Skip to main content

Molecular Genetics of Lymphatic and Complex Vascular Malformations

  • Chapter
  • First Online:
Lymphedema

Abstract

Lymphatic malformations (LMs) are due to localized defects in lymphatic development. They usually occur sporadically. There is an important heterogeneity in clinical presentations. LMs can affect any part of the body, be isolated, or be part of a syndrome. They can present as pure or combined lesions. Lymphaticovenous malformation (LVM) is a common example of the latter. They most often cause pain, dysfunction of the affected body part, and disfigurement. Elucidation of the etiopathogenesis of LMs had to wait for the development of next-generation sequencing (NGS) used on endothelial cells isolated from lymphatic malformations or directly on resected lesions. This allowed to discover somatic mutations in the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA). The mutations are similar to those identified in cancers, venous malformations (VMs), and combined vascular lesions, including the spectrum of PIK3CA-related overgrowth syndromes (PROS). The phenotypic variability is most likely due to differences in developmental time point and type(s) of cells in which the somatic mutations occurred. Some related syndromes are also caused by activating mutations in the PI3K-AKT-mTOR signaling pathway, including Proteus syndrome (mutations in AKT1) and PTEN hamartoma tumor syndrome (mutations in PTEN). This has opened the era for development of targeted precision therapies for these lesions, especially by using small molecule inhibitors. Rapamycin, an inhibitor of mTOR, has already been tested in clinical trials and four studies (78 patients) demonstrated efficacy on selected cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Highlighted References

  1. Lindhurst MJ, Sapp JC, Teer JK, Johnston JJ, Finn EM, Peters K, Turner J, Cannons JL, Bick D, Blakemore L, et al. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N Engl J Med. 2011;365:611–9.

    Google Scholar 

  2. Limaye N, Kangas J, Mendola A, Godfraind C, Schlögel MJ, Helaers R, Eklund L, Boon LM, Vikkula M. Somatic activating PIK3CA mutations cause venous malformation. Am J Hum Genet. 2015;97(6):914–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brouillard P, Boon L, Vikkula M. Genetics of lymphatic anomalies. J Clin Invest. 2014;124(3):898–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Osborn AJ, Dickie P, Neilson DE, Glaser K, Lynch KA, Gupta A, Dickie BH. Activating PIK3CA alleles and lymphangiogenic phenotype of lymphatic endothelial cells isolated from lymphatic malformations. Hum Mol Genet. 2015;24(4):926–38.

    Article  CAS  PubMed  Google Scholar 

  5. Boscolo E, Limaye N, Huang L, Kang KT, Soblet J, Uebelhoer M, Mendola A, Natynki M, Seront E, Dupont S, Hammer J, Legrand C, Brugnara C, Eklund L, Vikkula M, Bischoff J, Boon LM. Rapamycin improves TIE2-mutated venous malformation in murine model and human subjects. J Clin Invest. 2015;125(9):3491–504.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Adams DM, Trenor CC 3rd, Hammill AM, Vinks AA, Patel MN, Chaudry G, Wentzel MS, Mobberley-Schuman PS, Campbell LM, Brookbank C, Gupta A, Chute C, Eile J, McKenna J, Merrow AC, Fei L, Hornung L, Seid M, Dasgupta AR, Dickie BH, Elluru RG, Lucky AW, Weiss B, Azizkhan RG. Efficacy and safety of Sirolimus in the treatment of complicated vascular anomalies. Pediatrics. 2016;137(2):e20153257.

    Article  PubMed  PubMed Central  Google Scholar 

References

  1. Boscolo E, Coma S, Luks VL, Greene AK, Klagsbrun M, Warman ML, Bischoff J. AKT hyper-phosphorylation associated with PI3K mutations in lymphatic endothelial cells from a patient with lymphatic malformation. Angiogenesis. 2015;18(2):151–62.

    Article  CAS  PubMed  Google Scholar 

  2. Burke JE, Perisic O, Masson GR, Vadas O, Williams RL. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110alpha (PIK3CA). Proc Natl Acad Sci U S A. 2012;109(38):15259–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Castel P, Carmona FJ, Grego-Bessa J, Berger MF, Viale A, Anderson KV, Bague S, Scaltriti M, Antonescu CR, Baselga E, et al. Somatic PIK3CA mutations as a driver of sporadic venous malformations. Sci Transl Med. 2016;8(332):332ra42.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Castillo SD, Tzouanacou E, Zaw-Thin M, Berenjeno IM, Parker VE, Chivite I, Mila-Guasch M, Pearce W, Solomon I, Angulo-Urarte A, et al. Somatic activating mutations in Pik3ca cause sporadic venous malformations in mice and humans. Sci Transl Med. 2016;8(332):332ra43.

    Article  PubMed  Google Scholar 

  5. Gkeka P, Evangelidis T, Pavlaki M, Lazani V, Christoforidis S, Agianian B, Cournia Z. Investigating the structure and dynamics of the PIK3CA wild-type and H1047R oncogenic mutant. PLoS Comput Biol. 2014;10(10):e1003895.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hammill AM, Wentzel M, Gupta A, Nelson S, Lucky A, Elluru R, Dasgupta R, Azizkhan RG, Adams DM. Sirolimus for the treatment of complicated vascular anomalies in children. Pediatr Blood Cancer. 2011;57(6):1018–24.

    Article  PubMed  Google Scholar 

  7. Keppler-Noreuil KM, Rios JJ, Parker VE, Semple RK, Lindhurst MJ, Sapp JC, Alomari A, Ezaki M, Dobyns W, Biesecker LG. PIK3CA-related overgrowth spectrum (PROS): diagnostic and testing eligibility criteria, differential diagnosis, and evaluation. Am J Med Genet Part A. 2015;167A(2):287–95.

    Article  PubMed  Google Scholar 

  8. Koren S, Reavie L, Couto JP, De Silva D, Stadler MB, Roloff T, Britschgi A, Eichlisberger T, Kohler H, Aina O, et al. PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours. Nature. 2015;525(7567):114–8.

    Article  CAS  PubMed  Google Scholar 

  9. Lackner H, Karastaneva A, Schwinger W, Benesch M, Sovinz P, Seidel M, Sperl D, Lanz S, Haxhija E, Reiterer F, et al. Sirolimus for the treatment of children with various complicated vascular anomalies. Eur J Pediatr. 2015;174(12):1579–84.

    Article  CAS  PubMed  Google Scholar 

  10. Limaye N, Wouters V, Uebelhoer M, Tuominen M, Wirkkala R, Mulliken JB, Eklund L, Boon LM, Vikkula M. Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations. Nat Genet. 2009;41(1):118–24.

    Article  CAS  PubMed  Google Scholar 

  11. Luks VL, Kamitaki N, Vivero MP, Uller W, Rab R, Bovee JV, Rialon KL, Guevara CJ, Alomari AI, Greene AK, et al. Lymphatic and other vascular malformative/overgrowth disorders are caused by somatic mutations in PIK3CA. J Pediatr. 2015;166(4):1048–54 e1-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mirzaa G, Timms AE, Conti V, Boyle EA, Girisha KM, Martin B, Kircher M, Olds C, Juusola J, Collins S et al. PIK3CA-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution. JCI Insight. 2016;1(9).

    Google Scholar 

  13. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304(5670):554.

    Article  CAS  PubMed  Google Scholar 

  14. Schlögel. in prep.

    Google Scholar 

  15. Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nature reviews. Cancer. 2015;15(1):7–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hansen-Kiss E, Beinkampen S, Adler B, Frazier T, Prior T, Erdman S, Eng C, Herman G. A retrospective chart review of the features of PTEN hamartoma tumour syndrome in children. J Med Genet. 2017; (Epub, no pages yet).

    Google Scholar 

Download references

Acknowledgments

We are grateful to all the family members for their invaluable contributions. These studies were partially supported by the Belgian Science Policy Office Interuniversity Attraction Poles (BELSPO-IAP) program through the project IAP P7/43-BeMGI, the Fonds de la Recherche Scientifique - FNRS, T.0026.14 (to MV) and T.0146.16 (to LMB), and the Fonds de la Recherche Scientifique - FNRS for the FRFS-WELBIO under Grant n° WELBIO-CR-2015A (to MV). We also acknowledge the support of Fédération Wallonie-Bruxelles, la Lotterie nationale, Belgium, and the Foundation against Cancer, Belgium. P.B. is a Senior Platform Manager of UCL. M. S. was supported by a fellowship from F.R.I.A. (Fonds pour la formation à la recherche dans l’industrie et dans l’agriculture). The authors thank the Genomics Plateform of Université catholique de Louvain and Ms. Liliana Niculescu for secretarial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miikka Vikkula MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Schlögel, M.J., Brouillard, P., Boon, L.M., Vikkula, M. (2018). Molecular Genetics of Lymphatic and Complex Vascular Malformations. In: Lee, BB., Rockson, S., Bergan, J. (eds) Lymphedema. Springer, Cham. https://doi.org/10.1007/978-3-319-52423-8_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52423-8_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52421-4

  • Online ISBN: 978-3-319-52423-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics