Skip to main content

Selenide Glass Fibers for Biochemical Infrared Sensing

  • Chapter
  • First Online:

Abstract

This chapter discusses the use of selenide glass fibers for biochemical sensing. Selenide glasses combine two unique properties: (1) high transparency in the mid-infrared, (2) excellent rheological properties for molding and drawing, which make them the most suitable candidate materials for infrared fiber technology. In particular, chalcogenide glasses exhibit high transparency over the spectral domain corresponding to molecular vibrations and are therefore of great interest for optical sensing applications. Here we review the basic principles of fiber-based spectroscopy and the properties of chalcogenide glasses such as selenides. We then review the state of the art in applications of fiber evanescent wave spectroscopy to chemical and biomedical sensing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D.A.C. Compton, S.L. Hill, N.A. Wright, M.A. Druy, J. Piche, W.A. Stevenson, D.W. Vidrine, In situ FT-IR analysis of a composite curing reaction using a mid-infrared transmitting optical fiber. Appl. Spectrosc. 42, 972 (1988)

    Article  Google Scholar 

  2. P. Lucas, D. LeCoq, C. Juncker, J. Collier, D.E. Boesewetter, C. Boussard-Pledel, B. Bureau, M.R. Riley, Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy. Appl. Spectrosc. 59, 1–9 (2005)

    Article  Google Scholar 

  3. D. Naumann, Microbiological characterizations by FT-IR spectroscopy. Nature 351, 81 (1991)

    Article  Google Scholar 

  4. M. Diem, S. Boydston-White, L. Chiriboga, Infrared spectroscopy of cells and tissues: shinning light onto a novel subject. Appl. Spectrosc. 53, 148A (1999)

    Article  Google Scholar 

  5. D. Naumann, Infrared spectroscopy in microbiology, in Encyclopedia of Analytical Chemistry, ed. by R.A. Meyers (John Wiley & Sons Ltd, Chichester, 2000), p. 102

    Google Scholar 

  6. M. Diem, K. Papamarkakis, J. Schubert, B. Bird, M.J. Romeo, M. Miljkovic, The infrared spectral signatures of disease: extracting the distinguishing spectral features between normal and diseased states. Appl. Spectrosc. 63, 307A–318A (2009)

    Article  Google Scholar 

  7. M. Diem, N. Laver, K. Bedrossian, J. Schubert, K. Papamarkakis, B. Bird, M. Miljkovic, Detection of viral infection in epithelial cells by infrared spectral cytopathology, in Handbook of Biophotonics, ed. by J. Popp (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2011), pp. 251–258

    Google Scholar 

  8. M. Karlowatz, M. Kraft, B. Mizaikoff, Simultaneous quantitative determination of benzene, toluene, and xylenes in water using mid-infrared evanescent field. Anal. Chem. 76, 2643 (2004)

    Article  Google Scholar 

  9. R. Krska, E. Rosenber, K. Taga, R. Kellner, A. Messica, A. Katzir, Polymer coated silver halide infrared fibers as sensing devices for chlorinated hydrocarbons in water. Appl. Phys. Lett. 61, 1778 (1992)

    Article  Google Scholar 

  10. M. Diem, L. Chiriboga, P. Lasch, A. Pacifico, IR spectra and IR spectral maps of individual normal and cancerous cells. Biopolymers 61, 349–353 (2002)

    Article  Google Scholar 

  11. A. Pacifico, L.A. Chiriboga, P. Lasch, M. Diem, Infrared spectroscopy of cultured cells II. Spectra of exponentially growing, serum-deprived and confluent cells. Vib. Spectrosc. 32, 107 (2003)

    Article  Google Scholar 

  12. B. Rigas, S. Morgello, I.S. Goldman, P.T.T. Wong, Human colorectal cancers display abnormal FTIR spectra. Proc. Natl. Acad. Sci. U. S. A. 87, 8140 (1990)

    Article  Google Scholar 

  13. H. Fabian, P. Lasch, D. Naumann, Analysis of biofluids in aqueous environment based on mid-infrared spectroscopy. J. Biomed. Opt. 10, 031103 (2005)

    Article  Google Scholar 

  14. R. Nomen, J. Sempere, K. Aviles, Detection and characterization of water alcohol hydrates by on-line FTIR using multivariate data analysis. Chem. Eng. Sci. 56, 6577 (2001)

    Article  Google Scholar 

  15. T. Hasegawa, J. Nishijo, T. Imae, Q. Huo, R.M. Leblanc, Selective observation of boundary water near a solid/water interface by variable-angle polarization specific attenuated total reflection infrared spectroscopy and principal component analysis. J. Phys. Chem. B 105, 12056 (2001)

    Article  Google Scholar 

  16. F.A. Inon, J.M. Garrigues, S. Garrigues, A. Molina, M.D.L. Guardia, Selection of calibration set samples in determination of olive oil acidity by partial least squares-attenuated total reflectance-Fourier transform infrared spectroscopy. Anal. Chim. Acta 489, 59 (2003)

    Article  Google Scholar 

  17. J. Tewardi, J. Irudayaraj, Quantification of saccharides in multiple floral honeys using fourier transform infrared microattenuated total reflectance spectroscopy. J. Agric. Food Chem. 52, 3237 (2004)

    Article  Google Scholar 

  18. T. Udelhoven, D. Naumann, J. Schmitt, Development of a hierarchical classification system with artificial neural networks and FT-IR spectra for the identification of bacteria. Appl. Spectrosc. 54, 1471 (2000)

    Article  Google Scholar 

  19. O. Eytan, B.-A. Sela, A. Katzir, Fiber-optic evanescent-wave spectroscopy and neural networks: application to chemical blood analysis. Appl. Opt. 39, 3357–3360 (2000)

    Article  Google Scholar 

  20. N.J. Harrick, Internal Reflection Spectroscopy (Interscience Publishers, New York, 1967)

    Google Scholar 

  21. P. Lucas, M.R. Riley, C. Boussard-Pledel, B. Bureau, Advances in chalcogenide fiber evanescent wave biochemical sensing. Anal. Biochem. 351, 1–10 (2006)

    Article  Google Scholar 

  22. P. Lucas, B. Bureau, Advanced infrared glasses for biochemical sensing, in Biointerface Characterization by Advanced IR Spectroscopy, ed. by C.M. Pradier, Y.J. Chabal (Elsevier, Amsterdam, 2011), pp. 217–243

    Chapter  Google Scholar 

  23. D. Le Coq, K. Michel, J. Keirsse, C. Boussard-Pledel, G. Fonteneau, B. Bureau, J.-M. Le Quere, O. Sire, J. Lucas, Infrared glass fibers for in-situ sensing, chemical and biochemical reactions. C. R. Chim. 5, 907–913 (2002)

    Article  Google Scholar 

  24. C. Boussard-Pledel, S. Hocde, G. Fonteneau, H.L. Ma, X.H. Zhang, K. Lefoulgoc, J. Lucas, Infrared glass fibers for evanescent wave spectroscopy. Proc. SPIE 3596, 91 (1999)

    Article  Google Scholar 

  25. M.A. Druy, P.J. Glatkowski, W.A. Stevenson, Mid-IR tapered chalcogenide fiber optic attenuated total attenuated reflectance (ATR) sensors for monitoring epoxy resin chemistry. Proc. SPIE 2069, 113 (1993)

    Article  Google Scholar 

  26. K. Michel, B. Bureau, C. Pouvreau, J.C. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J.-L. Adam, K. Staubmann, H. Steinner, T. Baumann, A. Katzir, J. Bayona, W. Konz, Development of a chalcogenide glass fiber device for in situ pollutant detection. J. Non-Cryst. Solids 326, 434 (2003)

    Article  Google Scholar 

  27. H. Steiner, M. Jakusch, M. Kraft, M. Karlowatz, T. Baumann, R. Niessner, W. Konz, A. Brandenburg, K. Michel, C. Boussard-Pledel, B. Bureau, J. Lucas, Y. Reichlin, A. Katzir, N. Fleischmann, K. Staubmann, R. Allabashi, J.M. Bayona, B. Mizaikoff, In situ sensing of volatile organic compounds in groundwater: first field tests of a mid-infrared fiber-optic sensing system. Appl. Spectrosc. 57, 607–613 (2003)

    Article  Google Scholar 

  28. N. Afasnasyeva, R. Bruch, A. Katzir, Infrared fiberoptic evanescent wave spectroscopy: application in biology and medicine. Proc. SPIE 3596, 152 (1999)

    Article  Google Scholar 

  29. S. Hocde, O. Loreal, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, J. Lucas, Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis. J. Biomed. Opt. 9, 404–407 (2004)

    Article  Google Scholar 

  30. J. Keirsse, E. Lahaye, A. Bouter, V. Dupont, C. Boussard-Pledel, B. Bureau, J.-L. Adam, V. Monbet, O. Sire, Mapping bacterial surface population physiology in real-time: infrared spectroscopy of Proteus mirabilis swarm colonies. Appl. Spectrosc. 60, 584–591 (2006)

    Article  Google Scholar 

  31. M.L. Anne, C. Le Lan, V. Monbet, C. Boussard-Pledel, M. Ropert, O. Sire, M. Pouchard, C. Jard, J. Lucas, J.L. Adam, P. Brissot, B. Bureau, O. Loreal, Fiber evanescent wave spectroscopy using the mid-infrared provides useful fingerprints for metabolic profiling in humans. J. Biomed. Opt. 14, 054033 (2009)

    Article  Google Scholar 

  32. S. Hocde, C. Boussard-Pledel, G. Fonteneau, J. Lucas, Chalcogens based glasses for IR fiber chemical sensors. Solid State Sci. 3, 279–284 (2001)

    Article  Google Scholar 

  33. P. Lucas, A.A. Wilhelm, M. Videa, C. Boussard-Pledel, B. Bureau, Chemical stability of chalcogenide infrared glass fibers. Corros. Sci. 50, 2047–2052 (2008)

    Article  Google Scholar 

  34. V.S. Shiryaev, J.L. Adam, X.H. Zhang, C. Boussard-Pledel, J. Lucas, M.F. Churbanov, Infrared fibers based on Te-As-Se glass system with low optical losses. J. Non-Cryst. Solids 336, 113–119 (2004)

    Article  Google Scholar 

  35. E. Hecht, Optics, 2nd edn. (Addison-Wesley, Reading, MA, 1987)

    Google Scholar 

  36. E. Lepine, Z. Yang, Y. Gueguen, J. Troles, X.-H. Zhang, B. Bureau, C. Boussard-Pledel, J.-C. Sangleboeuf, P. Lucas, Optical microfabrication of tapers in low-loss chalcogenide fibers. J. Opt. Soc. Am. B 27, 966–971 (2010)

    Article  Google Scholar 

  37. D. Lecoq, K. Michel, G. Fonteneau, S. Hocde, C. Boussard-Pledel, J. Lucas, Infrared chalcogen glasses: chemical polishing and fiber remote spectroscopy. Int. J. Inorg. Mater. 3, 233–239 (2001)

    Article  Google Scholar 

  38. S. Cui, R. Chahal, C. Boussard-Pledel, V. Nazabal, J.-L. Doualan, J. Troles, J. Lucas, B. Bureau, From selenium- to tellurium-based glass optical fibers for infrared spectroscopies. Molecules 18, 5373–5388 (2013)

    Article  Google Scholar 

  39. Z. Yang, M.K. Fah, K.A. Reynolds, J.D. Sexton, M.R. Riley, M.-L. Anne, B. Bureau, P. Lucas, Opto-electrophoretic detection of bio-molecules using conducting chalcogenide glass sensors. Opt. Express 18, 26754–26759 (2010)

    Article  Google Scholar 

  40. M.L. Brandily, V. Monbet, B. Bureau, C. Boussard-Pledel, O. Loreal, J.L. Adam, O. Sire, Identification of foodborne pathogens within food matrices by IR spectroscopy. Sens. Actuators B 160, 202–206 (2011)

    Article  Google Scholar 

  41. B. Bureau, C. Boussard, S. Cui, R. Chahal, M.L. Anne, V. Nazabal, O. Sire, O. Loreal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, J. Lucas, Chalcogenide optical fibers for mid-infrared sensing. Opt. Eng. 53(2014), 027101 (2014)

    Article  Google Scholar 

  42. P. Lucas, G.J. Coleman, S. Jiang, T. Luo, Z. Yang, Chalcogenide glass fibers: optical window tailoring and suitability for bio-chemical sensing. Opt. Mater. 47, 530–536 (2015)

    Article  Google Scholar 

  43. Z. Yang, T. Luo, S. Jiang, J. Geng, P. Lucas, Single-mode low-loss optical fibers for long-wave infrared transmission. Opt. Lett. 35, 3360–3362 (2010)

    Article  Google Scholar 

  44. J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, J.L. Adam, GeSe4 glass fibres with low optical losses in the mid-IR. Opt. Mater. 32, 212–215 (2009)

    Article  Google Scholar 

  45. G.E. Snopatin, M.F. Churbanov, A. Apushkin, V.V. Gerasimenko, E.M. Dianov, V.G. Plotnichenko, High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km. Optoelectron. Adv. Mater. Rapid Commun. 3, 669–671 (2009)

    Google Scholar 

  46. G.E. Snopatin, V.S. Shiryaev, V.G. Plotnichenko, E.M. Dianov, M.F. Churbanov, High-purity chalcogenide glasses for fiber optics. Inorg. Mater. 45, 1439–1460 (2009)

    Article  Google Scholar 

  47. S. Hocde, C. Boussard-Pledel, G. Fonteneau, D. Lecoq, H.L. Ma, J. Lucas, Recent developments in chemical sensing using infrared glass fibers. J. Non-Cryst. Solids 274, 17 (2000)

    Article  Google Scholar 

  48. Y. Gueguen, J.C. Sangleboeuf, V. Keryvin, E. Lepine, Z. Yang, T. Rouxel, C. Point, B. Bureau, X.-H. Zhang, P. Lucas, Photoinduced fluidity in chalcogenide glasses at low and high intensities: a model accounting for photon efficiency. Phys. Rev. B: Condens. Matter 82, 134114 (2010)

    Article  Google Scholar 

  49. Z. Yang, A.A. Wilhelm, P. Lucas, High-conductivity tellurium-based infrared transmitting glasses and their suitability for bio-optical detection. J. Am. Ceram. Soc. 93, 1941–1944 (2010)

    Google Scholar 

  50. A.A. Wilhelm, P. Lucas, D.L. DeRosa, M.R. Riley, Biocompatibility of Te-As-Se glass fibers for cell-based bio-optic infrared sensors. J. Mater. Res. 22, 1098–1104 (2007)

    Article  Google Scholar 

  51. Y.-F. Niu, J.-P. Guin, T. Rouxel, A. Abdelouas, J. Troles, F. Smektala, Aqueous corrosion of the GeSe4 chalcogenide glass: surface properties and corrosion mechanism. J. Am. Ceram. Soc. 92, 1779–1787 (2009)

    Article  Google Scholar 

  52. P. Lucas, M.A. Solis, C.D. Le, C. Juncker, M.R. Riley, J. Collier, D.E. Boesewetter, C. Boussard-Pledel, B. Bureau, Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells. Sens. Actuators B B119, 355–362 (2006)

    Article  Google Scholar 

  53. J.P. Guin, T. Rouxel, J.C. Sangleboeuf, I. Melscoet, J. Lucas, Hardness, toughness, and scratchability of germanium-selenium chalcogenide glasses. J. Am. Ceram. Soc. 85, 1545 (2002)

    Article  Google Scholar 

  54. T. Rouxel, Elastic properties and short-to medium-range order in glasses. J. Am. Ceram. Soc. 90, 3019–3039 (2007)

    Article  Google Scholar 

  55. E. Lebourhis, P. Gadaud, J.P. Guin, N. Tournerie, X.H. Zhang, J. Lucas, T. Rouxel, Temperature dependence of the mechanical behaviour of a GeAsSe glass. Scr. Mater. 45, 317 (2001)

    Article  Google Scholar 

  56. G. Delaizir, J.-C. Sangleboeuf, E.A. King, Y. Gueguen, X.-H. Zhang, C. Boussard-Pledel, B. Bureau, P. Lucas, Influence of ageing conditions on the mechanical properties of Te-As-Se fibres. J. Phys. D Appl. Phys. 42, 095405 (2009)

    Article  Google Scholar 

  57. G. Yang, H. Chen, C. Boussard-Pledel, J.-C. Sangleboeuf, B. Bureau, Effect of physical aging on fracture behavior of Te2As3Se5 glass fibers. Ceram. Int. 41, 4487–4491 (2015)

    Article  Google Scholar 

  58. G. Tao, S. Shabahang, H. Ren, F. Khalilzadeh-Rezaie, R.E. Peale, Z. Yang, X. Wang, A.F. Abouraddy, Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission. Opt. Lett. 39, 4009–4012 (2014)

    Article  Google Scholar 

  59. G. Tao, S. Shabahang, E.-H. Banaei, J.J. Kaufman, A.F. Abouraddy, Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers. Opt. Lett. 37, 2751–2753 (2012)

    Article  Google Scholar 

  60. P. Houizot, M.-L. Anne, C. Boussard-Pledel, O. Loreal, H. Tariel, J. Lucas, B. Bureau, Shaping of looped miniaturized chalcogenide fiber sensing heads for mid-infrared sensing. Sensors 14, 17905–17914 (2014)

    Article  Google Scholar 

  61. J. Keirsse, B. Bureau, C. Boussard-Pledel, P. Leroyer, M. Ropert, V. Dupont, M.L. Anne, C. Ribault, O. Sire, O. Loreal, J.L. Adam, Chalcogenide glass fibers for in-situ infrared spectroscopy in biology and medicine. Proc. SPIE-Int. Soc. Opt. Eng. 5459, 61–68 (2004)

    Google Scholar 

  62. J. Keirsse, C. Boussard-Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, J. Lucas, IR optical fiber sensor for biomedical applications. Vib. Spectrosc. 32, 23–32 (2003)

    Article  Google Scholar 

  63. M.R. Riley, P. Lucas, C.D. Le, C. Juncker, D.E. Boesewetter, J.L. Collier, D.M. DeRosa, M.E. Katterman, C. Boussard-Pledel, B. Bureau, Lung cell fiber evanescent wave spectroscopic biosensing of inhalation health hazards. Biotechnol. Bioeng. 95, 599–612 (2006)

    Article  Google Scholar 

  64. P. Lucas, E.A. King, Y. Gueguen, J.-C. Sangleboeuf, V. Keryvin, R.G. Erdmann, G. Delaizir, C. Boussard-Pledel, B. Bureau, X.-H. Zhang, T. Rouxel, Correlation between thermal and mechanical relaxation in chalcogenide glass fibers. J. Am. Ceram. Soc. 92, 1986–1992 (2009)

    Article  Google Scholar 

  65. M.L. Anne, E. Le Gal La Salle, B. Bureau, J. Tristant, F. Brochot, C. Boussard-Pledel, H.L. Ma, X.H. Zhang, J.L. Adam, Polymerisation of an industrial resin monitored by infrared fiber evanescent wave spectroscopy. Sens. Actuators B 137, 687–691 (2009)

    Article  Google Scholar 

  66. K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J.L. Adama, K. Staubmann, T. Baumannc, Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers. Sens. Actuators B 101, 252–259 (2004)

    Article  Google Scholar 

  67. J. Franks, K. Rogers, Y. Guimond, Optical and thermo mechanical properties of infrared glasses. Proc. SPIE 6940, 69400P/69401–69400P/69408 (2008)

    Google Scholar 

  68. Y. Guimond, Y. Bellec, K. Rogers, A new moldable infrared glass for thermal imaging and low cost sensing. Proc. SPIE-Int. Soc. Opt. Eng. 6542, 654225/654221–654225/654226 (2007)

    Google Scholar 

  69. DIAFIR, http://www.diafir.com

  70. B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, Y. Fink, Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 420, 650–653 (2002)

    Article  Google Scholar 

  71. M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A.F. Abouraddy, J.D. Joannopoulos, Y. Fink, Integrated fibres for self-monitored optical transport. Nat. Mater. 4, 820–825 (2005)

    Article  Google Scholar 

  72. A.F. Abouraddy, M. Bayindir, G. Benoit, S.D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, Y. Fink, Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater. 6, 336–347 (2007)

    Article  Google Scholar 

  73. Omniguide, http://www.omni-guide.com/

  74. A. Gumennik, A.M. Stolyarov, B.R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J.D. Joannopoulos, Y. Fink, All-in-fiber chemical sensing. Adv. Mater. 24, 6005–6009 (2012)

    Article  Google Scholar 

  75. A. Canales, X. Jia, U.P. Froriep, R.A. Koppes, C.M. Tringides, J. Selvidge, C. Lu, C. Hou, L. Wei, Y. Fink, P. Anikeeva, Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015)

    Article  Google Scholar 

  76. B.J. Eggleton, B. Luther-Davies, K. Richardson, Chalcogenide photonics. Nat. Photonics 5, 141–148 (2011)

    Google Scholar 

  77. C. Monat, M. Spurny, C. Grillet, L. O’Faolain, T.F. Krauss, B.J. Eggleton, D. Bulla, S. Madden, B. Luther-Davies, Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides. Opt. Lett. 36, 2818–2820 (2011)

    Article  Google Scholar 

  78. M.W. Lee, C. Grillet, C.L.C. Smith, D.J. Moss, B.J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, Y.-h. Lee, Photosensitive post tuning of chalcogenide photonic crystal waveguides. Opt. Express 15, 1277–1285 (2007)

    Article  Google Scholar 

  79. M.W. Lee, C. Grillet, C. Monat, E. Magi, S. Tomljenovic-Hanic, X. Gai, S. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies, B.J. Eggleton, Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities. Opt. Express 18, 26695–26703 (2010)

    Article  Google Scholar 

  80. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L. Kimerling, Demonstration of chalcogenide glass racetrack microresonators. Opt. Lett. 33, 761–763 (2008)

    Article  Google Scholar 

  81. Y. Zou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, J.D. Musgraves, K. Richardson, K.D. Dobson, R. Birkmire, J. Hu, High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates. Adv. Opt. Mater. 2, 478–486 (2014)

    Article  Google Scholar 

  82. T. Han, S. Madden, D. Bulla, B. Luther-Davies, Low loss chalcogenide glass waveguides by thermal nano-imprint lithography. Opt. Express 18, 19286–19291 (2010)

    Article  Google Scholar 

  83. L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J.D. Musgraves, N. Lu, J. Hu, Integrated flexible chalcogenide glass photonic devices. Nat. Photonics 8, 643–649 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Lucas Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lucas, P., Bureau, B. (2017). Selenide Glass Fibers for Biochemical Infrared Sensing. In: Ahluwalia, G. (eds) Applications of Chalcogenides: S, Se, and Te. Springer, Cham. https://doi.org/10.1007/978-3-319-41190-3_8

Download citation

Publish with us

Policies and ethics