Skip to main content

Microbial Degradation of Chlorophenols

  • Chapter
  • First Online:
Microbe-Induced Degradation of Pesticides

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

Chlorophenols (CPs) are hazardous pollutant that are commonly encountered as major constituents of several types of wastewater such as industrial, refinery and pharmaceutical wastewater. They are also exposed to the environment in the form of chloro-based pesticides. CPs are considered harmful to human health due to their potential carcinogenic and toxic effects. Although some types of CPs are resistant to degradation and therefore persistent in the environment, many types of microorganisms have developed the ability to degrade them, and hence biological degradation can be exploited to remediate the environmental problems associated with CPs. Recent achievements in the degradation of CPs by microorganisms have been reviewed, focusing on the degradation mechanisms and pathways of 2, 4-dichlorophenol and Pentachlorophenol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamsson, K., & Klick, S. (1991). Degradation of halogenated phenols in anoxic marine sediments. Marine Pollution Bulletin, 22, 227–233.

    Article  Google Scholar 

  • Agarry, S. E., Durojaiye, A. O., & Solomon, B. O. (2008). Microbial degradation of phenols: A review. International Journal of Environment and Pollution, 32, 12–28.

    Article  Google Scholar 

  • Aislabie, J., & Lloyd-Jones, G. (1995). A review of bacterial-degradation of pesticides. Australian Journal of Soil Research, 33, 925–942.

    Article  Google Scholar 

  • Al-Khalid, T., & El-Naas, M. (2013). Transient behavior in biodegradation of 2, 4 dichlorophenol: Is it a starvation effect? International Journal of Chemical Engineering and Applications, 4, 365–368.

    Article  Google Scholar 

  • Al-Khalid, T., & El-Naas, M. (2014). Biodegradation of phenol and 2, 4 dichlorophenol: The role of glucose in biomass acclimatization. International Journal of Engineering Research and Technology, 3, 1579–1586.

    Google Scholar 

  • Al-Khalid, T., & El-Naas, M. H. (2011). Aerobic biodegradation of phenols: A comprehensive review. Critical Reviews in Environmental Science and Technology, 42, 1631–1690.

    Article  Google Scholar 

  • Al-Thani, R. F., Abd-El-Haleem, A. M., & Al-Shammri, A. (2007). Isolation, biochemical and molecular characterization of 2-chlorophenol-degrading Bacillus isolates. African Journal of Biotechnology, 6, 2675–2681.

    Article  Google Scholar 

  • Al-Zuhair, S., & El-Naas, M. H. (2012). Phenol biodegradation by Ralstonia pickettii extracted from petroleum refinery oil sludge. Chemical Engineering Communications, 199, 1194–1204.

    Article  Google Scholar 

  • Alva, V., & Peyton, B. (2003). Phenol and catechol biodegradation by the haloalkaliphile Halomonas campisalis: Influence of pH and salinity. Environmental Science and Technology, 37, 4397–4402.

    Article  Google Scholar 

  • Alvarez-Cohen, L., & McCarty, P. L. (1991). A cometabolic biotransformation model for halogenated aliphatic compounds exhibiting product toxicity. Environmental Science and Technology, 25, 1381–1387.

    Article  Google Scholar 

  • Alvarez-Cohen, L., & Speitel, J. (2001). Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation, 12, 105–126.

    Article  Google Scholar 

  • An, H.-R., Park, H.-J., & Kim, E.-S. (2001). Cloning and expression of thermophilic catechol 1,2-dioxygenase gene (catA) from Streptomyces setonii. FEMS Microbiology Letters, 195, 17–22.

    Article  Google Scholar 

  • Annachhatre, A. P., & Gheewala, S. H. (1996). Biodegradation of chlorinated phenolic compounds. Biotechnology Advances, 14, 35–56.

    Article  Google Scholar 

  • Antizar-Ladislao, B., & Galil, N. (2004). Absorption of phenol and chlorophenols by acclimated residential biomass under bioremediation conditions in study aquifer. Water Research, 38, 267–276.

    Article  Google Scholar 

  • Apajalahti, J. H. A., & Salkinoja-Salonen, M. S. (1987). Complete dechlorination of tetrachlorohydroquinone by cell-extracts of pentachlorophenol-induced Rhodococcus chlorophenolicus. Journal of Bacteriology, 169, 5125–5130.

    Google Scholar 

  • Araya, M. & Lakhi, A. (2004). Response to consecutive nematicide applications using the same product in mussa AAAcv. Grande naine originated from in vitro propagative material and cultivated in virgin soil. Nematologia Brasileira 28, 55.

    Google Scholar 

  • Armenante, P. M., Kafkewitz, D., Lewandowski, G. A., & Jou, C.-J. (1999). Anaerobic–Aerobic treatment of halogenated phenolic compounds. Water Research, 33, 681–692.

    Article  Google Scholar 

  • Arora, P., & Bae, H. (2014). Bacterial degradation of chlorophenols and their derivatives. Microbial Cell Factories, 13, 31.

    Article  Google Scholar 

  • ATSDR (1999). Toxicological profile for chlorophenols. In Services, U.D. o. H.a.H. (ed.). Atlanta, GA.

    Google Scholar 

  • Azbar, N., Tutuk, F., & Keskin, T. (2009). Biodegradation performance of an anaerobic hybrid reactor treating olive mill effluent under various organic loading rates. International Biodeterioration and Biodegradation, 63, 690–698.

    Article  Google Scholar 

  • Bae, H. S., Rhee, S. K., Cho, Y. G., Hong, J. K., & Lee, S. T. (1997). Two different pathways (a chlorocatechol and a hydroquinone pathway) for the 4-chlorophenol degradation in two isolated bacterial strains. Journal of Microbiology and Biotechnology, 7, 237–241.

    Google Scholar 

  • Bajaj, M., Gallert, C., & Winter, J. (2009). Treatment of phenolic wastewater in an anaerobic fixed bed reactor (AFBR)—Recovery after shock loading. Journal of Hazardous Materials, 162, 1330–1339.

    Article  Google Scholar 

  • Baker, M. D., & Mayfield, C. J. (1980). Microbial and non-biological decomposition of chiorophenols and phenol in soil. Water, Air, and Soil Pollution, 13, 411–424.

    Article  Google Scholar 

  • Basu, S. K., Oleszkiewicz, J. A., & Sparling, R. (2005). Effect of sulfidogenic and methanogenic inhibitors on reductive dehalogenation of 2-chlorophenol. Environmental Technology, 26, 1383–1391.

    Article  Google Scholar 

  • Becker, J. G., Stahl, D. A., & Rittmann, B. E. (1999). Reductive dehalogenation and conversion of 2-chlorophenol to 3- chlorobenzoate in a methanogenic sediment community: Implications for predicting the of chlorinated pollutants. Applied and Environment Microbiology, 65, 5169–5172.

    Google Scholar 

  • Bergauer, P., Fonteyne, P. A., Nolard, N., Schinner, F., & Margesin, R. (2005). Biodegradation of phenol and phenol-related compounds by psychrophilicand cold-tolerant alpine yeasts. Chemosphere, 59, 909–918.

    Article  Google Scholar 

  • Boothe, D. D. H., Rogers, J. E., & Wiegel, J. (1997). Reductive dechlorination of chlorophenols in slurries of low- organic-carbon marine sediments and subsurface soils. Applied Microbiology and Biotechnology, 47, 742–748.

    Article  Google Scholar 

  • Boyd, S. A., & Shelton, D. R. (1984). Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge. Applied and Environment Microbiology, 47, 272–277.

    Google Scholar 

  • Breining, S., Schilts, E., & Fuchs, G. (2000). Genes involved in metabolism of phenol in bacterium Thauera aromatica. Journal of Bacteriology, 182, 5849–5863.

    Article  Google Scholar 

  • Brown, J. F., Bedard, D. L., Brennan, M. J., Camahan, J. C., Feng, H., & Wagner, R. E. (1987). Polychlorinated biphenyl dechlorination in aquatic sediments. Science, 236, 709–712.

    Article  Google Scholar 

  • Cai, W., Li, J., & Zhang, Z. (2007). The characteristics and mechanisms of phenol biodegradation by Fusarium sp. Journal of Hazardous Materials, 148, 38–42.

    Article  Google Scholar 

  • Caliz, J., Vila, X., Martí, E., Sierra, J., Nordgren, J., Lindgren, P.-E., et al. (2011). The microbiota of an unpolluted calcareous soil faces up chlorophenols: Evidences of resistant strains with potential for bioremediation. Chemosphere, 83, 104–116.

    Article  Google Scholar 

  • Cea, M., Seaman, J. C., Jara, A., Fuentes, B., Mora, M. L., & Diez, M. C. (2007). Adsorption behaviour of 2,4-dichlorophenol and pentachlorophenol in an allophanic soil. Chemosphere, 67, 1354–1360.

    Article  Google Scholar 

  • Christen, P., Vega, A., Casalot, L., Simon, G., & Auria, R. (2012). Kinetics of aerobic phenol biodegradation by the acidophilic and hyperthermophilic archaeon Sulfolobus solfataricus 98/2. Biochemical Engineering Journal, 62, 56–61.

    Article  Google Scholar 

  • Copley, S. D. (1997). Diverse mechanistic approaches to difficult chemical transformations: Microbial dehalogenation of chlorinated aromatic compounds. Chemistry and Biology, 4, 169–174.

    Article  Google Scholar 

  • Cortes, D., Garrios-Gonzalez, J., & Tomasini, A. (2002). Pentachlorophenol tolerance and removal by Rhizopus nigricans in solid-state culture. Process Biochemistry, 37, 881–884.

    Article  Google Scholar 

  • Crawford, R. L., Jung, C. M., & Strap, J. L. (2007). The recent evolution ofpentachlorophenol (PCP)-4-monooxygenase (PcpB) and associated pathways for bacterial degradation of PCP. Biodegradation, 18, 525–539.

    Article  Google Scholar 

  • Czaplicka, M. (2004). Sources and transformations of chlorophenols in the natural environment. Science of the Total Environment, 322, 21–39.

    Article  Google Scholar 

  • D’Angelo, E. M., & Reddy, K. R. (2000). Aerobic and anaerobic transformations of pentachlorophenol in wetland soils. Soil Science Society of America Journal, 64, 933–943.

    Article  Google Scholar 

  • Dapaah, S. Y., & Hill, G. A. (1992). Biodegradation of chlorophenol mixtures by Pseudomonas putida. Biotechnology and Bioengineering, 40(11), 1353–1358.

    Article  Google Scholar 

  • Demarche, P., Junghanns, C., Nair, R. R., & Agathos, S. N. (2012). Harnessing the power of enzymes for environmental stewardship. Biotechnology Advances, 30, 933–953.

    Article  Google Scholar 

  • Demnerova, K., Mackova, M., Spevakova, V., Beranova, K., Kochankova, L., Lovecka, P., et al. (2005). Two approaches to biological decontamination of groundwater and soil polluted by aromatics-characterization of microbial populations. International Microbiology, 8, 205–211.

    Google Scholar 

  • Diez, M. C., Gallardo, F., Tortella, G., Rubilar, O., Navia, R., & Bornhardt, C. (2012). Chlorophenol degradation in soil columns inoculated with Anthracophyllum discolor immobilized on wheat grains. Journal of Environmental Management, 95(Suppl), S83–S87.

    Article  Google Scholar 

  • Diez, M. C., Mora, M. L., & Videla, S. (1999). Adsorption of phenolic compounds and color from bleached Kraft mill effluent using allophanic compounds. Water Research, 33, 125–130.

    Article  Google Scholar 

  • DiVincenzo, J., & Sparks, D. L. (2001). Sorption of the neutral and charges forms of pentachlorophenol on soil: evidence for different mechanisms. Archives of Environmental Contamination and Toxicology, 40, 445–450.

    Article  Google Scholar 

  • Dong, X., Hong, Q., He, L., Jiang, X., & Li, S. (2009). Characterization of phenol-degrading bacterial strains isolated from natural soil. International Biodeterioration and Biodegradation, 63, 365–370.

    Article  Google Scholar 

  • El-Naas, M. H., Al-Muhtaseb, S. A., & Makhlouf, S. (2009). Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. Journal of Hazardous Materials, 164, 720–725.

    Article  Google Scholar 

  • El-Naas, M. H., Al-Zuhair, S., & Makhlouf, S. (2010). Continuous biodegradation of phenol in a spouted bed bioreactor (SBBR). Chemical Engineering Journal, 160, 565–570.

    Article  Google Scholar 

  • Esteve-Núñez, A., Caballero, A., & Ramos, J. L. (2001). Biological degradation of 2,4,6-rinitrotoluene. Microbiology and Molecular Biology Reviews, 65, 335–352.

    Article  Google Scholar 

  • Farrell, A., & Quilty, B. (2002). The enhancement of 2-chlorophenol degradation by a mixed microbial community when augmented with Pseudomonas putida CP1. Water Research, 36, 2443–2450.

    Article  Google Scholar 

  • Fava, F., Armenante, P. M., & Kafkewitz, D. (1995). Aerobic degradation and dechlorination of 2 = chlorophenol, 3-chlorophenol and 4-chlorophenol by a Pseudomonas pickettii strain. Letters in Applied Microbiology, 21, 307–312.

    Article  Google Scholar 

  • Ferraroni, M., Kolomytseva, M. P., Solyanikova, I. P., Scozzafava, A., Golovleva, L. A., & Briganti, F. (2006). Crystal structure of 3-chlorocatechol 1,2-dioxygenase key enzyme of a new modified ortho-pathway from the gram-positive Rhodococcus opacus 1CP grown on 2-chlorophenol. Journal of Molecular Biology, 360, 788–799.

    Article  Google Scholar 

  • Fewson, C. A. (1988). Biodegradation of xenobiotic and other persistent compounds: The causes of recalcitrance. Trends in Biotechnology, 6, 148–153.

    Article  Google Scholar 

  • Field, J. A., & Sierra-Alvarez, R. (2008). Microbial transformation and degradation of polychlorinated biphenyls. Environmental Pollution, 155, 1–12.

    Article  Google Scholar 

  • Finkel’shtein, Z. I., Baskunov, B. P., Golovlev, E. L., Moiseeva, O. V., Vervoort, J., Rietjens, I., et al. (2000). Dependence of the conversion of chlorophenols by rhodococci on the number and position of chlorine atoms in the aromatic ring. Microbiology, 69, 40–70.

    Article  Google Scholar 

  • Fodil, D., Jaouadi, B., Badis, A., Nadia, Z. J., Ferradji, F. Z., Bejar, S., et al. (2012). A thermostable humic acid peroxidase from Streptomyces sp. strain AH4: Purification and biochemical characterization. Bioresource Technology, 111, 383–390.

    Article  Google Scholar 

  • Gallizia, I., McClean, S., & Banat, I. (2003). Bacterial biodegradation of phenol and 2,4-dichlorophenol. Journal of Chemical Technology and Biotechnology, 78, 959–963.

    Article  Google Scholar 

  • Gaofeng, W., Hong, X., & Mei, J. (2004). Biodegradation of chlorophenols: A review. Chemical Journal on Internet, 6, 1–67.

    Google Scholar 

  • Gibson, S. A., & Suflita, J. M. (1986). Extrapolation of biodegradation results to groundwater aquifers: Reductive dehalogenation of aromatic compounds. Applied and Environment Microbiology, 52, 681–688.

    Google Scholar 

  • Haggblom, M. M., Apajalahti, J. H., & Salkinoja-Salonen, M. S. (1988a). O-methylation of chlorinated para-hydroquinones by Rhodococcus chlorophenolicus. Applied and Environment Microbiology, 54, 1818–1824.

    Google Scholar 

  • Haggblom, M. M., Nohynek, L. J., & Salkinoja Salonen, M. S. (1988b). Degradation and o-methylation of chlorinated phenolic-compounds by Rhodococcus and Mycobacterium strains. Applied and Environment Microbiology, 54, 3043–3052.

    Google Scholar 

  • Haggblom, M. M., Rivera, M. D., & Young, L. Y. (1993). Influence of alternative electron-acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic-acids. Applied and Environment Microbiology, 59, 1162–1167.

    Google Scholar 

  • Hahn, D., Cozzolino, A., Piccolo, A., & Armenante, P. M. (2007). Reduction of 2,4-dichlorophenol toxicity to Pseudomonas putida after oxidative incubation with humic substances and a biomimetic catalyst. Ecotoxicol Environ Safety, 66, 335–342.

    Article  Google Scholar 

  • Hale, D. D., Reineke, W., & Wiegel, J. (1994). Chlorophenol degradation. In G. R. Chaudhry (Ed.), Biological degradation and bioremediation of toxic chemicals (pp. 74–91). London, UK: Chapman and Hall.

    Google Scholar 

  • Hao, O. J., Kim, M. H., Seagren, E. A., & Kim, H. (2002). Kinetics of phenol and chlorophenol utilization by Acinetobacter species. Chemosphere, 46, 797–807.

    Article  Google Scholar 

  • Heinaru, E., Merimaa, M., Viggor, S., Lehiste, M., Leito, I., Truu, J., et al. (2005). Biodegradation efficiency of functionally important populations selected for bioaugmentation in phenol- and oil-polluted area. FEMS Microbiology Ecology, 51, 363–373.

    Article  Google Scholar 

  • Horowitz, A., Suflita, J. M., & Tiedje, J. M. (1983). Reductive dehalogenation of halobenzoates by anaerobic lake sediment microorganisms. Applied and Environment Microbiology, 45, 1459–1465.

    Google Scholar 

  • Horvath, R. S. (1972). Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriological Reviews, 36, 146–155.

    Google Scholar 

  • Hsieh, F.-M., Huang, C., Lin, T.-F., Chen, Y.-M., & Lin, J.-C. (2008). Study of sodium tripolyphosphate-crosslinked chitosan beads entrapped with Pseudomonas putida for phenol degradation. Process Biochemistry, 43, 83–92.

    Article  Google Scholar 

  • Hussain, A., Kumar, P., & Mehrotra, I. (2010). Nitrogen biotransformation in anaerobic treatment of phenolic wastewater. Desalination, 250, 35–41.

    Article  Google Scholar 

  • Hwang, H. M., Hodson, R. E., & Lee, R. F. (1986). Degradation of phenol and chlorophenols by sunlight and microbes in estuarine water. Environmental Science and Technology, 20, 1002–1007.

    Article  Google Scholar 

  • Iranzo, M., Sain-Pardo, I., Boluda, R., Sanchez, J., & Mor-meneo, S. (2001). The use of microorganisms in envi-ronmental remediation. Annals of Microbiology, 51, 135–143.

    Google Scholar 

  • Ivanciuc, T., Ivanciuc, O., & Douglas, J. K. (2006). Prediction of environmental properties for chlorophenols with posetic quantitative super-structure/property relationships (QSSPR). International Journal of Molecular Sciences, 7, 358–374.

    Article  Google Scholar 

  • Janke, D., Ihn, W., & Tresselt, D. (1989). Critical steps in degradation of chloroaromatics by Rhodococci. IV. Detailed kinetics of substrate removal and product formation by resting preadapted cells. Journal of Basic Microbiology, 29, 1–10.

    Article  Google Scholar 

  • Jensen, J. (1996). Chlorophenols in the terrestrial environment. Reviews of Environmental Contamination and Toxicology, 146, 211–223.

    Google Scholar 

  • Jiang, H.-L., Tay, T.-L., Maszenan, A. M., & Tay, J.-H. (2006). Physiological traits of bacterial strains isolated from phenol-degrading aerobic granules. FEMS Microbiology Ecology, 57, 182–191.

    Article  Google Scholar 

  • Jones, P. A. (1983). Chlorophenols and their impurities in the Canadian environment. Environmental Protection Service: Environment Canada.

    Google Scholar 

  • Kargi, F., & Eker, S. (2004). Toxicity and batch biodegradation kinetics of 2,4 dichlorophenol by pure Pseudomonas putida culture. Enyzme and Microbial Technology, 35, 424–428.

    Article  Google Scholar 

  • Kim, J.-H., Oh, K.-K., Lee, S.-T., Kim, S.-W., & Hong, S.-I. (2002). Biodegradation of phenol and chlorophenols with defined mixed culture in shake-flasks and a packed bed reactor. Process Biochemistry, 37, 1367–1373.

    Article  Google Scholar 

  • Kim, M. H., & Hao, O. J. (1999). Cometabolic degradation of chlorophenols by Acinetobacter species. Water Research, 33, 562–574.

    Article  Google Scholar 

  • Kiyohara, H., Takizawa, N., Uchiyama, T., Ikarugi, H., & Nagao, K. (1989). Degradability of polychlorinated phenols by bacterial populations in soil. Journal of Fermentation and Bioengineering, 67, 339–344.

    Article  Google Scholar 

  • Klekner, V., & Kosaric, N. (1992). Degradation of phenolic mixtures by chlorella. Environmental Technology, 13, 503–506.

    Article  Google Scholar 

  • Kohring, G. W., Rogers, J. E., & Wiegel, J. (1989). Anaerobic biodegradation of 2,4-dichlorophenol in fresh-water lake-sediments at different temperatures. Applied and Environment Microbiology, 55, 348–353.

    Google Scholar 

  • Kookana, R. S., & Rogers, S. L. (1995). Effects of pulp mill effluent disposal on soil. Reviews of Environmental Contamination and Toxicology, 142, 13–64.

    Google Scholar 

  • Krieg, N. R., & Holt, J. C. (Eds.). (1984). Bergey’s Manual of Systematic Bacteriology (1st ed., Vol. 1). Baltimore: Williams and Wilkins.

    Google Scholar 

  • Laine, M. M., & Jørgensen, K. S. (1997). Effective and safe composting of chlorophenol-contaminated soil in pilot scale. Environmental Science and Technology, 31, 371–378.

    Article  Google Scholar 

  • Lallai, A., & Mura, G. (2004a). Biodegradation of 2-chlorophenol in forest soil: effect of inoculation with aerobic sewage sludge. Environmental Toxicology and Chemistry, 23, 325–330.

    Article  Google Scholar 

  • Lallai, A., & Mura, G. (2004b). Biodegradation of 2-chlorophenol in forest soil: effect ofinoculation with aerobic sewage sludge. Environmental Toxicology and Chemistry, 23(2), 325–330.

    Article  Google Scholar 

  • Larsson, P., & Lemkemeier, K. (1989). Microbial mineralization of chlorinated phenols and biphenyls in sediment-water systems from humic and clear-water lakes. Water Research, 23, 1081–1085.

    Article  Google Scholar 

  • Lee, S. H., Lee, S. H., Ryu, S. J., Kang, C. S., Suma, Y., & Kim, H. S. (2013). Effective biochemical decomposition of chlorinated aromatic hydrocarbons with a biocatalyst immobilized on a natural enzyme support. Bioresource Technology, 141, 89–96.

    Article  Google Scholar 

  • Levén, L., Nyberg, K., Korkea-aho, L., & Schnürer, A. (2006). Phenols in anaerobic digestion processes and inhibition of ammonia oxidising bacteria (AOB) in soil. Science of the Total Environment, 364, 229–238.

    Article  Google Scholar 

  • Li, J., Cai, W., & Zhu, L. (2011). The characteristics and enzyme activities of 4-chlorophenol biodegradation by Fusarium sp. Bioresource Technology, 102, 2985–2989.

    Article  Google Scholar 

  • Li, Y., Li, J., Wang, C., & Wang, P. (2010). Growth kinetics and phenol biodegradation of psychrotrophic Pseudomonas putida LY1. Bioresource Technology, 101, 6740–6744.

    Article  Google Scholar 

  • Lika, K., & Papadakis, I. A. (2009). Modeling the biodegradation of phenolic compounds by microalgae. Journal of Sea Research, 62, 135–146.

    Article  Google Scholar 

  • Liu, S.-M., Kuo, C.-E., & Hsu, T.-B. (1996). Reductive dechlorination of chlorophenols and pentachlorophenol in anoxic estuarine sediments. Chemosphere, 32, 1287–1300.

    Article  Google Scholar 

  • Loh, K.-C., & Cao, B. (2008). Paradigm in biodegradation using Pseudomonas putida—A review of proteomics studies. Enyzme and Microbial Technology, 43, 1–12.

    Article  Google Scholar 

  • Loh, K.-C., & Wang, S.-J. (1998). Enhancement of biodegradation of phenol and a non-growth substrate 4-chlorophenol by medium augmentation with conventional carbon sources. Biodegradation, 8, 329–338.

    Article  Google Scholar 

  • Londry, K. L., & Fedorak, P. M. (1992). Benzoic acid intermediates in the anaerobic biodegradation of phenols. Canadian Journal of Microbiology, 38, 1–11.

    Article  Google Scholar 

  • Lu, C.-J., Lee, C.-M., & Huang, C.-Z. (1996). Biodegradation of chlorophenols by immobilized pure-culture microorganisms. Water Science and Technology, 34, 67–72.

    Article  Google Scholar 

  • Mahmood, S., Paton, G. I., & Prosser, J. I. (2005). Cultivation-independent in situ molecular analysis of bacteria involved in degradation of pentachlorophenol in soil. Environmental Microbiology, 7, 1349–1360.

    Article  Google Scholar 

  • Majumder, P. S., & Gupta, S. K. (2007). Removal of chlorophenols in sequential anaerobic–aerobic reactors. Bioresource Technology, 98, 118–129.

    Article  Google Scholar 

  • Majumder, P. S., & Gupta, S. K. (2009). Effect of influent pH and alkalinity on the removal of chlorophenols in sequential anaerobic–aerobic reactors. Bioresource Technology, 100, 1881–1883.

    Article  Google Scholar 

  • Margesin, R., Moertelmaier, C., & Mair, J. (2013). Low-temperature biodegradation of petroleum hydrocarbons (n-alkanes, phenol, anthracene,) by four actinobacterial strains. International Biodeterioration and Biodegradation, 84, 185–191.

    Article  Google Scholar 

  • Martinez, A. T., Speranza, M., Ruiz-Duenas, F. J., Ferreira, P., Camarero, S., Guillen, F., et al. (2005). Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology, 8, 195–204.

    Google Scholar 

  • Matus, V., Sanchez, M. A., Martinez, M., & Gonzalez, B. (2003). Efficient degradation of 2,4,6-trichlorophenol requires a set of catabolic genes related to tcp genes from Ralstonia eutropha JMP134 (pJP4). Applied and Environment Microbiology, 69, 7108–7115.

    Article  Google Scholar 

  • Menke, B., & Rehm, H.-J. (1992). Degradation of mixtures of monochlorophenols and phenol as substrates for free and immobilized cells of Alcaligenes sp. A 7–2. Applied Microbiology and Biotechnology, 37, 655–661.

    Article  Google Scholar 

  • MichaÅ‚owicz, J., & Duda, W. (2007). Phenols—sources and toxicity. Polish Journal of Environmental Studies, 16, 347–362.

    Google Scholar 

  • Middeldorp, P., De Wolf, J., Zehnder, A., & Schraa, G. (1997). Enrichment and properties of a 1,2,4-trichlorobenzene-dechlorinating methanogenic microbial consortium. Applied and Environment Microbiology, 63, 1225–1229.

    Google Scholar 

  • Mikesell, M. D., & Boyd, S. A. (1986). Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms. Applied and Environment Microbiology, 52, 861–865.

    Google Scholar 

  • Milliken, C. E., Meier, G. P., Sowers, K. R., & May, H. D. (2004). Chlorophenol production by anaerobic microorganisms: Transformation of a biogenic chlorinated hydroquinone metabolite. Applied and Environment Microbiology, 70, 2494–2496.

    Article  Google Scholar 

  • Mohidem, N. A., & Mat, H. B. (2012). The catalytic activity enhancement and biodegradation potential of free laccase and novel sol–gel laccase in non-conventional solvents. Bioresource technology, 114, 472–477.

    Article  Google Scholar 

  • Mohn, W. M., & Kennedy, K. J. (1992). Reductive dehalogination of chlorophenols by Desulfomonile tiedje DCB-1. Applied and Environment Microbiology, 58, 1367–1370.

    Google Scholar 

  • Moorman, T. B., Cowan, J. K., Arthur, E. L., & Coats, J. R. (2001). Organic amendments to enhance herbicide biodegradation in contaminated soils. Biology and Fertility of Soils, 33, 541–545.

    Article  Google Scholar 

  • Murialdo, S. E., Fenoglio, R., Haure, P. M., & GonzÙ„lez, J. F. (2003). Degradation of phenol and chlorophenols by mixed and pure cultures. Water SA, 29, 457–463.

    Google Scholar 

  • Muñoz, R., Souza, T. S. O., Glittmann, L., Pérez, R., & Quijano, G. (2013). Biological anoxic treatment of O2-free VOC emissions from the petrochemical industry: A proof of concept study. Journal of Hazardous Materials, 260, 442–450.

    Article  Google Scholar 

  • Namkoong, W., Loehr, R. C., & Malina, J. F. (1988). Kinetics of phenolic compoundsremoval in soil. Hazardous Waste and Hazardous Materials, 5, 321–328.

    Article  Google Scholar 

  • Nordin, K., Unell, M., & Jansson, J. K. (2005). Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6. Applied and Environment Microbiology, 71, 6538–6544.

    Article  Google Scholar 

  • Nuhoglu, A., & Yalcin, B. (2005). Modelling of phenol removal in a batch reactor. Process Biochemistry, 40, 1233–1239.

    Article  Google Scholar 

  • Oberg, L. G., & Rappe, C. (1992). Biochemical formation of PCDD/Fs from chlorophenols. Chemosphere, 25, 49–52.

    Article  Google Scholar 

  • Okpokwasili, G. C., & Nweke, C. O. (2005). Microbial growth and substrate utilization kinetics. African Journal of Biotechnology, 5, 305–307.

    Google Scholar 

  • Olaniran, A. O., & Igbinosa, E. O. (2011). Chlorophenols and other related derivatives of environmental concern: Properties, distribution and microbial degradation processes. Chemosphere, 83, 1297–1306.

    Article  Google Scholar 

  • Onysko, K. A., Budman, H. M., & Robinson, C. W. (2000). Effect of temperature on the inhibition kinetics of phenol biodegradation by Pseudomonas putida Q5. Biotechnology and Bioengineering, 70, 291–299.

    Article  Google Scholar 

  • Orser, C. S., & Lange, C. C. (1994). Molecular analysis of pentachlorophenol degradation. Biodegradation, 5, 277–288.

    Article  Google Scholar 

  • Palleroni, N. J. (1986). Taxonomy of the Pseudomonads. In J. R. Sokatch (Ed.), The bacteria (Vol. X, pp. 3–25). The biology of Pseudomonads. New York: Academic Press.

    Google Scholar 

  • Pandey, G., Paul, D., & Jain, R. K. (2003). Branching of o-nitrobenzoate degradation pathway in Arthrobacter protophormiae RKJ100: Identification of new intermediates. FEMS Microbiology Letters, 229, 231–236.

    Article  Google Scholar 

  • Papazi, A., & Kotzabasis, K. (2007). Bioenergetic strategy of microalgae for the biodegradation of phenolic compounds—Exogenously supplied energy and carbon sources adjust the level of biodegradation. Journal of Biotechnology, 129, 706–716.

    Article  Google Scholar 

  • Park, H.-J., & Kim, E.-S. (2003). An inducible Streptomyces gene cluster involved in aromatic compound metabolism. FEMS Microbiology Letters, 226, 151–157.

    Article  Google Scholar 

  • Pedroza, A. M., Mosqueda, R., Alonso-Vante, N., & Rodríguez-Vázquez, R. (2007). Sequential treatment via and UV//RuxSey to reduce contaminants in waste water resulting from the bleaching process during paper production. Chemosphere, 67, 793–801.

    Article  Google Scholar 

  • Pieper, D., & Reineke, W. (2000). Engineering bacteria for bioremediation. Current Opinion in Biotechnology, 11, 262–270.

    Article  Google Scholar 

  • Pignatello, J. J., Martinson, M. M., Steiert, J. G., Carlson, R. E., & Crawford, R. L. (1983). Biodegradation and photolysis of pentachlorophenol in artificial freshwater streams. Applied and Environment Microbiology, 46(5), 1024–1031.

    Google Scholar 

  • Potgieter, J. H., Bada, S. O., & Potgieter-Vermaak, S. S. (2009). Adsorption removal of various phenol from water by South African coal fly ash. Water SA, 35, 110–112.

    Google Scholar 

  • Puyol, D., Mohedano, A. F., Rodriguez, J. J., & Sanz, J. L. (2011). Effect of 2,4,6-trichlorophenol on the microbial activity of adapted anaerobic granular sludge bioaugmented with Desulfito bacterium strains. New Biotechnology, 29, 79–89.

    Article  Google Scholar 

  • Qiu, X., Zhong, Q., Li, M., Bai, W., & Li, B. (2007). Biodegradation of p-nitrophenol by methyl parathion-degrading Ochrobactrum sp. B2. International Biodeterioration and Biodegradation, 59, 297–301.

    Article  Google Scholar 

  • Quan, X., Shi, H., Zhang, Y., Wang, J., & Qian, Y. (2004). Biodegradation of 2,4-dichlorophenol and phenol in an airlift inner-loop bioreactor immobilized with Achromobacter sp. Separation and Purification Technology, 34, 97–103.

    Article  Google Scholar 

  • Reddy, G. V. B., & Gold, M. H. (2000). Degradation of pentachlorophenol by Phanerochaete chrysosporium: Intermediates and reactions involved. Microbiology, 146, 405–413.

    Article  Google Scholar 

  • Ren, M., Song, Y., Xiao, S., Zeng, P., & Peng, J. (2011). Treatment of berberine hydrochloride wastewater by using pulse electro-coagulation process with Fe electrode. Chemical Engineering Journal, 169, 84–90.

    Article  Google Scholar 

  • Rubilar, O., Diez, M. C., & Gianfreda, L. (2008). Transformation of chlorinated phenolic compounds by white rot fungi. Critical Reviews in Environmental Science and Technology, 38, 227–268.

    Article  Google Scholar 

  • Ryan, M. P., Pembroke, J. T., & Adley, C. C. (2007). Ralstonia pickettii in environmental biotechnology: Potential and applications. Journal of Applied Microbiology, 103, 754–764.

    Article  Google Scholar 

  • Sahinkaya, E., & Dilek, F. B. (2006a). Biodegradation of 4-CP and 2,4-DCP mixture in a rotating biological contactor (RBC). Biochemical Engineering Journal, 31, 141–147.

    Article  Google Scholar 

  • Sahinkaya, E., & Dilek, F. B. (2006b). Effect of biogenic substrate concentration on the performance of sequencing batch reactor treating 4-CP and 2,4-DCP mixtures. Journal of Hazardous Materials, 128, 258–264.

    Article  Google Scholar 

  • Sahinkaya, E., & Dilek, F. B. (2007). Biodegradation kinetics of 2,4-dichlorophenol by acclimated mixed cultures. Journal of Biotechnology, 127, 716–726.

    Article  Google Scholar 

  • Sanchez, M. A., Vasquez, M., & Gonzalez, B. (2004). A previously unexposed forest soil microbial community degrades high levels of the pollutant 2,4,6-trichlorophenol. Applied and Environment Microbiology, 70, 7567–7570.

    Article  Google Scholar 

  • Scelza, R., Rao, M. A., & Gianfreda, L. (2008). Response of an agricultural soil to pentachlorophenol (PCP) contamination and the addition of compost or dissolved organic matter. Soil Biology and Biochemistry, 40, 2162–2169.

    Article  Google Scholar 

  • Semprini, L. (1997). Strategies for the aerobic co-metabolism of chlorinated solvents. Current Opinion in Biotechnology, 8, 296–308.

    Article  Google Scholar 

  • Sharpee, K. W., Duxbury, J. M., & Alexande, M. (1973). 2,4-Dichlorophenoxyacetate metabolism by Arthrobacter sp.: Accumulation of a chlorobutenolide. Journal of Applied Microbiology, 26, 445–447.

    Google Scholar 

  • Shourian, M., Noghabi, K. A., Zahiri, H. S., Bagheri, T., Karballaei, G., Mollaei, M., et al. (2009). Efficient phenol degradation by a newly characterized Pseudomonas sp. SA01 isolated from pharmaceutical wastewaters. Desalination, 246, 577–594.

    Article  Google Scholar 

  • Singh, B., & Walker, A. (2006). Microbial degradation of organophosphorus compounds. Microbiology Reviews, 30, 428–471.

    Google Scholar 

  • Sittig, M. (1981). Handbook of toxic and hazardous chemicals.

    Google Scholar 

  • Siuda, J. F. (1980). Natural production of organohalogens. In: Water chlorination: Environmental impact and health effects, vol 3 (pp. 63–72). Science Publishers Inc.

    Google Scholar 

  • Smith, J. A., & Novak, J. T. (1987). Biodegradation of chlorinated phenols in subsurface soils. Water, Air, and Soil Pollution, 33, 29–42.

    Article  Google Scholar 

  • Solyanikova, I. P., & Golovleva, L. A. (2004). Bacterial degradation of chlorophenols: Pathways, biochemica and genetic aspects. Journal of Environmental Science and Health, B39, 333–351.

    Article  Google Scholar 

  • Stehlickova, L., Svab, M., Wimmerova, L., & Kozler, J. (2009). Intensification of phenol biodegradation by humic substances. International Biodeterioration and Biodegradation, 63, 923–927.

    Article  Google Scholar 

  • Steinle, P., Stucki, G., Stettler, R., & Hanselmann, W. (1998). Aerobic mineralization of 2,6-Dichlorophenol by Ralstonia sp. strain RK1. Applied and Environment Microbiology, 64, 2566–2571.

    Google Scholar 

  • Stoilova, I., Krastanov, A., Stanchev, V., Daniel, D., Gerginova, M., & Alexieva, Z. (2006). Biodegradation of high amounts of phenol, catechol, 2,4-dichlorophenol and 2,6-dimethoxyphenol by Aspergillus awamori cells. Enyzme and Microbial Technology, 39, 1036–1041.

    Article  Google Scholar 

  • Stoilova, I., Krastanov, A., Yanakieva, I., Kratchanova, M., & Yemendjiev, H. (2007). Biodegradation of mixed phenolic compounds by Aspergillus awamori NRRL 3112. nternational Biodeterioration and Biodegradation, 60, 342–346.

    Article  Google Scholar 

  • Susarla, S., Yonezawa, Y., Nakanishi, J., & Masunaga, S. (1997). Anaerobic transformation kinetics and pathways of chlorophenols in fresh water lake sediment. Water Science and Technology, 36, 99–105.

    Article  Google Scholar 

  • Suzuki, T. (1983). Methylation and hydroxylation of pentachlorophenol by mycobacterium-sp isolated from soil. Journal of Pesticide Science, 8, 419–428.

    Article  Google Scholar 

  • Takeuchi, R., Suwa, Y., Yamagishi, T., & Yonezawa, Y. (2000). Anaerobic transformation of chlorophenols in methanogenic sludge unexposed to chlorophenols. Chemosphere, 41, 1457–1462.

    Article  Google Scholar 

  • Tamer, E., Hamid, Z., Aly, A. M., Ossama, E. T., Bo, M., & Benoit, G. (2006). Sequential UV–biological degradation of chlorophenols. Chemosphere, 63, 277–284.

    Article  Google Scholar 

  • Tiedje, J. M., Duxbury, J. M., Alexande, M., & Dawson, J. E. (1969). 2,4-D metabolism: Pathway of degradation of chlorocatechols by Arthrobacter sp. Journal of Agricultural and Food Chemistry, 17, 1021–1026.

    Article  Google Scholar 

  • Tobajas, M., Monsalvo, V. M., Mohedano, A. F., & Rodriguez, J. J. (2012). Enhancement of cometabolic biodegradation of 4-chlorophenol induced with phenol and glucose as carbon sources by Comamonas testosteroni. Journal of Environmental Management, 95(Suppl), 116–121.

    Article  Google Scholar 

  • Uotila, J., Kitunen, V., Saastamoinen, T., Coote, T., Haggblom, M., & Salkinoja-Salonen, M. (1992). Characterization of aromatic dehalogenases of Mycobacterium fortuitum CG-2. Journal of Bacteriology, 174, 5669–5675.

    Google Scholar 

  • Uotila, J. S., & Salkinoja-Salonen, M. S. (1991). Dechlorination of pentachlorophenol by membrane boundenzymes of Rhodococcus chlorophenolicus PCP-I. Biodegradation, 2, 25–31.

    Article  Google Scholar 

  • Valo, R. J., & Salkinoja-Salonen, M. S. (1986). Bioreclamation of chlorophenol-contaminated soilby composting. Applied Microbiology and Biotechnology, 25, 68–75.

    Article  Google Scholar 

  • Van Agteren, M. H., Keuning, S., & Janssen, D. B. (1998). Handbook on biodegradation and biological treatment of hazardous organic compounds. London: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Vischetti, C., Casucci, C., Perucci, P. (2002). Relationship between changes of soil microbial biomass content and imazamox and benfluralin degradation. Springer Verlag.

    Google Scholar 

  • Wang, S. J. (1997). Influence of conventional carbon supplements on biodegradation of phenol and cometabolite, 4-chlorophenol (4-CP). ME thesis, National University of Singapore.

    Google Scholar 

  • Wang, S.-G., Liu, X.-W., Zhang, H.-Y., Gong, W.-X., Sun, X.-F., & Gao, B.-Y. (2007a). Aerobic granulation for 2,4-dichlorophenol biodegradation in a sequencing batch reactor. Chemosphere, 69, 769–775.

    Article  Google Scholar 

  • Wang, Y., Tian, Y., Han, B., H-b, Zhao, J-n, Bi, & B-l, Cai. (2007b). Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12. Journal of Environmental Science, 19, 222–225.

    Article  Google Scholar 

  • Warner, K. A., Gilmour, C. C., & Capone, D. G. (2002). Reductive dechlorination of 2,4-dichlorophenol and related microbial processes under limiting and non-limiting sulfate concentration in anaerobic mid-Chesapeake Bay sediments. FEMS Microbiology Ecology, 40, 159–165.

    Article  Google Scholar 

  • Watanabe, I. (1978). Pentachlorophenol (PCP) decomposing activity of field soils treated annually with PCP. Soil Biology and Biochemistry, 10, 71–75.

    Article  Google Scholar 

  • Weber, R., Gaus, C., & Tysklind, M. (2008). Dioxin- and POP-contaminated sites—contemporary and future relevance and challenges: Overview on background aims and scope of the series. Environmental Science and Pollution Research, 15, 363–393.

    Article  Google Scholar 

  • Xun, L. Y., & Webster, C. M. (2004). A monooxygenase catalyzes sequential dechlorinations of 2,4,6-trichlorophenol by oxidative and hydrolytic reactions. Journal of Biological Chemistry, 279, 6696–6700.

    Article  Google Scholar 

  • Yang, R. D., & Humphrey, A. E. (1975). Dynamic and steady state studies of phenol biodegradation in pure and mixed cultures. Biotechnology and Bioengineering, 17, 1211–1235.

    Article  Google Scholar 

  • Yang, S., Shibata, A., Yoshida, N., & Katayama, A. (2009). Anaerobic mineralization of pentachlorophenol (PCP) by combining PCP-dechlorinating and phenol-degrading cultures. Biotechnology and Bioengineering, 102, 81–90.

    Article  Google Scholar 

  • Yu, Z., Zeng, G.-M., Chen, Y.-N., Zhang, J.-C., Yu, Y., Li, H., et al. (2011). Effects of inoculation with Phanerochaete chrysosporium on remediation of pentachlorophenol-contaminated soil waste by composting. Process Biochemistry, 46, 1285–1291.

    Article  Google Scholar 

  • Zhang, C., & Bennett, G. N. (2005). Biodegradation of xenobiotic by anaerobic bacteria. Applied Microbiology and Biotechnology, 67(5), 600–618.

    Article  Google Scholar 

  • Zhang, G., Gao, Y., Zhang, Y., & Gu, P. (2005). Removal of fluoride from drinking water by a membrane coagulation reactor (MCR). Desalination, 177, 143–155.

    Article  Google Scholar 

  • Zhang, X., & Wiegel, J. (1990). Sequential anaerobic degradation of 2,4- dichlorophenol in freshwater sediments. Applied and Environment Microbiology, 56, 1119–1127.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Israa Elkonaissi and Riham Surkatti for their help in preparing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muftah H. El-Naas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

El-Naas, M.H., Mousa, H.A., Gamal, M.E. (2017). Microbial Degradation of Chlorophenols. In: Singh, S. (eds) Microbe-Induced Degradation of Pesticides. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-45156-5_2

Download citation

Publish with us

Policies and ethics