Skip to main content

Towards Best Practice in Establishing Patient-Derived Xenografts

  • Chapter
  • First Online:
Patient-Derived Xenograft Models of Human Cancer

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

It is remarkable that human tumour tissues can be grown for months, or even years, as serially transplantable, patient-derived xenografts (PDXs) in immunocompromised mice. The grafting technique used has been refined over the last few decades, so it is now possible to successfully engraft most tumour types, albeit with varying take rates. This review focuses on the methodological requirements to establish successful PDXs. The first step is selecting viable tumour tissue from surgical resections of local or metastatic disease, ascites, pleural effusions, biopsies, circulating tumour cells, rapid autopsies or even organoids. Once grafts are prepared, sometimes with Matrigel or stroma, their likelihood of growing is affected by the strain of immunocompromised host mice and the graft site, which may be subcutaneous, subrenal capsule or orthotopic. Finally, once PDXs are established, authentication assays can be used to rule out possible misidentification or cross-contamination following serial passaging. By carefully optimising all of these steps, PDXs can be grown as efficiently as possible, providing invaluable models for preclinical cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

NOD-SCID:

Non-obese diabetic severe combined immunodeficient mice

CTC:

Circulating tumour cell

NK cell:

Natural killer cell

NSG:

NOD-SCID interleukin-2 receptor gamma chain null mice

PAS:

PDX Authentication System

PDX:

Patient-derived xenograft

SCID:

Severe combined immunodeficient mice

SNP:

Single nucleotide polymorphism

STR:

Short tandem repeat

TURP:

Transurethral resection of the prostate

References

  1. Bruna A, Rueda OM, Greenwood W, Batra AS, Callari M, Batra RN, et al. A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds. Cell. 2016;167(1):260–274. e22. doi:10.1016/j.cell.2016.08.041.

  2. Gao H, Korn JM, Ferretti S, Monahan JE, Wang Y, Singh M, et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med. 2015;21(11):1318–25. doi:10.1038/nm.3954.

    Article  CAS  PubMed  Google Scholar 

  3. Hidalgo M, Amant F, Biankin AV, Budinska E, Byrne AT, Caldas C, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 2014;4(9):998–1013. doi:10.1158/2159-8290.CD-14-0001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dong X, Guan J, English JC, Flint J, Yee J, Evans K, et al. Patient-derived first generation xenografts of non-small cell lung cancers: promising tools for predicting drug responses for personalized chemotherapy. Clin Cancer Res. 2010;16(5):1442–51. doi:10.1158/1078-0432.CCR-09-2878.

    Article  CAS  PubMed  Google Scholar 

  5. Lawrence MG, Taylor RA, Toivanen R, Pedersen J, Norden S, Pook DW, et al. A preclinical xenograft model of prostate cancer using human tumors. Nat Protoc. 2013;8(5):836–48. doi:10.1038/nprot.2013.043.

    Article  CAS  PubMed  Google Scholar 

  6. Presnell SC, Werdin ES, Maygarden S, Mohler JL, Smith GJ. Establishment of short-term primary human prostate xenografts for the study of prostate biology and cancer. Am J Pathol. 2001;159(3):855–60. doi:10.1016/S0002-9440(10)61761-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Toivanen R, Berman DM, Wang H, Pedersen J, Frydenberg M, Meeker AK, et al. Brief report: a bioassay to identify primary human prostate cancer repopulating cells. Stem Cells. 2011;29(8):1310–4. doi:10.1002/stem.668.

    Article  PubMed  Google Scholar 

  8. Lawrence MG, Pook DW, Wang H, Porter LH, Frydenberg M, Kourambas J, et al. Establishment of primary patient-derived xenografts of palliative TURP specimens to study castrate-resistant prostate cancer. Prostate. 2015;75(13):1475–83. doi:10.1002/pros.23039.

    Article  CAS  PubMed  Google Scholar 

  9. Risbridger GP, Taylor RA, Clouston D, Sliwinski A, Thorne H, Hunter S, et al. Patient-derived xenografts reveal that intraductal carcinoma of the prostate is a prominent pathology in BRCA2 mutation carriers with prostate cancer and correlates with poor prognosis. Eur Urol. 2015;67(3):496–503. doi:10.1016/j.eururo.2014.08.007.

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Revelo M, Sudilovsky D, Cao M, Chen W, Goetz L, et al. Development and characterization of efficient xenograft models for benign and malignant human prostate tissue. Prostate. 2005;64(2):149–59.

    Article  CAS  PubMed  Google Scholar 

  11. Priolo C, Agostini M, Vena N, Ligon AH, Fiorentino M, Shin E, et al. Establishment and genomic characterization of mouse xenografts of human primary prostate tumors. Am J Pathol. 2010;176(4):1901–13. doi:10.2353/ajpath.2010.090873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alkema NG, Tomar T, Duiker EW, Jan Meersma G, Klip H, van der Zee AG, et al. Biobanking of patient and patient-derived xenograft ovarian tumour tissue: efficient preservation with low and high fetal calf serum based methods. Sci Rep. 2015;5:14495. doi:10.1038/srep14495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin D, Wyatt AW, Xue H, Wang Y, Dong X, Haegert A, et al. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 2014;74(4):1272–83. doi:10.1158/0008-5472.CAN-13-2921-T.

    Article  CAS  PubMed  Google Scholar 

  14. Alsop K, Thorne H, Sandhu S, Hamilton A, Mintoff C, Christie E, et al. A community-based model of rapid autopsy in end-stage cancer patients. Nat Biotechnol. 2016;34(10):1010–4. doi:10.1038/nbt.3674.

    Article  CAS  PubMed  Google Scholar 

  15. Van Weerden WM, Romijn JC. Use of nude mouse xenograft models in prostate cancer research. Prostate. 2000;43(4):263–71. doi:10.1002/1097-0045(20000601)43:4<263::AID-PROS5>​3.0.CO;2-I.

  16. Whittle JR, Lewis MT, Lindeman GJ, Visvader JE. Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Res. 2015;17:17. doi:10.1186/s13058-015-0523-1.

    Article  PubMed  PubMed Central  Google Scholar 

  17. DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011;17(11):1514–20. doi:10.1038/nm.2454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ilie M, Nunes M, Blot L, Hofman V, Long-Mira E, Butori C, et al. Setting up a wide panel of patient-derived tumor xenografts of non-small cell lung cancer by improving the preanalytical steps. Cancer Med. 2015;4(2):201–11. doi:10.1002/cam4.357.

    Article  CAS  PubMed  Google Scholar 

  19. Sivanand S, Pena-Llopis S, Zhao H, Kucejova B, Spence P, Pavia-Jimenez A, et al. A validated tumorgraft model reveals activity of dovitinib against renal cell carcinoma. Sci Transl Med. 2012;4(137):137ra75. doi:10.1126/scitranslmed.3003643.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Blance RN, Sims AH, Anderson E, Howell A, Clarke RB. Normal breast tissue implanted into athymic nude mice identifies biomarkers of the effects of human pregnancy levels of estrogen. Cancer Prev Res (Phila). 2009;2(3):257–64. doi:10.1158/1940-6207.CAPR-08-0161.

    Article  CAS  Google Scholar 

  21. Goldstein AS, Huang J, Guo C, Garraway IP, Witte ON. Identification of a cell of origin for human prostate cancer. Science. 2010;329(5991):568–71. doi:10.1126/science.1189992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci U S A. 2004;101(14):4966–71. doi:10.1073/pnas.0401064101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Montecinos VP, Godoy A, Hinklin J, Vethanayagam RR, Smith GJ. Primary xenografts of human prostate tissue as a model to study angiogenesis induced by reactive stroma. PLoS One. 2012;7(1):e29623. doi:10.1371/journal.pone.0029623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Staack A, Kassis AP, Olshen A, Wang Y, Wu D, Carroll PR, et al. Quantitation of apoptotic activity following castration in human prostatic tissue in vivo. Prostate. 2003;54(3):212–9.

    Article  PubMed  Google Scholar 

  25. Gray DR, Huss WJ, Yau JM, Durham LE, Werdin ES, Funkhouser Jr WK, et al. Short-term human prostate primary xenografts: an in vivo model of human prostate cancer vasculature and angiogenesis. Cancer Res. 2004;64(5):1712–21.

    Article  CAS  PubMed  Google Scholar 

  26. Sflomos G, Dormoy V, Metsalu T, Jeitziner R, Battista L, Scabia V, et al. A preclinical model for eralpha-positive breast cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response. Cancer Cell. 2016;29(3):407–22. doi:10.1016/j.ccell.2016.02.002.

    Article  CAS  PubMed  Google Scholar 

  27. Cooper CS, Eeles R, Wedge DC, Van Loo P, Gundem G, Alexandrov LB, et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat Genet. 2015;47(4):367–72. doi:10.1038/ng.3221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dotto GP. Multifocal epithelial tumors and field cancerization: stroma as a primary determinant. J Clin Invest. 2014;124(4):1446–53. doi:10.1172/JCI72589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. DeRose YS, Gligorich KM, Wang G, Georgelas A, Bowman P, Courdy SJ, et al. Patient-derived models of human breast cancer: protocols for in vitro and in vivo applications in tumor biology and translational medicine. Curr Protoc Pharmacol. 2013;60(14.23):14.23.1–14.23.43. doi:10.1002/0471141755.ph1423s60.

    Google Scholar 

  30. Kim MP, Truty MJ, Choi W, Kang Y, Chopin-Lally X, Gallick GE, et al. Molecular profiling of direct xenograft tumors established from human pancreatic adenocarcinoma after neoadjuvant therapy. Ann Surg Oncol. 2012;19 Suppl 3:S395–403. doi:10.1245/s10434-011-1839-4.

  31. McAuliffe PF, Evans KW, Akcakanat A, Chen K, Zheng X, Zhao H, et al. Ability to generate patient-derived breast cancer xenografts is enhanced in chemoresistant disease and predicts poor patient outcomes. PLoS One. 2015;10(9):e0136851. doi:10.1371/journal.pone.0136851.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Allaway RJ, Fischer DA, de Abreu FB, Gardner TB, Gordon SR, Barth RJ, et al. Genomic characterization of patient-derived xenograft models established from fine needle aspirate biopsies of a primary pancreatic ductal adenocarcinoma and from patient-matched metastatic sites. Oncotarget. 2016;7(13):17087–102. doi:10.18632/oncotarget.7718.

    PubMed  PubMed Central  Google Scholar 

  33. Zhu Y, Tian T, Li Z, Tang Z, Wang L, Wu J, et al. Establishment and characterization of patient-derived tumor xenograft using gastroscopic biopsies in gastric cancer. Sci Rep. 2015;5:8542. doi:10.1038/srep08542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Julien S, Merino-Trigo A, Lacroix L, Pocard M, Goere D, Mariani P, et al. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin Cancer Res. 2012;18(19):5314–28. doi:10.1158/1078-0432.CCR-12-0372.

    Article  CAS  PubMed  Google Scholar 

  35. Juric D, Castel P, Griffith M, Griffith OL, Won HH, Ellis H, et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kalpha inhibitor. Nature. 2015;518(7538):240–4. doi:10.1038/nature13948.

    Article  CAS  PubMed  Google Scholar 

  36. Bertotti A, Migliardi G, Galimi F, Sassi F, Torti D, Isella C, et al. A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 2011;1(6):508–23. doi:10.1158/2159-8290.CD-11-0109.

    Article  CAS  PubMed  Google Scholar 

  37. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106–10. doi:10.1038/nature05372.

    Article  PubMed  CAS  Google Scholar 

  38. Rashidi B, Sun FX, Jiang P, An Z, Gamagami R, Moossa AR, et al. A nude mouse model of massive liver and lymph node metastasis of human colon cancer. Anticancer Res. 2000;20(2A):715–22.

    CAS  PubMed  Google Scholar 

  39. Fleming JM, Miller TC, Meyer MJ, Ginsburg E, Vonderhaar BK. Local regulation of human breast xenograft models. J Cell Physiol. 2010;224(3):795–806. doi:10.1002/jcp.22190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu JF, Palakurthi S, Zeng Q, Zhou S, Ivanova E, Huang W, et al. Establishment of patient-derived tumor xenograft models of epithelial ovarian cancer for pre-clinical evaluation of novel therapeutics. Clin Cancer Res. 2016. doi:10.1158/1078-0432.CCR-16-1237.

  41. Verschraegen CF, Hu W, Du Y, Mendoza J, Early J, Deavers M, et al. Establishment and characterization of cancer cell cultures and xenografts derived from primary or metastatic Mullerian cancers. Clin Cancer Res. 2003;9(2):845–52.

    CAS  PubMed  Google Scholar 

  42. Zhang X, Claerhout S, Prat A, Dobrolecki LE, Petrovic I, Lai Q, et al. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res. 2013;73(15):4885–97. doi:10.1158/0008-5472.CAN-12-4081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Craft N, Chhor C, Tran C, Belldegrun A, DeKernion J, Witte ON, et al. Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process. Cancer Res. 1999;59(19):5030–6.

    CAS  PubMed  Google Scholar 

  44. Li ZG, Mathew P, Yang J, Starbuck MW, Zurita AJ, Liu J, et al. Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms. J Clin Invest. 2008;118(8):2697–710. doi:10.1172/JCI33093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McCulloch DR, Opeskin K, Thompson EW, Williams ED. BM18: a novel androgen-dependent human prostate cancer xenograft model derived from a bone metastasis. Prostate. 2005;65(1):35–43.

    Article  PubMed  Google Scholar 

  46. Goncalves A, Bertucci F, Guille A, Garnier S, Adelaide J, Carbuccia N, et al. Targeted NGS, array-CGH, and patient-derived tumor xenografts for precision medicine in advanced breast cancer: a single-center prospective study. Oncotarget. 2016. doi:10.18632/oncotarget.12714.

  47. Klein KA, Reiter RE, Redula J, Moradi H, Zhu XL, Brothman AR, et al. Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nat Med. 1997;3(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  48. Hong MK, Sapre N, Phal PM, Macintyre G, Chin X, Pedersen JS, et al. Percutaneous image-guided biopsy of prostate cancer metastases yields samples suitable for genomics and personalised oncology. Clin Exp Metastasis. 2014;31(2):159–67. doi:10.1007/s10585-013-9617-2.

    Article  CAS  PubMed  Google Scholar 

  49. Kohli M, Wang L, Xie F, Sicotte H, Yin P, Dehm SM, et al. Mutational landscapes of sequential prostate metastases and matched patient derived xenografts during enzalutamide therapy. PLoS One. 2015;10(12):e0145176. doi:10.1371/journal.pone.0145176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Rimondi E, Rossi G, Bartalena T, Ciminari R, Alberghini M, Ruggieri P, et al. Percutaneous CT-guided biopsy of the musculoskeletal system: results of 2027 cases. Eur J Radiol. 2011;77(1):34–42. doi:10.1016/j.ejrad.2010.06.055.

    Article  PubMed  Google Scholar 

  51. Hooper JE, Cantor EL, Ehlen MS, Banerjee A, Malempati S, Stenzel P, et al. A patient-derived xenograft model of parameningeal embryonal rhabdomyosarcoma for preclinical studies. Sarcoma. 2015;2015:826124. doi:10.1155/2015/826124.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rubin MA, Putzi M, Mucci N, Smith DC, Wojno K, Korenchuk S, et al. Rapid (“warm”) autopsy study for procurement of metastatic prostate cancer. Clin Cancer Res. 2000;6(3):1038–45.

    CAS  PubMed  Google Scholar 

  53. Xie T, Musteanu M, Lopez-Casas PP, Shields DJ, Olson P, Rejto PA, et al. Whole exome sequencing of rapid autopsy tumors and xenograft models reveals possible driver mutations underlying tumor progression. PLoS One. 2015;10(11):e0142631. doi:10.1371/journal.pone.0142631.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JM, Papaemmanuil E, et al. The evolutionary history of lethal metastatic prostate cancer. Nature. 2015;520(7547):353–7. doi:10.1038/nature14347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kumar A, Coleman I, Morrissey C, Zhang X, True LD, Gulati R, et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat Med. 2016;22(4):369–78. doi:10.1038/nm.4053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Patch AM, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S, et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature. 2015;521(7553):489–94. doi:10.1038/nature14410.

    Article  CAS  PubMed  Google Scholar 

  57. Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V, et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol. 2013;31(6):539–44. doi:10.1038/nbt.2576.

    Article  CAS  PubMed  Google Scholar 

  58. Hodgkinson CL, Morrow CJ, Li Y, Metcalf RL, Rothwell DG, Trapani F, et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med. 2014;20(8):897–903. doi:10.1038/nm.3600.

    Article  CAS  PubMed  Google Scholar 

  59. Williams ES, Rodriguez-Bravo V, Chippada-Venkata U, De Ia Iglesia-Vicente J, Gong Y, Galsky M, et al. Generation of prostate cancer patient derived xenograft models from circulating tumor cells. J Vis Exp. 2015;(105):53182. doi:10.3791/53182.

  60. Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell. 2014;159(1):176–87. doi:10.1016/j.cell.2014.08.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Grillet F, Bayet E, Villeronce O, Zappia L, Lagerqvist EL, Lunke S, et al. Circulating tumour cells from patients with colorectal cancer have cancer stem cell hallmarks in ex vivo culture. Gut. 2016. doi:10.1136/gutjnl-2016-311447.

  62. Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. 2014;345(6193):216–20. doi:10.1126/science.1253533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rossi E, Rugge M, Facchinetti A, Pizzi M, Nardo G, Barbieri V, et al. Retaining the long-survive capacity of circulating tumor cells (CTCs) followed by xeno-transplantation: not only from metastatic cancer of the breast but also of prostate cancer patients. Oncoscience. 2014;1(1):49–56. doi:10.18632/oncoscience.8.

    PubMed  Google Scholar 

  64. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ. Efficient tumour formation by single human melanoma cells. Nature. 2008;456(7222):593–8. doi:10.1038/nature07567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hu Y, Smyth GK. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods. 2009;347(1–2):70–8. doi:10.1016/j.jim.2009.06.008.

    CAS  PubMed  Google Scholar 

  67. Cayrefourcq L, Mazard T, Joosse S, Solassol J, Ramos J, Assenat E, et al. Establishment and characterization of a cell line from human circulating colon cancer cells. Cancer Res. 2015;75(5):892–901. doi:10.1158/0008-5472.CAN-14-2613.

    Article  CAS  PubMed  Google Scholar 

  68. Morton CL, Houghton PJ. Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc. 2007;2(2):247–50. doi:10.1038/nprot.2007.25.

    Article  CAS  PubMed  Google Scholar 

  69. Zhao H, Nolley R, Chen Z, Peehl DM. Tissue slice grafts: an in vivo model of human prostate androgen signaling. Am J Pathol. 2010;177(1):229–39. doi:10.2353/ajpath.2010.090821.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhao H, Thong A, Nolley R, Reese SW, Santos J, Ingels A, et al. Patient-derived tissue slice grafts accurately depict response of high-risk primary prostate cancer to androgen deprivation therapy. J Transl Med. 2013;11:199. doi:10.1186/1479-5876-11-199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Bernardo C, Costa C, Sousa N, Amado F, Santos L. Patient-derived bladder cancer xenografts: a systematic review. Transl Res. 2015;166(4):324–31. doi:10.1016/j.trsl.2015.02.001.

    Article  PubMed  Google Scholar 

  72. Hutmacher DW, Holzapfel BM, De-Juan-Pardo EM, Pereira BA, Ellem SJ, Loessner D, et al. Convergence of regenerative medicine and synthetic biology to develop standardized and validated models of human diseases with clinical relevance. Curr Opin Biotechnol. 2015;35:127–32. doi:10.1016/j.copbio.2015.06.001.

    Article  CAS  PubMed  Google Scholar 

  73. Toivanen R, Frydenberg M, Murphy D, Pedersen J, Ryan A, Pook D, et al. A preclinical xenograft model identifies castration-tolerant cancer-repopulating cells in localized prostate tumors. Sci Transl Med. 2013;5(187):187ra71. doi:10.1126/scitranslmed.3005688.

    Article  PubMed  CAS  Google Scholar 

  74. Clemmesen J. On transplantation of tumor cells to normal and pre-irradiated heterologous organisms. Cancer Res. 1937;29(2):313–32.

    Google Scholar 

  75. Grogan JB, Hardy JD. Increased survival of xenogeneic tumor in thymectomized hosts. J Surg Res. 1968;8(1):7–9.

    Article  CAS  PubMed  Google Scholar 

  76. Rygaard J, Povlsen CO. Heterotransplantation of a human malignant tumour to “Nude” mice. Acta Pathol Microbiol Scand. 1969;77(4):758–60.

    Article  CAS  PubMed  Google Scholar 

  77. Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature. 1983;301(5900):527–30.

    Article  CAS  PubMed  Google Scholar 

  78. Bosma MJ. B and T cell leakiness in the scid mouse mutant. Immunodefic Rev. 1992;3(4):261–76.

    CAS  PubMed  Google Scholar 

  79. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol. 1995;154(1):180–91.

    CAS  PubMed  Google Scholar 

  80. Liu H, Patel MR, Prescher JA, Patsialou A, Qian D, Lin J, et al. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci U S A. 2010;107(42):18115–20. doi:10.1073/pnas.1006732107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002;100(9):3175–82.

    Article  CAS  PubMed  Google Scholar 

  82. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174(10):6477–89.

    Article  CAS  PubMed  Google Scholar 

  83. Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol. 2007;7(2):118–30. doi:10.1038/nri2017.

    Article  CAS  PubMed  Google Scholar 

  84. Gupta PB, Proia D, Cingoz O, Weremowicz J, Naber SP, Weinberg RA, et al. Systemic stromal effects of estrogen promote the growth of estrogen receptor-negative cancers. Cancer Res. 2007;67(5):2062–71. doi:10.1158/0008-5472.CAN-06-3895.

    Article  CAS  PubMed  Google Scholar 

  85. Kabos P, Finlay-Schultz J, Li C, Kline E, Finlayson C, Wisell J, et al. Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures. Breast Cancer Res Treat. 2012;135(2):415–32. doi:10.1007/s10549-012-2164-8.

    Article  CAS  PubMed  Google Scholar 

  86. Dall G, Vieusseux J, Unsworth A, Anderson R, Britt K. Low dose, low cost estradiol pellets can support MCF-7 tumour growth in nude mice without bladder symptoms. J Cancer. 2015;6(12):1331–6. doi:10.7150/jca.10890.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Gakhar G, Wight-Carter M, Andrews G, Olson S, Nguyen TA. Hydronephrosis and urine retention in estrogen-implanted athymic nude mice. Vet Pathol. 2009;46(3):505–8. doi:10.1354/vp.08-VP-0180-N-BC.

    Article  CAS  PubMed  Google Scholar 

  88. Michiel Sedelaar JP, Dalrymple SS, Isaacs JT. Of mice and men-warning: intact versus castrated adult male mice as xenograft hosts are equivalent to hypogonadal versus abiraterone treated aging human males, respectively. Prostate. 2013;73(12):1316–25. doi:10.1002/pros.22677.

    Article  CAS  PubMed  Google Scholar 

  89. Nicholson TM, Uchtmann KS, Valdez CD, Theberge AB, Miralem T, Ricke WA. Renal capsule xenografting and subcutaneous pellet implantation for the evaluation of prostate carcinogenesis and benign prostatic hyperplasia. J Vis Exp. 2013;(78):e50574. doi:10.3791/50574.

  90. Kim MP, Evans DB, Wang H, Abbruzzese JL, Fleming JB, Gallick GE. Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nat Protoc. 2009;4(11):1670–80. doi:10.1038/nprot.2009.171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lee CH, Xue H, Sutcliffe M, Gout PW, Huntsman DG, Miller DM, et al. Establishment of subrenal capsule xenografts of primary human ovarian tumors in SCID mice: potential models. Gynecol Oncol. 2005;96(1):48–55. doi:10.1016/j.ygyno.2004.09.025.

    Article  PubMed  Google Scholar 

  92. Read M, Liu D, Duong CP, Cullinane C, Murray WK, Fennell CM, et al. Intramuscular transplantation improves engraftment rates for esophageal patient-derived tumor xenografts. Ann Surg Oncol. 2016;23(1):305–11. doi:10.1245/s10434-015-4425-3.

    Article  PubMed  Google Scholar 

  93. Shultz LD, Goodwin N, Ishikawa F, Hosur V, Lyons BL, Greiner DL. Subcapsular transplantation of tissue in the kidney. Cold Spring Harb Protoc. 2014;2014(7):737–40. doi:10.1101/pdb.prot078089.

    PubMed  PubMed Central  Google Scholar 

  94. Fu E, Nelson KE, Ramsey SA, Foley JO, Helton K, Yager P. Modeling of a competitive microfluidic heterogeneous immunoassay: sensitivity of the assay response to varying system parameters. Anal Chem. 2009;81(9):3407–13. doi:10.1021/ac802672v.

    Article  CAS  PubMed  Google Scholar 

  95. Fu XY, Theodorescu D, Kerbel RS, Hoffman RM. Extensive multi-organ metastasis following orthotopic onplantation of histologically-intact human bladder carcinoma tissue in nude mice. Int J Cancer. 1991;49(6):938–9.

    Article  CAS  PubMed  Google Scholar 

  96. Saar M, Korbel C, Linxweiler J, Jung V, Kamradt J, Hasenfus A, et al. Orthotopic tumorgrafts in nude mice: a new method to study human prostate cancer. Prostate. 2015;75(14):1526–37. doi:10.1002/pros.23027.

    Article  PubMed  Google Scholar 

  97. Topp MD, Hartley L, Cook M, Heong V, Boehm E, McShane L, et al. Molecular correlates of platinum response in human high-grade serous ovarian cancer patient-derived xenografts. Mol Oncol. 2014;8(3):656–68. doi:10.1016/j.molonc.2014.01.008.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kraaij R, van Weerden WM, de Ridder CM, Gussenhoven EJ, Honkoop J, Nasu Y, et al. Validation of transrectal ultrasonographic volumetry for orthotopic prostate tumours in mice. Lab Anim. 2002;36(2):165–72.

    Article  CAS  PubMed  Google Scholar 

  99. Fu X, Guadagni F, Hoffman RM. A metastatic nude-mouse model of human pancreatic cancer constructed orthotopically with histologically intact patient specimens. Proc Natl Acad Sci U S A. 1992;89(12):5645–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lin D, Watahiki A, Bayani J, Zhang F, Liu L, Ling V, et al. ASAP1, a gene at 8q24, is associated with prostate cancer metastasis. Cancer Res. 2008;68(11):4352–9. doi:10.1158/0008-5472.CAN-07-5237.

    Article  CAS  PubMed  Google Scholar 

  101. Garrido-Laguna I, Uson M, Rajeshkumar NV, Tan AC, de Oliveira E, Karikari C, et al. Tumor engraftment in nude mice and enrichment in stroma-related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer. Clin Cancer Res. 2011;17(17):5793–800. doi:10.1158/1078-0432.CCR-11-0341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kato C, Fujii E, Chen YJ, Endaya BB, Matsubara K, Suzuki M, et al. Spontaneous thymic lymphomas in the non-obese diabetic/Shi-scid, IL-2R gamma (null) mouse. Lab Anim. 2009;43(4):402–4. doi:10.1258/la.2009.009012.

    Article  CAS  PubMed  Google Scholar 

  103. Wetterauer C, Vlajnic T, Schuler J, Gsponer JR, Thalmann GN, Cecchini M, et al. Early development of human lymphomas in a prostate cancer xenograft program using triple knock-out immunocompromised mice. Prostate. 2015;75(6):585–92. doi:10.1002/pros.22939.

    Article  PubMed  Google Scholar 

  104. Bondarenko G, Ugolkov A, Rohan S, Kulesza P, Dubrovskyi O, Gursel D, et al. Patient-derived tumor xenografts are susceptible to formation of human lymphocytic tumors. Neoplasia. 2015;17(9):735–41. doi:10.1016/j.neo.2015.09.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen K, Ahmed S, Adeyi O, Dick JE, Ghanekar A. Human solid tumor xenografts in immunodeficient mice are vulnerable to lymphomagenesis associated with Epstein–Barr virus. PLoS One. 2012;7(6):e39294. doi:10.1371/journal.pone.0039294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. John T, Yanagawa N, Kohler D, Craddock KJ, Bandarchi-Chamkhaleh B, Pintilie M, et al. Characterization of lymphomas developing in immunodeficient mice implanted with primary human non-small cell lung cancer. J Thorac Oncol. 2012;7(7):1101–8. doi:10.1097/JTO.0b013e3182519d4d.

    Article  PubMed  Google Scholar 

  107. Vander Griend DJ, Konishi Y, De Marzo AM, Isaacs JT, Meeker AK. Dual-label centromere and telomere FISH identifies human, rat, and mouse cell contribution to Multispecies recombinant urogenital sinus xenografts. Prostate. 2009;69(14):1557–64. doi:10.1002/pros.21001.

    Article  CAS  PubMed  Google Scholar 

  108. Nardone RM, MacLeod RA, Capes-Davis A. Cancer: authenticate new xenograft models. Nature. 2016;532(7599):313.

    Article  CAS  PubMed  Google Scholar 

  109. Mattie M, Christensen A, Chang MS, Yeh W, Said S, Shostak Y, et al. Molecular characterization of patient-derived human pancreatic tumor xenograft models for preclinical and translational development of cancer therapeutics. Neoplasia. 2013;15(10):1138–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. El-Hoss J, Jing D, Evans K, Toscan C, Xie J, Lee H, et al. A single nucleotide polymorphism genotyping platform for the authentication of patient derived xenografts. Oncotarget. 2016. doi:10.18632/oncotarget.11125.

Download references

Acknowledgements

We thank Laura Porter for her help preparing the manuscript. The Monash University Prostate Cancer Research Program is supported by funding from the Peter and Lyndy White Foundation, the EJ Whitten Foundation and TissuPath Pathology. GPR is supported by a fellowship from the National Health and Medical Research Council (1102752).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell G. Lawrence .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Risbridger, G.P., Lawrence, M.G. (2017). Towards Best Practice in Establishing Patient-Derived Xenografts. In: Wang, Y., Lin, D., Gout, P. (eds) Patient-Derived Xenograft Models of Human Cancer . Molecular and Translational Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-55825-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55825-7_2

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-55824-0

  • Online ISBN: 978-3-319-55825-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics