Skip to main content

The Primate Peripheral Auditory System and the Evolution of Primate Hearing

  • Chapter
  • First Online:
Primate Hearing and Communication

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 63))

Abstract

The primate peripheral auditory organ closely resembles that of other terrestrial mammals. Acoustic communication has an important role in primate communities, and hearing characteristics are well-known for several species. In this chapter, morphological variation of the primate outer, middle, and inner ears is reviewed and is related to auditory data known from experimental work. Differences can be discerned among various primate groups, the greatest differences being between small, mainly nocturnal strepsirrhines and larger, mainly diurnal haplorhines. The evolutionary history of primate hearing is discussed in relation to different hypotheses of primate origins with the view that, as in the earliest mammals, the earliest primates were nocturnal and had good high-frequency hearing. Increased sensitivity to lower frequencies evolved later, although relatively early in the history of primates. This was made possible by an elongation of the cochlea and the disappearance of the secondary spiral lamina. The body size and ecology of primates is related to their ear size, and the role of hearing together with other sensory modalities, mainly vision and olfaction, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ahlborn, B. K. (2004). Zoological physics: Quantitative models of body design, actions, and physical limitations of animals. Berlin: Springer Science+Business Media.

    Google Scholar 

  • Allin, E. F., & Hopson, J. A. (1992). Evolution of the auditory system in Synapsida (“Mammal-like reptiles” and primitive mammals) as seen in the fossil record. In D. B. Webster, R. R. Fay, & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 587–614). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Ankel-Simons, F. (2007). Primate anatomy: An introduction (3rd ed.). Burlington, MA: Academic Press.

    Google Scholar 

  • Archibald, J. D., & Rose, K. D. (2005). Womb with a view: The rise of placentals. In K. D. Rose & J. D. Archibald (Eds.), The rise of placental mammals: Origins and relationships of the major extant clades (pp. 1–8). Baltimore, MD: Johns Hopkins University Press.

    Google Scholar 

  • Armstrong, S. D., Block, J. I., Houde, P., & Silcox, M. T. (2011). Cochlear labyrinth volume in euarchontoglirans: Implications for the evolution of hearing in primates. The Anatomical Record, 294, 263–266.

    Article  PubMed  Google Scholar 

  • Basch, M. L., Brown II, R. M., Jen, H.-I., & Groves, A. K. (2016). Where hearing starts: The development of the mammalian cochlea. Journal of Anatomy, 228, 233–254.

    Article  PubMed  Google Scholar 

  • Cartmill, M. (1972). Arboreal adaptations and the origin of the order Primates. In R. Tuttle (Ed.), The functional and evolutionary biology of primates (pp. 97–122). Chicago, IL: Aldine-Atherton.

    Google Scholar 

  • Cartmill, M. (1974). Rethinking primate origins. Science, 184, 436–443.

    Article  CAS  PubMed  Google Scholar 

  • Cartmill, M. (1975). Strepsirhine basicranial structures and the affinities of the Cheirogaleidae. In W. P. Luckett & F. S. Szalay (Eds.), Phylogeny of the primates—A multidisciplinary approach (pp. 313–354). New York: Plenum Press.

    Chapter  Google Scholar 

  • Cartmill, M., MacPhee, R. D. E., & Simons, E. L. (1981). Anatomy of the temporal bone in early anthropoids, with remarks on the problem of anthropoid origins. American Journal of Physical Anthropology, 56, 3–21.

    Article  Google Scholar 

  • Clack, J. A., Fay, R. R., & Popper, A. N. (Eds.). (2016). The evolution of the vertebrate ear—Evidence from the fossil record. New York: Springer International Publishing.

    Google Scholar 

  • Coleman, M. N. (2009). What do primates hear? A meta-analysis of all known non-human primate behavioral audiograms. International Journal of Primatology, 30, 55–91.

    Article  Google Scholar 

  • Coleman, M. N., & Boyer, D. M. (2012). Inner ear evolution in primates through the Cenozoic: Implications for the evolution of hearing. The Anatomical Record, 295, 615–631.

    Article  PubMed  Google Scholar 

  • Coleman, M. N., & Colbert, M. W. (2010). Correlations between auditory structures and hearing sensitivity in non-human primates. Journal of Morphology, 271, 511–532.

    PubMed  Google Scholar 

  • Coleman, M. N., & Ross, C. F. (2004). Primate auditory diversity and its influence on hearing performance. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 281A, 1123–1137.

    Article  Google Scholar 

  • Coleman, M. N., Kay, R. F., & Colbert, M. W. (2010). Auditory morphology and hearing sensitivity in fossil New World monkeys. The Anatomical Record, 293, 1711–1721.

    Article  PubMed  Google Scholar 

  • Cooper, N., & Purvis, A. (2010). Body size evolution in mammals: Complexity in tempo and mode. The American Naturalist, 175, 727–738.

    Article  PubMed  Google Scholar 

  • Dallos, P. (1973). The auditory periphery: Biophysics and physiology. New York: Academic Press.

    Google Scholar 

  • Davis, H. (1960). Physics and psychology of hearing. In H. Davis (Ed.), Hearing and deafness (pp. 29–60). New York: Holt, Rinehart, & Winston.

    Google Scholar 

  • Dominy, N. J., Lucas, P. W., Osorio, D., & Yamashita, N. (2001). The sensory ecology of primate food perception. Evolutionary Anthropology, 10, 171–186.

    Article  Google Scholar 

  • Dominy, N. J., Ross, C. J., & Smith, T. D. (2004). Evolution of the special senses in primates: Past, present, and future. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 281A, 1078–1082.

    Article  Google Scholar 

  • Doran, A. H. G. (1879). Morphology of the mammalian ossicula auditus. The Transactions of the Linnean Society of London. 2nd Series: Zoology, 1, 371–497. + plates 58–64. doi:10.1111/j.1096-3642.1878.tb00663.x.

  • Echteler, S. M., Fay, R. R., & Popper, A. N. (1994). Structure of the mammalian cochlea. In R. R. Fay & A. N. Popper (Eds.), Comparative hearing: Mammals (pp. 134–171). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Ekdale, E. G. (2013). Comparative anatomy of the bony labyrinth (inner ear) of placental mammals. PLoS One, 8(6), e66624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elder, J. H. (1934). Auditory acuity of the chimpanzee. Journal of Comparative Physiology and Psychology, 17, 157–183.

    Article  Google Scholar 

  • Eriksson, O. (2016). Evolution of angiosperm seed disperser mutualisms: The timing of origins and their consequences for coevolutionary interactions between angiosperms and frugivores. Biological Reviews, 91, 168–186.

    Article  PubMed  Google Scholar 

  • Fay, R. R. (1988). Hearing in vertebrates: A psychophysics databook. Winnetka, IL: Hill-Fay Associates.

    Google Scholar 

  • Fleagle, J. G. (2013). Primate adaptation and evolution (3rd ed.). San Diego, CA: Academic Press.

    Google Scholar 

  • Fleischer, G. (1973). Studien am Skelett des Gehörorgans der Säugetiere, einschliesslich des Menschen. Säugetierkundliche Mitteilungen (München), 21, 131–239.

    Google Scholar 

  • Fleischer, G. (1978). Evolutionary principles of the mammalian middle ear. Advances in Anatomy, Embryology, and Cell Biology, 55(5), 1–70.

    Google Scholar 

  • Friedland, D. R. (2006). Structure and function in the auditory system: From cochlea to cortex. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 288A, 326–330.

    Article  Google Scholar 

  • Geisler, C. D. (1998). From sound to synapse. Physiology of the mammalian ear. Oxford: Oxford University Press.

    Google Scholar 

  • Gerkema, M. P., Davies, W. I. L., Foster, R. G., Menaker, M., & Hut, R. A. (2013). The nocturnal bottleneck and the evolution of activity patterns in mammals. Proceedings of the Royal Society of London B: Biological Sciences, 280, 20130508.

    Article  Google Scholar 

  • Godinot, M. (2015). Fossil record of the primates from the Paleocene to the Oligocene. In W. Henke & I. Tattersall (Eds.), Handbook of paleoanthropology (Vol. 2. 2nd ed, pp. 1137–1259). Berlin: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Gonzales, L. A., Benefit, B. R., McCrossin, M. L., & Spoor, F. (2015). Cerebral complexity preceded enlarged brain size and reduced olfactory bulbs in Old World monkeys. Nature Communications, 6, 7580. doi:10.1038/ncomms8580.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gunz, P., Ramsier, M., Kuhrig, M., Hublin, J.-J., & Spoor, F. (2012). The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach. Journal of Anatomy, 220, 529–543.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall, M. I., Kamilar, J. M., & Kirk, E. C. (2012). Eye shape and the nocturnal bottleneck of mammals. Proceedings of the Royal Society of London B: Biological Sciences, 279, 4962–4968.

    Article  Google Scholar 

  • Heesy, C. P., & Hall, M. I. (2010). The nocturnal bottleneck and the evolution of mammalian vision. Brain, Behavior and Evolution, 75, 195–203.

    Article  PubMed  Google Scholar 

  • Heesy, C. P., & Ross, C. F. (2001). Evolution of activity patterns and chromatic vision in primates: Morphometrics, genetics, and cladistics. Journal of Human Evolution, 40, 111–149.

    Article  CAS  PubMed  Google Scholar 

  • Heffner, H. E., & Heffner, R. S. (2008). High-frequency hearing. In P. Dallos & D. Oertel (Eds.), The senses: A comprehensive reference, Audition (Vol. 3, pp. 55–60). San Diego, CA: Academic Press.

    Chapter  Google Scholar 

  • Heffner, H. E., & Heffner, R. S. (2014). The behavioral study of mammalian hearing. In A. N. Popper & R. R. Fay (Eds.), Perspectives on auditory research (pp. 269–285). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Heffner, H. E., & Heffner, R. S. (2016). The evolution of mammalian sound localization. Acoustics Today, 12, 20–27, 35.

    Google Scholar 

  • Heffner, R. S. (2004). Primate hearing from a mammalian perspective. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 281A, 1111–1122.

    Article  Google Scholar 

  • Heffner, R. S., & Heffner, H. E. (1992a). Evolution of sound localization in mammals. In D. B. Webster, R. R. Fay, & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 691–715). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Heffner, R. S., & Heffner, H. E. (1992b). Visual factors in sound localization in mammals. Journal of Comparative Neurology, 317, 219–232.

    Article  CAS  PubMed  Google Scholar 

  • Heffner, R., Heffner, H., & Stichman, N. (1982). Role of the elephant pinna in sound localization. Animal Behaviour, 30, 628–630.

    Article  Google Scholar 

  • Hemilä, S., Nummela, S., & Reuter, T. (1995). What middle ear parameters tell about impedance matching and high frequency hearing. Hearing Research, 85, 31–44.

    Article  PubMed  Google Scholar 

  • Hemilä, S., Nummela, S., & Reuter, T. (2010). Anatomy and physics of the exceptional sensitivity of dolphin hearing (Odontoceti: Cetacea). Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 196, 165–179.

    Article  Google Scholar 

  • Henke, W., & Tattersall, I. (Eds.). (2015). Handbook of paleoanthropology (Vol. 2, 2nd ed.). Berlin: Springer Science+Business Media.

    Google Scholar 

  • Henson, O. W. (1961). Some morphological and functional aspects of certain structures of the middle ear in bats and insectivores. University of Kansas Science Bulletin, 42, 151–255.

    Google Scholar 

  • Henson, O. W. (1974). Comparative anatomy of the middle ear. In W. D. Keidel & W. D. Neff (Eds.), Handbook of sensory physiology, The auditory system (Vol. V/1, pp. 39–110). New York: Springer-Verlag.

    Google Scholar 

  • Hunt Jr., R. M., & Korth, W. W. (1980). The auditory region of Dermoptera: Morphology and function relative to other living mammals. Journal of Morphology, 164, 167–211.

    Article  Google Scholar 

  • Hyrtl, J. (1845). Vergleichend-anatomische Untersuchungen über das innere Gehörorgan des Menschen und der Säugethiere. Prague: Verlag von Friedrich Ehrlich.

    Google Scholar 

  • Jackson, L. S., Heffner, R. S., & Heffner, H. E. (1999). Free-field audiogram of the Japanese macaque (Macaca fuscata). The Journal of the Acoustical Society of America, 106, 3017–3023.

    Article  CAS  PubMed  Google Scholar 

  • Jerison, H. J. (1973). Evolution of the brain and intelligence. New York: Academic Press.

    Google Scholar 

  • Ji, Q., Luo, Z.-X., Zhang, X., Yuan, C.-X., & Xu, L. (2009). Evolutionary development of the middle ear in Mesozoic therian mammals. Science, 326, 278–281.

    Article  CAS  PubMed  Google Scholar 

  • Kay, R. F., Fleagle, J. G., Mitchell, T. R. T., Colbert, M., et al. (2008). The anatomy of Dolichocebus gaimanensis, a stem platyrrhine monkey from Argentina. Journal of Human Evolution, 54, 323–382.

    Article  PubMed  Google Scholar 

  • Kielan-Jaworowska, Z., Cifelli, R. L., & Luo, Z.-X. (2004). Mammals from the age of dinosaurs: Origins, evolution, and structure. New York: Columbia University Press.

    Book  Google Scholar 

  • King, A. J. (1999). Sensory experience and the formation of a computational map of auditory space in the brain. BioEssays, 21, 900–911.

    Article  CAS  PubMed  Google Scholar 

  • Kirk, E. C. (2006). Effects of activity pattern on eye size and orbital aperture size in primates. Journal of Human Evolution, 51, 159–170.

    Article  PubMed  Google Scholar 

  • Kirk, E. C., & Gosselin-Ildari, A. D. (2009). Cochlear labyrinth volume and hearing abilities in primates. The Anatomical Record, 292, 765–776.

    Article  PubMed  Google Scholar 

  • Kirk, E. C., Daghighi, P., Macrini, T. E., Bhullar, B.-A. S., & Rowe, T. B. (2014). Cranial anatomy of the Duchesnean primate Rooneyia viejaensis: New insights from high resolution computed tomography. Journal of Human Evolution, 74, 82–95.

    Article  PubMed  Google Scholar 

  • Köppl, C., Manley, G. A., Popper, A. N., & Fay, R. R. (Eds.). (2014). Insights from comparative hearing research. New York: Springer Nature.

    Google Scholar 

  • Luo, Z.-X., Schultz, J. A., & Ekdale, E. G. (2016). Evolution of the middle and inner ears of Mammaliaforms: The approach to mammals. In J. A. Clack, R. R. Fay, & A. N. Popper (Eds.), The evolution of the vertebrate ear—Evidence from the fossil record (pp. 139–174). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • MacPhee, R. D. E. (1979). Entotympanics, ontogeny, and primates. Folia Primatologica, 31, 23–47.

    Article  CAS  Google Scholar 

  • MacPhee, R. D. E. (1981). Auditory regions of primates and Eutherian insectivores. Contributions to Primatology, 18, 1–282.

    Google Scholar 

  • MacPhee, R. D. E., & Cartmill, M. (1986). Basicranial structures and primate systematics. In D. R. Swindler & J. Erwin (Eds.), Comparative primate biology: Systematics, evolution, and anatomy (Vol. 1, pp. 210–275). New York: Alan R. Liss.

    Google Scholar 

  • Maier, W., & Ruf, I. (2016). Evolution of the mammalian middle ear. Journal of Anatomy, 228, 270–283.

    Article  PubMed  Google Scholar 

  • Manley, G. A. (2014). Fundamentals of hearing in amniote vertebrates. In A. N. Popper & R. R. Fay (Eds.), Perspectives on auditory research (pp. 321–341). New York: Springer Nature.

    Chapter  Google Scholar 

  • Manley, G. A., & Sienknecht, U. J. (2013). The evolution and development of middle ears in vertebrates. In S. Puria, R. R. Fay, & A. N. Popper (Eds.), The middle ear: Science, otosurgery, and technology (pp. 7–30). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Manley, G. A., Popper, A. N., & Fay, R. R. (Eds.) (2004). Evolution of the vertebrate auditory system. New York: Springer Science+Business Media.

    Google Scholar 

  • Manoussaki, D., Dimitriadis, E. K., & Chadwick, R. S. (2006). Cochlea’s graded curvature effect on low frequency waves. Physical Review Letters, 96, 088701.

    Article  CAS  PubMed  Google Scholar 

  • Manoussaki, D., Chadwick, R. S., Ketten, D. R., Arruda, J., et al. (2008). The influence of cochlear shape on low-frequency hearing. Proceedings of the National Academy of Sciences of the United States of America, 105, 6162–6166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, R. D. (2004). Chinese lantern for early primates. Nature, 427, 22–23.

    Article  CAS  PubMed  Google Scholar 

  • Martínez, I., Rosa, M., Arsuaga, J., Jarabo, P., et al. (2004). Auditory capacities in Middle Pleistocene humans from the Sierra de Atapuerca in Spain. Proceedings of the National Academy of Sciences of the United States of America, 101(27), 9976–9981.

    Article  PubMed  PubMed Central  Google Scholar 

  • Masali, M., Borgognini Tarli, S., & Maffei, M. (1992). Auditory ossicles and the evolution of the primate ear: biomechanical approach. In J. Wind, B. Chiarelli, B. Bichakjian, A. Nocentini, & A. Jonker (Eds.), Language origin: A multidisciplinary approach (pp. 67–86). Dordrecht: Kluwer Academic.

    Chapter  Google Scholar 

  • Masterton, B., Heffner, H., & Ravizza, R. (1969). The evolution of human hearing. The Journal of the Acoustical Society of America, 45, 966–985.

    Article  CAS  PubMed  Google Scholar 

  • Mattila, T. M., & Bokma, F. (2008). Extant mammal body masses suggest punctuated equilibrium. Proceedings of the Royal Society of London B: Biological Sciences, 275, 2195–2199.

    Article  Google Scholar 

  • Meng, J., & Fox, R. C. (1995). Osseous inner ear structures and hearing in early marsupials and placentals. Zoological Journal of the Linnean Society, 115, 47–71.

    Article  Google Scholar 

  • Mittermeier, R. A., Louis Jr., E. E., Richardson, M., Schwitzer, C., et al. (2010). Lemurs of Madagascar (3rd ed.). Arlington, VA: Conservation International.

    Google Scholar 

  • Møller, A. R. (1974). Function of the middle ear. In W. D. Keidel & W. D. Neff (Eds.), Handbook of sensory physiology: The auditory system (Vol. V/1, pp. 491–517). Berlin: Springer-Verlag.

    Google Scholar 

  • Ni, X., Wang, Y., Hu, Y., & Li, C. (2004). A euprimate skull from the early Eocene of China. Nature, 427, 65–68.

    Article  CAS  PubMed  Google Scholar 

  • Novacek, M. J. (1977). Aspects of the problem of variation, origin, and evolution of the eutherian auditory bulla. Mammal Review, 7, 131–150.

    Article  Google Scholar 

  • Novacek, M. J. (1993). Patterns of diversity in the mammalian skull. In J. Hanken & B. K. Hall (Eds.), The skull: Patterns of structural and systematic diversity (Vol. 2, pp. 438–545). Chicago: The University of Chicago Press.

    Google Scholar 

  • Nummela, S. (1995). Scaling of the mammalian middle ear. Hearing Research, 85, 18–30.

    Article  CAS  PubMed  Google Scholar 

  • Nummela, S., & Sánchez-Villagra, M. R. (2006). Scaling of the marsupial middle ear and its functional significance. Journal of Zoology, 270, 256–267.

    Article  Google Scholar 

  • Nummela, S., Thewissen, J. G. M., Bajpai, S., Hussain, S. T., & Kumar, K. (2004). Eocene evolution of whale hearing. Nature, 430, 776–778.

    Article  CAS  PubMed  Google Scholar 

  • Nummela, S., Thewissen, J. G. M., Bajpai, S., Hussain, T., & Kumar, K. (2007). Sound transmission in archaic and modern whales: Anatomical adaptations for underwater hearing. The Anatomical Record, 290, 716–733.

    Article  PubMed  Google Scholar 

  • Nummela, S., Pihlström, H., Puolamäki, K., Fortelius, M., et al. (2013). Exploring the mammalian sensory space: Co-operations and trade-offs among senses. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 199, 1077–1092.

    Article  Google Scholar 

  • Packer, D. J., & Sarmiento, E. E. (1984). External and middle ear characteristics of primates, with reference to tarsier-anthropoid affinities. American Museum Novitates, 2787, 1–23.

    Google Scholar 

  • Plassmann, W., & Brändle, K. (1992). A functional model of the auditory system in mammals and its evolutionary implications. In D. B. Webster, R. R. Fay, & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 637–653). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Quam, R. M., de Ruiter, D. J., Masali, M., Arsuaga, J.-L., & Martínez, I. (2013). Early hominin auditory ossicles from South Africa. Proceedings of the National Academy of Sciences of the United States of America, 110(22), 8847–8851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quam, R. M., Coleman, M. N., & Martínez, I. (2014). Evolution of the auditory ossicles in extant hominids: Metric variation in African apes and humans. Journal of Anatomy, 225, 167–196.

    Article  PubMed  PubMed Central  Google Scholar 

  • Quam, R. M., Martínez, I., Rosa, M., Bonmatí, A., et al. (2015). Early hominin auditory capacities. Science Advances, 1, e1500355.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramsier, M. A., & Dominy, N. J. (2010). A comparison of auditory brainstem responses and behavioral estimates of hearing sensitivity in Lemur catta and Nycticebus coucang. American Journal of Primatology, 72, 217–233.

    Article  PubMed  Google Scholar 

  • Ramsier, M. A., Cunningham, A. J., Moritz, G. L., Finneran, J. J., et al. (2012a). Primate communication in the pure ultrasound. Biology Letters, 8, 508–511.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramsier, M. A., Cunningham, A. J., Finneran, J. J., & Dominy, N. J. (2012b). Social drive and the evolution of primate hearing. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 1860–1868.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravizza, R. J., Heffner, H. E., & Masterton, B. (1969). Hearing in primitive mammals. 2. Hedgehog (Hemiechinus auritus). Journal of Auditory Research, 9, 8–11.

    Google Scholar 

  • Rosowski, J. J. (1992). Hearing in transitional mammals: Predictions from the middle-ear anatomy and hearing capabilities of extant mammals. In D. B. Webster, R. R. Fay, & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 615–631). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Rosowski, J. J. (1994). Outer and middle ear. In A. N. Popper & R. R. Fay (Eds.), Comparative hearing: Mammals (pp. 172–247). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Rosowski, J. J. (2003). The middle and external ears of terrestrial vertebrates as mechanical and acoustic transducers. In F. G. Barth, J. A. C. Humphrey, & T. W. Secomb (Eds.), Sensors and sensing in biology and engineering (pp. 59–69). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Rosowski, J. J. (2013). Comparative middle ear structure and function in vertebrates. In S. Puria, R. R. Fay, & A. N. Popper (Eds.), The middle ear: Science, otosurgery, and technology (pp. 31–64). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Rosowski, J. J., & Graybeal, A. (1991). What did Morganucodon hear? Zoological Journal of the Linnean Society, 101, 131–168.

    Article  Google Scholar 

  • Rosowski, J. J., & Relkin, E. M. (2001). Introduction to the analysis of middle-ear function. In A. Jahn & J. Santos-Sacchi (Eds.), Physiology of the ear (2nd ed., pp. 161–190). San Diego, CA: Singular.

    Google Scholar 

  • Ross, C. F., & Kay, R. F. (2004). Anthropoid origins: Retrospective and prospective. In C. F. Ross & R. F. Kay (Eds.), Anthropoid origins: New visions (pp. 710–725). New York: Kluwer Academic.

    Chapter  Google Scholar 

  • Rothman, J. M., Raubenheimer, D., Bryer, M. A. H., Takahashi, M., & Gilbert, C. C. (2014). Nutritional contributions of insects to primate diets: Implications for primate evolution. Journal of Human Evolution, 71, 59–69.

    Article  PubMed  Google Scholar 

  • Ruf, I., Luo, Z.-X., Wible, J. R., & Martin, T. (2009). Petrosal anatomy and inner ear structures of the Late Jurassic Henkelotherium (Mammalia, Cladotheria, Dryolestoidea): Insight into the early evolution of the ear region in cladotherian mammals. Journal of Anatomy, 214, 679–693.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruggero, M. A., & Temchin, A. N. (2002). The roles of the external, middle, and inner ears in determining the bandwidth of hearing. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 13206–13210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sayers, K. (2015). Models of primate evolution. eLS, 1–10. doi:10.1002/9780470015902.a0026406.

  • Schultz, A. H. (1973). The skeleton of the Hylobatidae and other observations on their morphology. In D. M. Rumbaugh (Ed.), Gibbon and siamang: Anatomy, dentition, taxonomy, molecular evolution and behavior (Vol. 2, pp. 1–54). Basel: Karger.

    Google Scholar 

  • Seyfarth, R. M., & Cheney, D. L. (2009). Seeing who we hear and hearing who we see. Proceedings of the National Academy of Sciences of the United States of America, 106, 669–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw, A. G. (1974). The external ear. In W. D. Keidel & W. D. Neff (Eds.), Handbook of sensory physiology: The auditory system (Vol. V/1, pp. 455–490). New York: Springer-Verlag.

    Google Scholar 

  • Silcox, M. T., Dalmyn, C. K., & Bloch, J. I. (2009). Virtual endocast of Ignacius graybullianus (Paromomyidae, Primates) and brain evolution in early Primates. Proceedings of the National Academy of Sciences of the United States of America, 106, 10987–10992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silcox, M. T., Sargis, E. J., Bloch, J. I., & Boyer, D. M. (2015). Primate origins and supraordinal relationships: Morphological evidence. In W. Henke & I. Tattersall (Eds.), Handbook of paleoanthropology (Vol. 2, 2nd ed., pp. 1053–1081). Heidelberg, Berlin: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Sivian, L. J., & White, S. D. (1933). On minimum audible sound fields. The Journal of the Acoustical Society of America, 4, 234–288.

    Article  Google Scholar 

  • Smith, R. J., & Jungers, W. L. (1997). Body mass in comparative primatology. Journal of Human Evolution, 32, 523–559.

    Article  CAS  PubMed  Google Scholar 

  • Spoor, F., & Zonneveld, F. (1995). Morphometry of the bony labyrinth: A new method based on high-resolution computed tomography. Journal of Anatomy, 186, 271–286.

    PubMed  PubMed Central  Google Scholar 

  • Springer, M. S., Murphy, W. J., Eizirik, E., & O’Brien, S. J. (2003). Placental mammal diversification and the Cretaceous-Tertiary boundary. Proceedings of the National Academy of Sciences of the United States of America, 100, 1056e1061.

    Google Scholar 

  • Steiper, M. E., & Seiffert, E. R. (2012). Evidence for a convergent slowdown in primate molecular rates and its implications for the timing of early primate evolution. Proceedings of the National Academy of Sciences of the United States of America, 109, 6006–6011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoessel, A., David, R., Gunz, P., Schmidt, T., et al. (2016a). Morphology and function of Neandertal and modern human ear ossicles. Proceedings of the National Academy of Sciences of the United States of America, 113, 11489–11494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoessel, A., Gunz, P., David, R., & Spoor, F. (2016b). Comparative anatomy of the middle ear ossicles of extant hominids—Introducing a geometric morphometric protocol. Journal of Human Evolution, 91, 1–25.

    Article  PubMed  Google Scholar 

  • Sussman, R. W. (1991). Primate origins and the evolution of angiosperms. American Journal of Primatology, 23, 209–223.

    Article  Google Scholar 

  • Sussman, R. W., & Raven, P. H. (1978). Pollination of lemurs and marsupials: An archaic coevolutionary system. Science, 200, 731–736.

    Article  CAS  PubMed  Google Scholar 

  • Sussman, R. W., Rasmussen, D. T., & Raven, P. H. (2013). Rethinking primate origins again. American Journal of Primatology, 75, 95–106.

    Article  PubMed  Google Scholar 

  • Suthers, R. A., Fitch, W. T., Fay, R. R., & Popper, A. N. (Eds.). (2016). Vertebrate sound production and acoustic communication. New York: Springer Science+Business Media.

    Google Scholar 

  • van der Klaauw, C. J. (1931). The auditory bulla in some fossil mammals, with a general introduction to this region of the skull. Bulletin of the American Museum of Natural History, 62, 1–352.

    Google Scholar 

  • van Kampen, P. N. (1905). Die Tympanalgegend des Säugetierschädels. Morphologisches Jahrbuch, 24, 321–722.

    Google Scholar 

  • Vater, M., & Kössl, M. (2011). Comparative aspects of cochlear functional organization in mammals. Hearing Research, 273, 89–99.

    Article  PubMed  Google Scholar 

  • Vater, M., Meng, J., & Fox, R. C. (2004). Hearing organ evolution and specialization: Early and later mammals. In G. A. Manley, A. N. Popper, & R. R. Fay (Eds.), Evolution of the vertebrate auditory system (pp. 256–288). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • West, C. D. (1985). The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals. The Journal of the Acoustical Society of America, 77, 1091–1101.

    Article  CAS  PubMed  Google Scholar 

  • Yost, W. A., Popper, A. N., & Fay, R. R. (Eds.). (2008). Auditory perception of sound sources. New York: Springer Science+Business Media.

    Google Scholar 

  • Zwislocki, J. J. (1975). The role of the external and middle ear in sound transmission. In D. B. Tower (Ed.), The nervous system: Human communication and its disorders (Vol. 3, pp. 45–55). New York: Raven Press.

    Google Scholar 

Download references

Acknowledgments

Many thanks to the editors Rolf Quam, Marissa Ramsier, Arthur Popper, and Richard Fay for inviting me to contribute to this book and for their valuable support and advice. I also thank Rickye Heffner, Simo Hemilä, Gimseong Koay, and Tom Reuter for help and discussions while preparing this manuscript. Financial support was provided by the Academy of Finland and by the Ella and Georg Ehrnrooth Foundation.

Compliance with Ethics Requirements

Sirpa Nummela declares that she has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirpa Nummela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nummela, S. (2017). The Primate Peripheral Auditory System and the Evolution of Primate Hearing. In: Quam, R., Ramsier, M., Fay, R., Popper, A. (eds) Primate Hearing and Communication. Springer Handbook of Auditory Research, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-59478-1_2

Download citation

Publish with us

Policies and ethics