Skip to main content

Theoretical Concepts of Scanning Probe Microscopy and Dynamic Light Scattering and Their Relation to the Study of Peptide Nanostructures

  • Chapter
  • First Online:
Nanoscale Imaging and Characterisation of Amyloid-β

Part of the book series: Springer Theses ((Springer Theses))

  • 374 Accesses

Abstract

This chapter details the physical theoretical concepts and relevant background knowledge for the SPM techniques, alongside others such as DLS. Current understanding of the nanostructure of the amyloid peptide which has been the focus of this work, Aβ, is also detailed, gathering together information from a variety of experimental techniques. It is the aim of this chapter, and the one that follows it to provide a solid understanding of the work conducted within this thesis, and its relevance to Alzheimer’s disease and the aggregation of Aβ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binnig, G., Quate, C. F., & Gerber, C. (1986). Atomic force microscope. Physical Review Letters, 56, 930–933.

    Article  ADS  Google Scholar 

  2. Binnig, G., & Rohrer, H. (1982). Scanning tunneling microscopy. Helvetica Physica Acta, 55, 726–735.

    Google Scholar 

  3. Binnig, G., Rohrer, H., Gerber, C., & Weibel, E. (1982). Tunneling through a controllable vacuum gap. Applied Physics Letters, 40, 178–180.

    Article  ADS  Google Scholar 

  4. Jandt, K. D. (2001). Atomic force microscopy of biomaterials surfaces and interfaces. Surface Science, 491, 303–332.

    Article  ADS  Google Scholar 

  5. Dinelli, F., Biswas, S. K., Briggs, G. A. D., & Kolosov, O. V. (2000). Measurements of stiff-material compliance on the nanoscale using ultrasonic force microscopy. Physical Review B, 61, 13995–14006.

    Article  ADS  Google Scholar 

  6. Dinelli, F., et al. (2000). Mapping surface elastic properties of stiff and compliant materials on the nanoscale using ultrasonic force microscopy. Philosophical Magazine A Physics of Condensed Matter Structure Defects and Mechanical Properties, 80, 2299–2323.

    ADS  Google Scholar 

  7. Dinelli, F., Assender, H. E., Takeda, N., Briggs, G. A. D., & Kolosov, O. V. (1999). Elastic mapping of heterogeneous nanostructures with ultrasonic force microscopy (UFM). Surface and Interface Analysis, 27, 562–567.

    Article  Google Scholar 

  8. Dazzi, A., et al. (2012). AFM-IR: Combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization. Applied Spectroscopy, 66, 1365–1384.

    Article  ADS  Google Scholar 

  9. Dazzi, A., Prazeres, R., Glotin, E., & Ortega, J. M. (2005). Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Optics Letters, 30, 2388–2390.

    Article  ADS  Google Scholar 

  10. Marcott, C., et al. (2012). Nanoscale IR spectroscopy: AFM-IR—A new technique. Spectroscopy, 27, 60–65.

    Google Scholar 

  11. Tovee, P. D., & Kolosov, O. V. (2013). Mapping nanoscale thermal transfer in-liquid environment-immersion scanning thermal microscopy. Nanotechnology, 24.

    Google Scholar 

  12. Tovee, P. D., et al. (2014). Nanoscale resolution scanning thermal microscopy using carbon nanotube tipped thermal probes. Physical Chemistry Chemical Physics, 16, 1174–1181.

    Article  Google Scholar 

  13. Tovee, P., Pumarol, M., Zeze, D., Kjoller, K., & Kolosov, O. (2012). Nanoscale spatial resolution probes for scanning thermal microscopy of solid state materials. Journal of Applied Physics, 112.

    Google Scholar 

  14. Gandyra, D., Walheim, S., Gorb, S., Barthlott, W., & Schimmel, T. (2015). The capillary adhesion technique: A versatile method for determining the liquid adhesion force and sample stiffness. Beilstein Journal of Nanotechnology, 6, 11–18.

    Article  Google Scholar 

  15. Weisenhorn, A. L., Hansma, P. K., Albrecht, T. R., & Quate, C. F. (1989). Forces in atomic force microscopy in air and water. Applied Physics Letters, 54, 2651–2653.

    Article  ADS  Google Scholar 

  16. Baro, A. M. R. R. G. (Eds.). (2012). Wiley-VCH.

    Google Scholar 

  17. DoITPoMS. (2013). Teaching and learning package. University of Cambridge. http://www.doitpoms.ac.uk/tlplib/afm/tip_surface_interaction.php. Accessed February 24, 2015.

  18. Bonnell, D. (2001). Scanning probe microscopy and spectroscopy: Theory, techniques, and applications. New York, USA: Wiley-Blackwell.

    Google Scholar 

  19. Eaton, P. W. P. (2010). Atomic force microscopy. Oxford: Oxford University Press.

    Google Scholar 

  20. Kolosov, O. V., & Yamanaka, K. (1993). Nonlinear detection of ultrasonic vibrations in an atomic force microscope. Japanese Journal of Applied Physics Part 2-Letters, 32, L1095–L1098.

    Google Scholar 

  21. Dinelli, F., Biswas, S. K., Briggs, G. A. D., & Kolosov, O. V. (1997). Ultrasound induced lubricity in microscopic contact. Applied Physics Letters, 71, 1177–1179.

    Article  ADS  Google Scholar 

  22. Sader, J. E., Chon, J. W. M., & Mulvaney, P. (1999). Calibration of rectangular atomic force microscope cantilevers. Review of Scientific Instruments, 70, 3967–3969.

    Article  ADS  Google Scholar 

  23. Robinson, B. J., Kay, N. D., & Kolosov, O. V. (2013). Nanoscale interfacial interactions of graphene with polar and nonpolar liquids. Langmuir, 29, 7735–7742.

    Article  Google Scholar 

  24. Robinson, B. J., et al. (2014). Nanomechanical mapping of graphene layers and interfaces in suspended graphene nanostructures grown via carbon diffusion. Thin Solid Films, 550, 472–479.

    Article  ADS  Google Scholar 

  25. Robinson, B. J., & Kolosov, O. V. (2014). Probing nanoscale graphene-liquid interfacial interactions via ultrasonic force spectroscopy. Nanoscale, 6, 10806–10816.

    Article  ADS  Google Scholar 

  26. Bosse, J. L., Tovee, P. D., Huey, B. D., & Kolosov, O. V.(2014). Physical mechanisms of megahertz vibrations and nonlinear detection in ultrasonic force and related microscopies. Journal of Applied Physics, 115.

    Google Scholar 

  27. Chaudhury, M. K., & Owen, M. J. (1993). Adhesion hysteresis and friction. Langmuir, 9, 29–31.

    Article  Google Scholar 

  28. Wei, Z., He, M.-F., & Zhao, Y.-P. (2010). The effects of roughness on adhesion hysteresis. Journal of Adhesion Science and Technology, 24, 1045–1054.

    Article  Google Scholar 

  29. Xiao, Y., & Ma, B. (2015). Abeta(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease.

    Google Scholar 

  30. Fischer-Cripps, A. C. (2007). Introduction to contact mechanics. New York: Springer.

    Book  MATH  Google Scholar 

  31. Johnson, K. L., Kendall, K., & Roberts, A. D. (1971). Surface energy and contact of elastic solids. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 324, 301.

    Google Scholar 

  32. Rabe, U., Janser, K., & Arnold, W. (1996). Vibrations of free and surface-coupled atomic force microscope cantilevers: Theory and experiment. Review of Scientific Instruments, 67, 3281–3293.

    Article  ADS  Google Scholar 

  33. Rajakarunanayake, Y. N., & Wickramasinghe, H. K. (1986). Nonlinear photothermal imaging. Applied Physics Letters, 48, 218–220.

    Article  ADS  Google Scholar 

  34. Williams, C. C., & Wickramasinghe, H. K. (1986). Scanning thermal profiler. Applied Physics Letters, 49, 1587–1589.

    Article  ADS  Google Scholar 

  35. Igeta, M., Inoue, T., Varesi, J., & Majumdar, A. (1999). Thermal expansion and temperature measurement in a microscopic scale by using the atomic force microscope. JSME International Journal Series B Fluids and Thermal Engineering, 42, 723–730.

    Article  ADS  Google Scholar 

  36. Majumdar, A., Carrejo, J. P., & Lai, J. (1993). Thermal imaging using the atomic force microscope. Applied Physics Letters, 62, 2501–2503.

    Article  ADS  Google Scholar 

  37. Fischer, H. (2005). Quantitative determination of heat conductivities by scanning thermal microscopy. Thermochimica Acta, 425, 69–74.

    Article  Google Scholar 

  38. Lee, J., et al. (2006). Electrical, thermal, and mechanical characterization of silicon microcantilever heaters. Journal of Microelectromechanical Systems, 15, 1644–1655.

    Article  Google Scholar 

  39. Gazit, E. (2002). The “Correctly folded” state of proteins: Is it a metastable state. Angewandte Chemie-International Edition, 41, 257.

    Google Scholar 

  40. Dandurand, J., et al. (2014). Conformational and thermal characterization of a synthetic peptidic fragment inspired from human tropoelastin: Signature of the amyloid fibers. Pathologie Biologie, 62, 100–107.

    Article  Google Scholar 

  41. Blancas-Mejia, L. M., et al. (2014). Kinetic control in protein folding for light chain amyloidosis and the differential effects of somatic mutations. Journal of Molecular Biology, 426, 347–361.

    Article  Google Scholar 

  42. Morel, B., Varela, L., & Conejero-Lara, F. (2010). The thermodynamic stability of amyloid fibrils studied by differential scanning calorimetry. Journal of Physical Chemistry B, 114, 4010–4019.

    Article  Google Scholar 

  43. Ortega, J. M., Glotin, F., & Prazeres, R. (2006). Extension in far-infrared of the CLIO free-electron laser. Infrared Physics & Technology, 49, 133–138.

    Article  ADS  Google Scholar 

  44. Dazzi, A., Goumri-Said, S., & Salomon, L. (2004). Theoretical study of an absorbing sample in infrared near-field spectromicroscopy. Optics Communications, 235, 351–360.

    Article  ADS  Google Scholar 

  45. Dazzi, A., Prazeres, R., Glotin, F., & Ortega, J. M. (2007). Analysis of nano-chemical mapping performed by an AFM-based (“AFMIR”) acousto-optic technique. Ultramicroscopy, 107, 1194–1200.

    Article  Google Scholar 

  46. Dazzi, A., Prazeres, R., Glotin, F., & Ortega, J. M. (2006). Subwavelength infrared spectromicroscopy using an AFM as a local absorption sensor. Infrared Physics & Technology, 49, 113–121.

    Article  ADS  Google Scholar 

  47. Wolkers, W. F., Oldenhof, H., Alberda, M., & Hoekstra, F. A. (1998). A fourier transform infrared microspectroscopy study of sugar glasses: Application to anhydrobiotic higher plant cells. Biochimica Et Biophysica Acta-General Subjects, 1379, 83–96.

    Article  Google Scholar 

  48. Marcott, C., et al. (2013). Nanoscale infrared (IR) spectroscopy and imaging of structural lipids in human stratum corneum using an atomic force microscope to directly detect absorbed light from a tunable IR laser source. Experimental Dermatology, 22, 419–421.

    Article  Google Scholar 

  49. Marcott, C., et al. (2014). Localization of human hair structural lipids using nanoscale infrared spectroscopy and imaging. Applied Spectroscopy, 68, 564–569.

    Article  ADS  Google Scholar 

  50. Van Eerdenbrugh, B., Lo, M., Kjoller, K., Marcott, C., & Taylor, L. S. (2012). Nanoscale mid-infrared imaging of phase separation in a drug-polymer blend. Journal of Pharmaceutical Sciences, 101, 2066–2073.

    Article  Google Scholar 

  51. Paschalis, E. P., Betts, F., DiCarlo, E., Mendelsohn, R., & Boskey, A. L. (1997). FTIR microspectroscopic analysis of normal human cortical and trabecular bone. Calcified Tissue International, 61, 480–486.

    Article  Google Scholar 

  52. Paschalis, E. P., Betts, F., DiCarlo, E., Mendelsohn, R., & Boskey, A. L. (1997). FTIR microspectroscopic analysis of human iliac crest biopsies from untreated osteoporotic bone. Calcified Tissue International, 61, 487–492.

    Article  Google Scholar 

  53. Mendelsohn, R., Paschalis, E. P., & Boskey, A. L. (1999). Infrared spectroscopy, microscopy, and microscopic imaging of mineralizing tissues: Spectra-structure correlations from human iliac crest biopsies. Journal of Biomedical Optics, 4, 14–21.

    Article  ADS  Google Scholar 

  54. Lasch, P., Boese, M., Pacifico, A., & Diem, M. (2002). FT-IR spectroscopic investigations of single cells on the subcellular level. Vibrational Spectroscopy, 28, 147–157.

    Article  Google Scholar 

  55. Wood, B. R., et al. (1998). FTIR microspectroscopic study of cell types and potential confounding variables in screening for cervical malignancies. Biospectroscopy, 4, 75–91.

    Article  Google Scholar 

  56. Lasch, P., Haensch, W., Lewis, E. N., Kidder, L. H., & Naumann, D. (2002). Characterization of colorectal adenocarcinoma sections by spatially resolved FT-IR microspectroscopy. Applied Spectroscopy, 56, 1–9.

    Article  ADS  Google Scholar 

  57. Lasch, P., Haensch, W., Naumann, D., & Diem, M. (2004). Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis. Biochimica Et Biophysica Acta-Molecular Basis of Disease, 1688, 176–186.

    Article  Google Scholar 

  58. Mordechai, S., et al. (2004). Possible common biomarkers from FTIR microspectroscopy of cervical cancer and melanoma. Journal of Microscopy-Oxford, 215, 86–91.

    Article  MathSciNet  Google Scholar 

  59. Müeller, T., et al. (2014). Nanoscale spatially resolved infrared spectra from single microdroplets. Lab on a Chip, 14, 1315–1319.

    Article  Google Scholar 

  60. Pryor, N. E., Moss, M. A., & Hestekin, C. N. (2012). Unraveling the early events of amyloid-beta protein (A beta) aggregation: Techniques for the determination of A beta aggregate size. International Journal of Molecular Sciences, 13, 3038–3072.

    Article  Google Scholar 

  61. Loureiro, J. A., Gomes, B., Coelho, M. A. N., Pereira, M. D., & Rocha, S. (2014). Targeting nanoparticles across the blood-brain barrier with monoclonal antibodies. Nanomedicine, 9, 709–722.

    Article  Google Scholar 

  62. Yang, Z. Z., et al. (2013). Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration. International Journal of Pharmaceutics, 452, 344–354.

    Article  Google Scholar 

  63. Salvati, E., et al. (2013). Liposomes functionalized to overcome the blood-brain barrier and to target amyloid-beta peptide: The chemical design affects the permeability across an in vitro model. International Journal of Nanomedicine, 8.

    Google Scholar 

  64. Gobbi, M., et al. (2010). Lipid-based nanoparticles with high binding affinity for amyloid-beta(1–42) peptide. Biomaterials, 31, 6519–6529.

    Article  Google Scholar 

  65. Carrotta, R., Manno, M., Bulone, D., Martorana, V., & San Biagio, P. L. (2005). Protofibril formation of amyloid beta-protein at low pH via a non-cooperative elongation mechanism. Journal of Biological Chemistry, 280, 30001–30008.

    Google Scholar 

  66. Lomakin, A., Chung, D. S., Benedek, G. B., Kirschner, D. A., & Teplow, D. B. (1996). On the nucleation and growth of amyloid beta-protein fibrils: Detection of nuclei and quantitation of rate constants. Proceedings of the National Academy of Sciences of the United States of America, 93, 1125–1129.

    Article  ADS  Google Scholar 

  67. Lomakin, A., Teplow, D. B., Kirschner, D. A., & Benedek, G. B. (1997). Kinetic theory of fibrillogenesis of amyloid beta-protein. Proceedings of the National Academy of Sciences of the United States of America, 94, 7942–7947.

    Article  ADS  Google Scholar 

  68. Cizas, P., et al. (2010). Size-dependent neurotoxicity of beta-amyloid oligomers. Archives of Biochemistry and Biophysics, 496, 84–92.

    Article  Google Scholar 

  69. Parbhu, A., Lin, H., Thimm, J., & Lal, R. (2002). Imaging real-time aggregation of amyloid beta protein (1–42) by atomic force microscopy. Peptides, 23, 1265–1270.

    Article  Google Scholar 

  70. Streets, A. M., Sourigues, Y., Kopito, R. R., Melki, R., & Quake, S. R. (2013). Simultaneous measurement of amyloid fibril formation by dynamic light scattering and fluorescence reveals complex aggregation kinetics. PloS One, 8.

    Google Scholar 

  71. Blackley, H. K. L., et al. (1999). Morphological development of beta(1–40) amyloid fibrils. Experimental Neurology, 158, 437–443.

    Article  Google Scholar 

  72. Roher, A. E., et al. (2000). Oligomerization and fibril assembly of the amyloid-beta protein. Biochimica Et Biophysica Acta-Molecular Basis of Disease, 1502, 31–43.

    Article  Google Scholar 

  73. Harper, J. D., Wong, S. S., Lieber, C. M., & Lansbury, P. T. (1997). Observation of metastable A beta amyloid protofibrils by atomic force microscopy. Chemistry & Biology, 4, 119–125.

    Article  Google Scholar 

  74. Walsh, D. M., Lomakin, A., Benedek, G. B., Condron, M. M., & Teplow, D. B. (1997). Amyloid beta-protein fibrillogenesis—Detection of a protofibrillar intermediate. Journal of Biological Chemistry, 272, 22364–22372.

    Article  Google Scholar 

  75. Harper, J. D., Wong, S. S., Lieber, C. M., & Lansbury, P. T. (1999). Assembly of A beta amyloid protofibrils: An in vitro model for a possible early event in Alzheimer’s disease. Biochemistry, 38, 8972–8980.

    Article  Google Scholar 

  76. Walsh, D. M., et al. (1999). Amyloid beta-protein fibrillogenesis—Structure and biological activity of protofibrillar intermediates. Journal of Biological Chemistry, 274, 25945–25952.

    Article  Google Scholar 

  77. Serem, W. K., Bett, C. K., Ngunjiri, J. N., & Garno, J. C. (2011). Studies of the growth, evolution, and self-aggregation of beta-amyloid fibrils using tapping-mode atomic force microscopy. Microscopy Research and Technique, 74, 699–708.

    Article  Google Scholar 

  78. Gosal, W. S., Clark, A. H., & Ross-Murphy, S. B. (2004). Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure. Biomacromolecules, 5, 2408–2419.

    Article  Google Scholar 

  79. Fändrich, M., Schmidt, M., & Grigorieff, N. (2011). Recent progress in understanding Alzheimer’s β-amyloid structures. Trends in Biochemical Sciences, 36, 338–345.

    Article  Google Scholar 

  80. Schmidt, M., et al. (2009). Comparison of Alzheimer Aβ(1–40) and Aβ(1–42) amyloid fibrils reveals similar protofilament structures. Proceedings of the National Academy of Sciences of the United States of America, 106, 19813–19818.

    Article  Google Scholar 

  81. Arimon, M., et al. (2005). Fine structure study of A beta(1–42) fibrillogenesis with atomic force microscopy. FASEB Journal, 19, 1344.

    Google Scholar 

  82. Moores, B., Drolle, E., Attwood, S. J., Simons, J., & Leonenko, Z. (2011). Effect of surfaces on amyloid fibril formation. PLoS ONE, 6, 8.

    Article  Google Scholar 

  83. Wang, Z. G., et al. (2003). AFM and STM study of beta-amyloid aggregation on graphite. Ultramicroscopy, 97, 73–79.

    Article  Google Scholar 

  84. Fändrich, M., Schmidt, M., & Grigorieff, N. (2011). Recent progress in understanding Alzheimer’s β-amyloid structures. Trends in Biochemical Sciences, 36, 338–345.

    Article  Google Scholar 

  85. Zhang, R., et al. (2009). Interprotofilament interactions between Alzheimer’s A beta(1–42) peptides in amyloid fibrils revealed by cryoEM. Proceedings of the National Academy of Sciences of the United States of America, 106, 4653–4658.

    Article  ADS  Google Scholar 

  86. Miyakawa, T., Watanabe, K., & Katsuragi, S. (1986). Ultrastructure of amyloid fibrils in Alzheimers-disease and downs-syndrome. Virchows Archiv B Cell Pathology Including Molecular Pathology, 52, 99–106.

    Article  Google Scholar 

  87. Serpell, L. C. (2000). Alzheimer’s amyloid fibrils: Structure and assembly. Biochimica Et Biophysica Acta-Molecular Basis of Disease, 1502, 16–30.

    Article  Google Scholar 

  88. Serpell, L. C., et al. (1995). Examination of the structure of the transthyretin amyloid fibril by image-reconstruction from electron-micrographs. Journal of Molecular Biology, 254, 113–118.

    Article  Google Scholar 

  89. Miller, Y., Ma, B. Y., Tsai, C. J., & Nussinov, R. (2010). Hollow core of Alzheimer’s A beta(42) amyloid observed by cryoEM is relevant at physiological pH. Proceedings of the National Academy of Sciences of the United States of America, 107, 14128–14133.

    Article  ADS  Google Scholar 

  90. Miller, Y., Ma, B. Y., & Nussinov, R. (2011). The unique Alzheimer’s beta-amyloid triangular fibril has a cavity along the fibril axis under physiological conditions. Journal of the American Chemical Society, 133, 2742–2748.

    Article  Google Scholar 

  91. Sachse, C., et al. (2006). Quaternary structure of a mature amyloid fibril from Alzheimer’s A beta(1–40) peptide. Journal of Molecular Biology, 362, 347–354.

    Article  Google Scholar 

  92. Meinhardt, J., Sachse, C., Hortschansky, P., Grigorieff, N., & Fandrich, M. (2009). A beta(1–40) fibril polymorphism implies diverse interaction patterns in amyloid fibrils. Journal of Molecular Biology, 386, 869–877.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Louisa Tinker-Mill .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tinker-Mill, C.L. (2016). Theoretical Concepts of Scanning Probe Microscopy and Dynamic Light Scattering and Their Relation to the Study of Peptide Nanostructures. In: Nanoscale Imaging and Characterisation of Amyloid-β. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-39534-0_2

Download citation

Publish with us

Policies and ethics