. Hawlader MD, Ma E, Noguchi E, Itoh M, Arifeen SE, Persson L, et al. Ascaris lumbricoides infection as a risk factor for asthma and atopy in rural Bangladeshi children. Trop Med Health. 2014;42(2):77–85. https://doi.org/10.2149/tmh.2013-19. PubMed PMID: 25237284; PubMed Central PMCID: PMCPMC4139537

    Article  PubMed Central  PubMed  Google Scholar 

  247. Takeuchi H, Khan AF, Yunus M, Hasan MI, Hawlader MD, Takanashi S, et al. Anti-Ascaris immunoglobulin E associated with bronchial hyper-reactivity in 9-year-old rural Bangladeshi children. Allergol Int. 2016;65(2):141–6. https://doi.org/10.1016/j.alit.2015.07.002. PubMed PMID: 26666493

    Article  CAS  PubMed  Google Scholar 

  248. WHO. Prevention and control of schistosomiasis and soil-transmitted helminthiasis. Geneva: World Health Organization; 2002.

    Google Scholar 

  249. Kirwan P, Asaolu SO, Abiona TC, Jackson AL, Smith HV, Holland CV. Soil-transmitted helminth infections in Nigerian children aged 0-25 months. J Helminthol. 2009;83(3):261–6. https://doi.org/10.1017/S0022149X08201252. PubMed PMID: 19356265

    Article  CAS  PubMed  Google Scholar 

  250. Urban JF, Tromba FG. An ultraviolet-attenuated egg vaccine for swine ascariasis: parameters affecting the development of protective immunity. Am J Vet Res. 1984;45(10):2104–8. PubMed PMID: 6497109

    PubMed  Google Scholar 

  251. Zhan B, Beaumier CM, Briggs N, Jones KM, Keegan BP, Bottazzi ME, et al. Advancing a multivalent ‘Pan-anthelmintic’ vaccine against soil-transmitted nematode infections. Expert Rev Vaccines. 2014;13(3):321–31. https://doi.org/10.1586/14760584.2014.872035. PubMed PMID: 24392641; PubMed Central PMCID: PMCPMC3934375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  252. Montresor A, Gabrielli AF, Savioli L. Approaches to control of STHs including Ascariasis. In: Holland C, editor. Ascaris: the neglected parasite. Amsterdam: Elsevier; 2013. p. 383–93.

    Chapter  Google Scholar 

  253. Esrey SA, Potash JB, Roberts L, Shiff C. Effects of improved water supply and sanitation on ascariasis, diarrhoea, dracunculiasis, hookworm infection, schistosomiasis, and trachoma. Bull World Health Organ. 1991;69(5):609–21. PubMed PMID: 1835675; PubMed Central PMCID: PMCPMC2393264

    CAS  PubMed Central  PubMed  Google Scholar 

  254. Albonico M, Crompton DW, Savioli L. Control strategies for human intestinal nematode infections. Adv Parasitol. 1999;42:277–341. PubMed PMID: 10050275

    Article  CAS  PubMed  Google Scholar 

  255. Hollingsworth TD, Truscott JE, Anderson RM. Chapter 9—transmission dynamics of Ascaris lumbricoides—theory and observation A2—Holland, Celia. Ascaris: the neglected parasite. Amsterdam: Elsevier; 2013. p. 231–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwendoline Deslyper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deslyper, G., Holland, C.V. (2017). Overview on Ascariasis in Humans in South Asia. In: Singh, S. (eds) Neglected Tropical Diseases - South Asia. Neglected Tropical Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-68493-2_3

Download citation

Publish with us

Policies and ethics