Skip to main content

Preaxostyla

  • Reference work entry
  • First Online:

Abstract

Preaxostyla comprises Oxymonadida, containing 14 genera of gut endosymbionts plus two genera of free-living bacterivorous flagellates from low oxygen sediments (Trimastix and Paratrimastix). The group was recognized on the basis of 18S rRNA phylogenies, and ultrastructural investigations have revealed a synapomorphy in the organization of the “I” fiber that supports microtubular root R2. Trimastix and Paratrimastix are typical excavates with three anterior/lateral flagella and the recurrent flagellum passing through a conspicuous ventral feeding groove. The cellular structure of oxymonads is more derived, and a particularly striking diversity of large cellular forms is observed in genera inhabiting guts of lower termites and wood-eating cockroaches. Here the large oxymonad species and their bacterial ecto- and endosymbionts are probably involved in the cellulose digestion, similarly to the large species of parabasalids. All Preaxostyla live in low oxygen environments, and this has affected their metabolism and organelle complement. Glycolysis is apparently the main source of cellular ATP and mitochondria are either reduced to hydrogenosome-like compartments (in Trimastix and Paratrimastix) or lost completely (in oxymonads). Peroxisomes are absent in the whole group. Stacked Golgi bodies are unknown in oxymonads; however, genes encoding proteins functional in Golgi are present, indicating the existence of a cryptic Golgi. Phylogenomic analyses have shown that Preaxostyla represent one of the three main lineages of Metamonada (within Excavata). Because oxymonads are the only known eukaryotes that have completely lost the mitochondrial organelle, they may serve as models for studies of amitochondriality and mitochondrial evolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abraham, R. (1961). A description of Monocercomonoides sayeedi n. sp., from the rumen of an Indian goat. Zeitschrift für Parasitenkunde, 20, 558–562.

    Article  Google Scholar 

  • Adl, S. M., Simpson, A. G. B., Farmer, M. A., Andersen, R. A., Anderson, O. R., Barta, J. R., Browser, S. S., Brugerolle, G., Fensome, R. A., Fredericq, S., James, T. Y., Karpov, S., Kugrens, P., Krug, J., Lane, C. E., Lewis, L. A., Lodge, J., Lynn, D. H., Mann, D. G., McCourt, R. M., Mendoza, L., Moestrup, O., Mozley-Standridge, S. E., Nerad, T. A., Shearer, C. A., Smirnov, A. V., Spiegel, F. W., & Taylor, M. F. J. R. (2005). The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. Journal of Eukaryotic Microbiology, 52, 399–451.

    Article  PubMed  Google Scholar 

  • Adl, S. M., Simpson, A. G., Lane, C. E., Lukeš, J., Bass, D., Bowser, S. S., Brown, M. W., Burki, F., Dunthorn, M., Hampl, V., Heiss, A., Hoppenrath, M., Lara, E., Le Gall, L., Lynn, D. H., McManus, H., Mitchell, E. A., Mozley-Stanridge, S. E., Parfrey, L. W., Pawlowski, J., Rueckert, S., Shadwick, L., Schoch, C. L., Smirnov, A., & Spiegel, F. W. (2012). The revised classification of eukaryotes. Journal of Eukaryotic Microbiology, 59, 429–493.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bala, P., & Bhagat, R. C. (1993). The intestinal protozoans of the termite, Odontotermes obesus (Rambur). Indian Journal of Parasitology, 17, 179–187.

    Google Scholar 

  • Bernard, C., Simpson, A. G. B., & Patterson, D. J. (2000). Some free-living flagellates (protista) from anoxic habitats. Ophelia, 52, 113–142.

    Article  Google Scholar 

  • Bhaskar Rao, T. (1969). The morphology and incidence of the genus Monocercononoides (Grassi, 1879) Travis, 1932 of insects found in Andhra Pradesh. Proceedings of the Indian Academy of Science (B), 70, 208–214.

    Google Scholar 

  • Bishop, A. (1932). A note upon Retortamonas rotunda n. sp. an intestinal flagellate in Bufo vulgaris. Parasitology, 24, 233–237

    Article  Google Scholar 

  • Bloodgood, R. A., & Fitzharris, T. P. (1978). Initiation of bends in the microtubular axostyle of Pyrsonympha. Cytobios, 23, 109–117.

    CAS  PubMed  Google Scholar 

  • Bloodgood, R. A., Miller, K. R., Fitzharris, T. P., & McIntosh, J. R. (1974). The ultrastructure of Pyrsonympha and its associated microorganisms. Journal of Morphology, 143, 77–105.

    Article  Google Scholar 

  • Bobyleva, N. N. (1973). The mastigophora fauna from the hind-gut of the far-eastern woodroach Cryptocercus relictus. Parazitologiya, 7, 201–213.

    CAS  Google Scholar 

  • Brugerolle, G. (1970). Sur l’ultrastructure et la position systématique de Pyrsonympha vertens (Zooflagellate Pyrsonymphina). Comptes Rendus de l’Académie des Sciences, Paris, 270, 3474–3478.

    Google Scholar 

  • Brugerolle, G. (1981). Ultrastructural study of the parasitic flagellate Polymastix melolonthae (Oxymonadida). Protistologica, 17, 139–145.

    Google Scholar 

  • Brugerolle, G., & Joyon, L. (1973). Ultrastructure du genre Monocercomonoides (Travis). Zooflagellata, Oxymonadida. Protistologica, 9, 1–80.

    Google Scholar 

  • Brugerolle, G., & König, H. (1997). Ultrastructure and organization of the cytoskeleton in Oxymonas, an intestinal flagellate of termites. Journal of Eukaryotic Microbiology, 44, 305–313.

    Article  Google Scholar 

  • Brugerolle, G., & Lee, J. J. (2000). Order Oxymonadida. In J. J. Lee, G. F. Leedale, & P. Bradbury (Eds.), The illustrated guide to the protozoa (Vol. 2, pp. 1186–1195). Lawrence: Allen Press.

    Google Scholar 

  • Brugerolle, G., & Patterson, D. (1997). Ultrastructure of Trimastix convexa Hollande, an amitochondriate anaerobic flagellate with a previously undescribed organization. European Journal of Protistology, 33, 121–130.

    Article  Google Scholar 

  • Brugerolle, G., & Radek, R. (2006). Symbiotic protozoa of termites. In H. König & A. Varma (Eds.), Intestinal microorganisms of termites and other invertebrates (pp. 243–269). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Brugerolle, G., Silva-Neto, I. D., Pellens, R., & Grandcolas, P. (2003). Electron microscopic identification of the intestinal protozoan flagellates of the xylophagous cockroach Parasphaeria boleiriana from Brazil. Parasitology Research, 90, 249–256.

    Article  CAS  PubMed  Google Scholar 

  • Brune, A., & Ohkuma, M. (2011). Role of the termite gut microbiota in symbiotic digestion. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 439–475). Dordrecht: Springer.

    Google Scholar 

  • Carpenter, K. J., Waller, R. F., & Keeling, P. J. (2008). Surface morphology of Saccinobaculus (Oxymonadida): Implications for character evolution and function in oxymonads. Protist, 159, 209–221.

    Article  PubMed  Google Scholar 

  • Carpenter, K. J., Weber, P. K., Davisson, M. L., Pett-Ridge, J., Haverty, M. I., & Keeling, P. J. (2013). Correlated SEM, FIB-SEM, TEM, and NanoSIMS imaging of microbes from the hindgut of a lower termite: Methods for in situ functional and ecological studies of uncultivable microbes. Microscopy and Microanalysis, 19, 1490–1501.

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith, T. (2002). The phagotrophic origin of eukaryotes and phylogenetic classification of protozoa. International Journal of Systematic and Evolutionary Microbiology, 52, 297–354.

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith, T. (2003). The excavate protozoan phyla Metamonada Grasse emend. (Anaeromonadea, Parabasalia, Carpediemonas, Eopharyngia) and Loukozoa emend. (Jakobea, Malawimonas): Their evolutionary affinities and new higher taxa. International Journal of Systematic and Evolutionary Microbiology, 53, 1741–1758.

    Article  CAS  PubMed  Google Scholar 

  • Cleveland, L. R. (1924). The physiological and symbiotic relationships between the intestinal protozoa of termites and their host, with special reference to Reticulitermes flavipes Kollar. The Biological Bulletin, 46, 203–227.

    Article  CAS  Google Scholar 

  • Cleveland, L. R. (1925). The effects of oxygenation and starvation on the symbiosis between the termite Termopsis and its intestinal flagellates. The Biological Bulletin, 48, 309–325.

    Article  CAS  Google Scholar 

  • Cleveland, L. R. (1935). The intranuclear achromatic figure of Oxymonas grandis sp. nov. Biological Bulletin, 69, 54–65.

    Article  Google Scholar 

  • Cleveland, L. R. (1950a). Hormone-induced sexual cycles of flagellates: II. Gametogenesis, fertilization, and one-division meiosis in Oxymonas. Journal of Morphology, 86, 185–214.

    Article  CAS  PubMed  Google Scholar 

  • Cleveland, L. R. (1950b). Hormone-induced sexual cycles of flagellates: III. Gametogenesis, fertilization, and one-division meiosis in Saccinobaculus. Journal of Morphology, 86, 215–228.

    Article  CAS  PubMed  Google Scholar 

  • Cleveland, L. R. (1950c). Hormone-induced sexual cycles of flagellates: IV. Meiosis after syngamy and before nuclear fusion in Notila. Journal of Morphology, 87, 317–348.

    Article  CAS  PubMed  Google Scholar 

  • Cleveland, L. R. (1956). Brief accounts of the sexual cycles of the flagellates of Cryptocercus. The Journal of Protozoology, 3, 161–180.

    Article  Google Scholar 

  • Cleveland, L. R. (1966). Nuclear division without cytokinesis followed by fusion of pronuclei in Paranotila lata gen. et sp. nov. The Journal of Protozoology, 13, 132–136.

    Article  CAS  PubMed  Google Scholar 

  • Cleveland, L. R., Hall, S. R., Sanders, E. P., & Collier, J. (1934). The wood-feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Memoirs of the American Academy of Arts and Sciences, 17, 185–342.

    Article  Google Scholar 

  • Cleveland, L. R., Arthur, W., Burke, J. R., & Karlson, P. (1960). Ecdysone induced modifications in the sexual cycles of the protozoa of Cryptocercus. Journal of Eukaryotic Microbiology, 7, 229–239.

    Google Scholar 

  • Cochrane, S. M., Smith, H. E., Buhse, H. E., & Scammell, J. G. (1979). Structure of the attached stage of Pyrsonympha in the termite Reticulitermes flavipes Kollar. Protistologica, 15, 259–270.

    Google Scholar 

  • Connell, F. H. (1930). The morphology and life-cycle of Oxymonas dimorpha sp. nov., from Neotermes simplicicornis (Banks). University of California Publications in Zoology, 36, 51–66.

    Google Scholar 

  • Corliss, J. O. (1994). An interim utilitarian (user-friendly) hierarchical classification and characterization of the protists. Acta Protozoologica, 33, 1–51.

    Google Scholar 

  • Cross, J. B. (1939). A study on Oxymonas minor Zeliff from the termite Kalotermes minor Hagen. University of California Publications in Zoology, 43, 379–404.

    Google Scholar 

  • Cross, J. B. (1946). The flagellate subfamily Oxymonadidae. University of California Publications in Zoology, 53, 67–162.

    Google Scholar 

  • Crouch, H. B. (1933). Four new species of Trichomonas from the Woodchuck (Marmota monax Linn.). The Journal of Parasitology, 19, 293–301.

    Article  Google Scholar 

  • da Cunha, A. M., & Muniz, J. (1921). Sobre flagellados parasitas. I. Monocercomononas caviae n. sp. Brazil-Medicine, 35, 379–380.

    Google Scholar 

  • da Cunha, A. M., & Muniz, J. (1927). Sur les flagellés intestinaux; description de trois especes novelles. Comptes Rendus de la Société de Biologie, 96, 496–498.

    Google Scholar 

  • Dacks, J. B., Silberman, J. D., Simpson, A. G. B., Moriya, S., Kudo, T., Ohkuma, M., & Redfield, R. J. (2001). Oxymonads are closely related to the excavate taxon Trimastix. Molecular Biology and Evolution, 18, 1034–1044.

    Article  CAS  PubMed  Google Scholar 

  • Dacks, J. B., Kuru, T., Liapounova, N. A., & Gedamu, L. (2008). Phylogenetic and primary sequence characterization of cathepsin B cysteine proteases from the oxymonad flagellate Monocercomonoides. Journal of Eukaryotic Microbiology, 55, 9–17.

    Article  CAS  PubMed  Google Scholar 

  • Das, A. K. (1974). On the genus Oxymonas Janicki (Pyrsonymphidae: Mastigophora) from Indian termites. Acta Protozoologica, 12, 335–344.

    Google Scholar 

  • Das Gupta, M. (1935). Preliminary observations on the protozoan fauna of the rumen of the Indian goat, Capra hircus Linn. Archiv fur Protistenkunde, 85, 153–172.

    Google Scholar 

  • de Koning, A. P., Noble, G. P., Heiss, A. A., Wong, J., & Keeling, P. J. (2008). Environmental PCR survey to determine the distribution of a non-canonical genetic code in uncultivable oxymonads. Environmental Microbiology, 10, 65–74.

    PubMed  Google Scholar 

  • De Mello, I. F. de. (1953). Sur une oxymonade de l’intestin du termite africain Cryptotermes havilandi Sjos-tedt, recolte a Santos (Bresil). Revista Brasileira de Biologia, 13, 65–72.

    Google Scholar 

  • Derelle, R., Torruella, G., Klimeš, V., Brinkmann, H., Kim, E., Vlček, Č., Lang, B. F., & Eliáš, M. (2015). Bacterial proteins pinpoint a single eukaryotic root. Proceedings of the National Academy of Sciences of the United States of America, 112, E693–E699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diamond, L. S. (1982). A new liquid medium for xenic cultivation of Entamoeba histolytica and other lumen dwelling Protozoa. The Journal of Parasitology, 68, 958–959.

    Article  CAS  PubMed  Google Scholar 

  • Dobell, C., & Laidlaw, P. P. (1926). On the cultivation of Entamoeba histolytica and some other entozoic amoebae. Parasitology, 18, 283–318.

    Article  Google Scholar 

  • Duboscq, O., & Grassé, P. P. (1934). Sur Microrhopalodina inflata (Grassi). Archives de zoologie expérimentale et générale, 75, 615–637.

    Google Scholar 

  • Dumas, E. (1930). Les microzoaires ou infusoires proprementdits. Faune du centre. 2e Fascicule. Moulins (‘les imprimeriesreunies’), 166 p.

    Google Scholar 

  • Gabel, J. R. (1954). The morphology and taxonomy of the intestinal Protozoa of the american woodchuck, Marmota monax Linnaeus. Journal of Morphology, 94, 473–549.

    Article  Google Scholar 

  • Geiman, Q. M. (1933). The intestinal protozoa of the larvae of the crane fly Tipula abdominalis. Journal of Parasitology, 19, 173.

    Google Scholar 

  • Georgevitch, J. (1932). Recherches sur les flagellés des termites de Yougoslavie. Archives de zoologie expérimentale et générale, 74, 81–109.

    Google Scholar 

  • Georgevitch, J. (1951). Etude des flagelles d’un termite de Dalmatie Reticulitermes lucifugus. Glasn Acad Serbe Sci NS, 200, 95–108.

    Google Scholar 

  • Grant, J. R., & Katz, L. A. (2014). Building a phylogenomic pipeline for the eukaryotic tree of life – Addressing deep phylogenies with genome-scale data. PLoS Currents, 2, 6.

    Google Scholar 

  • Grassé, P. P. (1926). Contribution à l’étude des Flagellés parasites. Archives de zoologie expérimentale et générale, 65, 342–602.

    Google Scholar 

  • Grassé, P. P. (1952). Traité de Zoologie. Tome I, Fascicule 1: Phylogénie. Protozoaires: généralités. Flagellés. Paris: Masson et Cie.

    Google Scholar 

  • Grassi, B. (1879). Dei protozoi parassiti specialmente di quelli che sono nell’uomo. Gaz Ital Lombardi, 39, 445–448.

    Google Scholar 

  • Grassi, B., & Foá, A. (1911). Intorno ai protozoi dei termitidi. Atti Reale Accad Lincei, 20, 725–741.

    Google Scholar 

  • Grassi, B., & Sandias, A. (1893). Constitutione e svillupo della societa dei termitidi. Atti Accad. Gioenia di scienze naturali in Catania, 6, 150–155.

    Google Scholar 

  • Grimstone, A. V., & Cleveland, L. R. (1965). The fine structure and function of the contractile axostyles of certain flagellates. The Journal of Cell Biology, 24, 387–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzmen, R. S. (1961). Oxymonas chilensis n. sp., flagelado simbionte del termite Calotermes chilensis (Blanchard). Investigaciones Zoologicas Chilenas, 7, 83–95.

    Google Scholar 

  • Hampl, V., & Simpson, A. G. B. (2008). Possible mitochondria-related organelles in poorly-studied ‘amitochondriate’ eukaryotes. In J. Tachezy (Ed.), Hydrogenosomes and mitosomes of the amitochondrial protists (Microbiology monographs). Heidelberg: Springer.

    Google Scholar 

  • Hampl, V., Horner, D. S., Dyal, P., Kulda, J., Flegr, J., Foster, P. G., & Embley, T. M. (2005). Inference of the phylogenetic position of oxymonads based on nine genes: Support for Metamonada and Excavata. Molecular Biology and Evolution, 22, 2508–2518.

    Article  CAS  PubMed  Google Scholar 

  • Hampl, V., Hug, L., Leigh, J. W., Dacks, J. B., Lang, B. F., Simpson, A. G. B., & Roger, A. J. (2009). Phylogenomic analyses support the monophyly of excavata and resolve relationships among eukaryotic “supergroups”. Proceedings of the National Academy of Sciences of the United States of America, 106, 3859–3864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasselmann, G. (1928). Novo proeesso de divisao no genero Polymastix-descriptao de Polymastix nitidus, nov. sp. de flagellado. Boletim do Instituto Brasileiro de Sciencias Rio de Janeiro, 3, 40–46.

    Google Scholar 

  • Heiss, A. A., & Keeling, P. J. (2006). The phylogenetic position of the oxymonad Saccinobaculus based on SSU rRNA. Protist, 157, 335–344.

    Article  CAS  PubMed  Google Scholar 

  • Heuser, J. E. (1986). Different structural states of a microtubule cross-linking molecule, captured by quick-freezing motile axostyles in Protozoa. The Journal of Cell Biology, 103, 2209–2227.

    Article  CAS  PubMed  Google Scholar 

  • Hollande, A., & Carruette-Valentin, J. (1970a). Appariement chromosomique et complexes synaptonématiques dans les noyaux de dépolyploidisation chez Pyrsonympha flagellata: le cycle évolutif des Pyrsonymphines symbiotiques de Reticulitermes lucifugus. Comptes Rendus de l’Académie des Sciences, Paris, D, 270, 2250–2255.

    Google Scholar 

  • Hollande, A., & Carruette-Valentin, J. (1970b). La lignée des Pyrsonymphines et les caracteres infrastructuraux commus aux autres genres Opisthomitus, Oxymonas, Saccinobaculus, Pyrsonympha et Streblomastix. Comptes Rendus de l’Académie des Sciences, Paris, D, 270, 1587–1590.

    CAS  Google Scholar 

  • Hongoh, Y. (2010). Diversity and genomes of uncultured microbial symbionts in the termite gut. Bioscience Biotechnology and Biochemistry, 74, 1145–1151.

    Article  CAS  Google Scholar 

  • Hongoh, Y., Sato, T., Noda, S., Ui, S., Kudo, T., & Ohkuma, M. (2007). Candidatus Symbiothrix dinenymphae: Bristle-like Bacteroidales ectosymbionts of termite gut protists. Environmental Microbiology, 9, 2631–2635.

    Article  CAS  PubMed  Google Scholar 

  • Iida, T., Ohkuma, M., Ohtoko, K., & Kudo, T. (2000). Symbiotic spirochetes in the termite hindgut: Phylogenetic identification of ectosymbiotic spirochetes of oxymonad protists. FEMS Microbiology Ecology, 34, 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Inward, D., Beccaloni, G., & Eggleton, P. (2007). Death of an order: A comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biology Letters, 3, 331–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janakidevi, K. (1961). The morphology of Monocercomonoides filamentum n. sp., parasite of the indian starred tortoise. Archiv fur Protistenkunde, 106, 37–40.

    Google Scholar 

  • Janicki, C. (1915). Untersuchungen an parasitischen Flagellaten. II. Teil: Die Gattungen Devescovina, Parajoenia, Stephanonympha, Calonympha. Uber den Parabasalapparat.-Uber Kernkonstitution und Kernteilung. Zeitschrift für wissenschaftliche Zoologie, 112, 573.

    Google Scholar 

  • Jensen, E. A., & Hammond, D. M. (1964). A morphological study of trichomonads and related flagellates from the bovine digestive tract. The Journal of Protozoology, 11, 386–394.

    Article  CAS  PubMed  Google Scholar 

  • Jensen, C. G., & Smaill, B. H. (1986). Analysis of the spatial organization of microtubule associated proteins. The Journal of Cell Biology, 103, 559–569.

    Article  CAS  PubMed  Google Scholar 

  • Jírovec, O. (1929). La faune du tube digestif du Calotermes lucifugus récolté en Gréce. Bulletin international de l’Académie des Sciences de Boheme, 39, 1–15.

    Google Scholar 

  • Kamikawa, R., Kolisko, M., Nishimura, Y., Yabuki, A., Brown, M. W., Ishikawa, S. A., Ishida, K., Roger, A. J., Hashimoto, T., & Inagaki, Y. (2014). Gene content evolution in discobid mitochondria deduced from the phylogenetic position and complete mitochondrial genome of Tsukubamonas globosa. Genome Biology and Evolution, 6, 306–315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karnkowska, A., Vacek, V., Zubáčová, Z., Treitli, S. C., Petrželková, R., Eme, L., Novák, L., Žárský, V., Barlow, L. D., Herman, E. K., Soukal, P., Hroudová, M., Doležal, P., Stairs, C. W., Roger, A. J., Eliáš, M., Dacks, J. B., Vlček, Č., & Hampl, V. (2016). A eukaryote without a mitochondrial organelle. Current Biology, 26, 1274–1284.

    Google Scholar 

  • Keeling, P. J., & Leander, B. S. (2003). Characterisation of a non-canonical genetic code in the oxymonad Streblomastix strix. Journal of Molecular Biology, 326, 1337–1349.

    Article  CAS  PubMed  Google Scholar 

  • Kent, W. S. (1880). Manual of the Infusoria. London: David Bogue.

    Google Scholar 

  • Kidder, G. W. (1929). Streblomastix strix, morphology and mitosis. University of California Publications in Zoology, 33, 109–124.

    Google Scholar 

  • Kidder, G. W. (1937). The intestinal protozoa of the wood-feeding roach Panesthia. Parasitology, 29, 163–205.

    Article  Google Scholar 

  • Kirby, H., Jr. (1924). Morphology and mitosis of Dinenympha fimbriata sp. nov. University of California Press.

    Google Scholar 

  • Kirby, H., Jr. (1926). The intestinal flagellates of the termite, Cryptotermes hermsi Kirby. University of California Publications in Zoology, 29, 103–120.

    Google Scholar 

  • Kirby, H. (1928). A species of Proboscidiella from Kalotermes (Cryptotermes) dudleyi Banks, a termite of Central America, with remarks on the oxymonad flagellates. The Quarterly Journal of Microscopical Science, 72, 355–386.

    Google Scholar 

  • Kirby, H., & Honigberg, B. M. (1949). Flagellates of the caecum of ground squirrels. University of California Publications in Zoology, 53, 315–366.

    Google Scholar 

  • Klebs, G. (1892). Flagellatenstudien. Zeitschrift für wissenschaftliche Zoologie, 55, 262–445.

    Google Scholar 

  • Kofoid, C. A., & Swezy, O. (1919). Studies on the parasites of the termites I. On Streblomastix strix, a polymastigote flagellate with a linear plasmodial phase. University of California Publications in Zoology, 20, 1–20.

    Google Scholar 

  • Kofoid, C. A., & Swezy, O. (1926). On Oxymonas, a flagellate with an extensile and retractile proboscis from Kalotermes from British Guiana. University of California Publications in Zoology, 28, 285–300.

    Google Scholar 

  • Koidzumi, M. (1921). Studies on the intestinal protozoa found in the termites of Japan. Parasitology, 13, 235–309.

    Article  Google Scholar 

  • Krishnamurthy, R. (1967). Two new species of the genus Monocercomonoides Travis, 1932 (Protozoa: Mastigophora) from reptiles. Proceedings of the Indian Academy of Science, 66, 184–191.

    Google Scholar 

  • Krishnamurthy, R., & Madre, V. E. (1979). Studies on two flagellates of the genus Monocercomonoides Travis, 1932 (Mastigophora: Polymastigina) from amphibian and reptiles in India. Acta Protozoologica, 18, 251–257.

    Google Scholar 

  • Krishnamurthy, R., & Sultana, T. (1976). Tubulimonoides gryllotalpae n. g., n. sp. (Mastigophora: Oxymonadida) from cricket in India. Proceedings of the Indiana Academy of Sciences, 84(B), 137–140.

    Google Scholar 

  • Krishnamurthy, R., & Sultana, T. (1977). Studies on two flagellates of the genus Monocercomonoides Travis, 1932 from the gut of the dung beetle larva (Oryctes rhinoceros) in India. Archiv fur Protistenkunde, 119, 121–126.

    Google Scholar 

  • Krishnamurthy, R., & Sultana, T. (1977). The flagellates of the genus Monocercomonoides Travis, 1932 (Mastigophora: Oxymonadida) from insects in India – A review, with a key to the species. Proceedings of the Zoological Society. Calcutta, 32, 51–55.

    Google Scholar 

  • Krishnamurthy, R., & Sultana, T. (1978). A new species of the genus Polymastix Butschli, 1884 from an insect Polyphaga indica in India. Archiv fur Protistenkunde, 120, 301–303.

    Article  Google Scholar 

  • Krishnamurthy, R., & Sultana, T. (1980). The description of new flagellate Monocercomonoides spirostreptae sp. n. (Mastigophora: Oxymonadida), from the millipedes in Maharashtra, India. Acta Parasitologica Polonica, 27, 257–260.

    Google Scholar 

  • Kulda, J., & Nohýnková, E. (1978). Flagellates of the human intestine and of intestines of other species. In J. P. Kreier (Ed.), Parasitic protozoa (pp. 1–138). New York: Academic.

    Google Scholar 

  • Lavette, A. (1973). Ultrastructure and systematic affinities of Microrhopalodina inflata, symbiotic flagellate of Calotermes flavicollis. Comptes Rendus de l’Académie des Sciences, Paris, D, 276, 1309–1311.

    CAS  Google Scholar 

  • Leander, B. S., & Keeling, P. J. (2004). Symbiotic innovation in the oxymonad Streblomastix strix. Journal of Eukaryotic Microbiology, 51, 291–300.

    Article  PubMed  Google Scholar 

  • Leidy, J. (1877). On intestinal parasites of Termes flavipes. Proceedings of the National Academy of Sciences, Philadelphia, 29, 146–149.

    Google Scholar 

  • Li, L., Fröhlich, J., & König, H. (2006). Cellulose digestion in the termite gut. In H. König & A. Varma (Eds.), Intestinal microorganisms of termites and other invertebrates (pp. 221–241). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Liapounova, N. A., Hampl, V., Gordon, P. M., Sensen, C. W., Gedamu, L., & Dacks, J. B. (2006). Reconstructing the mosaic glycolytic pathway of the anaerobic eukaryote Monocercomonoides. Eukaryotic Cell, 5, 2138–2146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo, N., Tokuda, G., Watanabe, H., Rose, H., Slaytor, M., Maekawa, K., Bandi, C., & Noda, H. (2000). Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Current Biology, 10, 801–804.

    Article  CAS  PubMed  Google Scholar 

  • Maass, A., & Radek, R. (2006). The gut flagellate community of the termite Neotermes cubanus with special reference to Staurojoenina and Trichocovina hrdyi nov. gen. nov. sp. European Journal of Protistology, 42, 125–141.

    Article  PubMed  Google Scholar 

  • Madre, V. E., & Krishnamurthy, R. (1976). Studies on two flagellates from the rectum of the viper, Vipera russeli in Aurangabad. National Science Journal of Marathwada University, 15, 143–147.

    Google Scholar 

  • Mali, M. S. (1993). Studies on the Polymastix jadhavii, a new flagellate from the gut of the cockroach Periplareta americana in India. Geobios New Reports, 14, 189–191.

    Google Scholar 

  • Mali, M., Kulkarni, S., & Mali, S. (2001). Two species of flagellates of the genus Monocercomonoides Travis, 1932 from the gut of dung beetle larva (Oryctes rhinoceros) in India. Geobios (Jodhpur), 28, 201–204.

    Google Scholar 

  • Mali, M., & Mali, S. (2004). Monocercomonoides khultabadae n.sp., a new flagellate from the gut of Pycnoscelus surinamensis. Uttar Pradesh Journal Zoology, 24, 55–58.

    Google Scholar 

  • Mali, M., & Patil, D. (2003). The morphology of Monocercomonoides aurangabadae n. sp. a flagellata from the gut of Blatta germanica. Uttar Pradesh Journal of Zoology, 23, 117–119.

    Google Scholar 

  • Mali, M., & Sultana, T. (1993). The morphology of Tubulimonoides shivamurthi n. sp. – A new flagellate from the gut of Oryctes rhinoceros. Geobios New Reports, 12, 30–32.

    Google Scholar 

  • Mali, M., Kulkarni, S., & Mali, S. (2003). Tubulimonoides aurangabadae n. sp. (Mastigophora: Oxymonadida), a new flagellate from the gut of Oryctes rhinoceros. Geobios, 30, 291–292.

    Google Scholar 

  • May, E. (1941). The behavior of the intestinal protozoa of termites at the time of the last ecdysis. Transactions of the American Microscopical Society, 60, 281–292.

    Article  Google Scholar 

  • Mcintosh, J. R. (1973). Axostyle of Saccinobaculus. 2. Motion of microtubule bundle and a structural comparison of straight and bent axostyles. The Journal of Cell Biology, 56, 324–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mcintosh, J. R. (1974). Bridges between microtubules. The Journal of Cell Biology, 61, 166–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mcintosh, J. R., Ogata, E. S., & Landis, S. C. (1973). Axostyle of Saccinobaculus. 1. Structure of organism and its microtubule bundle. The Journal of Cell Biology, 56, 304–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mooseker, M. S., & Tilney, L. G. (1973). Isolation and reactivation of the axostyle. Evidence for a dynein-like ATPase in the axostyle. The Journal of Cell Biology, 56, 13–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriya, S., Ohkuma, M., & Kudo, T. (1998). Phylogenetic position of symbiotic protist Dinenympha [correction of Dinemympha] exilis in the hindgut of the termite Reticulitermes speratus inferred from the protein phylogeny of elongation factor 1 alpha. Gene, 210, 221–227.

    Article  CAS  PubMed  Google Scholar 

  • Moriya, S., Tanaka, K., Ohkuma, M., Sugano, S., & Kudo, T. (2001). Diversification of the microtubule system in the early stage of eukaryote evolution: Elongation factor 1 alpha and alpha-tubulin protein phylogeny of termite symbiotic oxymonad and hypermastigote protists. Journal of Molecular Evolution, 52, 6–16.

    Article  CAS  PubMed  Google Scholar 

  • Moriya, S., Dacks, J. B., Takagi, A., Noda, S., Ohkuma, M., Doolittle, W. F., & Kudo, T. (2003). Molecular phylogeny of three oxymonad genera: Pyrsonympha, Dinenympha and Oxymonas. Journal of Eukaryotic Microbiology, 50, 190–197.

    Article  PubMed  Google Scholar 

  • Moskowitz, N. (1951). Observations on some intestinal flagellates from reptilian host (Squamata). Journal of Morphology, 89, 257–321.

    Article  Google Scholar 

  • Mukherjee, P., & Maiti, P. K. (1988). Two new species of flagellates of the genus Pyrsonympha Leidy (Mastigophora: Protozoa) from Reticulitermes tirapi Chhotani and Das (Isoptera: Insecta). Proceedings of the Zoological Society, Calcutta, 38, 37–45.

    Google Scholar 

  • Mukherjee, P., & Maiti, P. K. (1989). Description of two new species of flagellates of the genus Dineympha Leidy (Mastigophora: Polymastigida) from Reticulitermes tirapi Chhotani & Das (Isoptera). Archiv fur Protistenkunde, 137, 95–100.

    Article  Google Scholar 

  • Müller, M. (1992). Energy metabolism of ancestral eukaryotes: A hypothesis based on the biochemistry of amitochondriate parasitic protists. Biosystems, 28, 33–40.

    Article  PubMed  Google Scholar 

  • Nakashima, K. I., Watanabe, H., & Azuma, J. I. (2002). Cellulase genes from the parabasalian symbiont Pseudotrichonympha grassii in the hindgut of the wood-feeding termite Coptotermes formosanus. Cellular and Molecular Life Sciences, 59, 1554–1560.

    Article  CAS  PubMed  Google Scholar 

  • Navarathnam, E. S. (1970). Intestinal flagellates of the common Indian rat Rattus rattus frugivorous. Acta Protozoologica, 8, 155–165.

    Google Scholar 

  • Nie, D. (1950). Morphology and taxonomy of the intestinal Protozoa of the guinea-pig, Cavia porcella. Journal of Morphology, 86, 381–494.

    Article  CAS  PubMed  Google Scholar 

  • Noda, S., Ohkuma, M., Yamada, A., Hongoh, Y., & Kudo, T. (2003). Phylogenetic position and in situ identification of ectosymbiotic spirochetes on protists in the termite gut. Applied and Environmental Microbiology, 69, 625–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noda, S., Inoue, T., Hongoh, Y., Kawai, M., Nalepa, C. A., Vongkaluang, C., Kudo, T., & Ohkuma, M. (2006). Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environmental Microbiology, 8, 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Nurse, F. R. (1945). Protozoa from New Zealand termites. Transactions of the Royal Society of New Zealand, 74, 305–314.

    Google Scholar 

  • Ohkuma, M., & Brune, A. (2011). Diversity, structure, and evolution of the termite gut microbial community. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 439–475). Dordrecht: Springer.

    Google Scholar 

  • O’Kelly, C. J., Farmer, M. A., & Nerad, T. A. (1999). Ultrastructure of Trimastix pyriformis (Klebs) Bernard et al.: Similarities of Trimastix species with retortamonad and jakobid flagellates. Protist, 150, 149–162.

    Article  PubMed  Google Scholar 

  • Parfrey, L. W., Grant, J., Tekle, Y. I., Lasek-Nesselquist, E., Morrison, H. G., Sogin, M. L., Patterson, D. J., & Katz, L. A. (2010). Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Systematic Biology, 59, 518–533.

    Article  PubMed  PubMed Central  Google Scholar 

  • Poinar, G. O., Jr. (2009a). Description of an early Cretaceous termite (Isoptera: Kalotermitidae) and its associated intestinal protozoa, with comments on their co-evolution. Parasites & Vectors, 2, 12.

    Article  Google Scholar 

  • Poinar, G. O., Jr. (2009b). Early Cretaceous protist flagellates (Parabasalia: Hypermastigida: Oxymonada) of cockroaches (Insecta:Blattaria) in Burmese amber. Cretaceous Research, 30, 1066–1072.

    Article  Google Scholar 

  • Porter, J. F. (1897). Trichonympha, and other parasites of Termes flavipes. Bulletin of the Museum of Comparative Zoölogy, 31, 47–63.

    Google Scholar 

  • Powell, W. N. (1928). On the morphology of Pyrsonympha with a description of three new species from Reticulitermes hesperus Banks. University of California Publications in Zoology, 31, 179–200.

    Google Scholar 

  • Qadri, S. S., & Rao, T. B. (1963). On a new flagellate Polymastix periplanetae from the common cockroach, Periplaneta americana. Rivista Parasitologica, 24, 153–158.

    Google Scholar 

  • Radek, R. (1994). Monocercomonoides termitis n. sp, an oxymonad from the lower termite Kalotermes sinaicus. Archiv für Protistenkunde, 144, 373–382.

    Article  Google Scholar 

  • Radek, R. (1997). Monocercomonoides hausmanni nom. nov, a new species name for M. termitis Radek, 1994. Archiv für Protistenkunde, 147, 411.

    Google Scholar 

  • Radek, R. (1999). Flagellates, bacteria, and fungi associated with termites: Diversity and function in nutrition – A review. Ecotropica, 5, 183–196.

    Google Scholar 

  • Radek, R., Strassert, J. F., Krüger, J., Meuser, K., Scheffrahn, R. H., & Brune, A. (2014). Phylogeny and ultrastructure of Oxymonas jouteli, a rostellum-free species, and Opisthomitus longiflagellatus sp. nov., Oxymonadida flagellates from the gut of Neotermes jouteli. Protist, 165(3), 384–399.

    Article  PubMed  Google Scholar 

  • Ray, D. K. (1949). On a Monocercomonoides nimiei n. sp., from the caecum of Indian guinea pig, Cavia cutleri Bennet. Proceedings of the Indian Science Congress, 36, 155.

    Google Scholar 

  • Reeves, R. E., Warren, L. G., Susskind, B., & Loi, H. S. (1977). Energy conserving pyruvate to acetate pathway in Entamoeba histolytica – Pyruvate synthase and a new acetate thiokinase. The Journal of Biological Chemistry, 252, 726–731.

    CAS  PubMed  Google Scholar 

  • Rodriguez-Ezpeleta, N., Brinkmann, H., Burger, G., Roger, A. J., Gray, M. W., Philippe, H., & Lang, B. F. (2007a). Toward Resolving the eukaryotic tree: The phylogenetic positions of jakobids and cercozoans. Current Biology, 17, 1420–1425.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Ezpeleta, N., Brinkmann, H., Roure, B., Lartillot, N., Lang, B. F., & Philippe, H. (2007b). Detecting and overcoming systematic errors in genome-scale phylogenies. Systematic Biology, 56, 389–399.

    Article  CAS  PubMed  Google Scholar 

  • Rother, A., Radek, R., & Hausmann, K. (1999). Characterization of surface structures covering termite flagellates of the family oxymonadidae and ultrastructure of two oxymonad species, Microrhopalodina multinucleata and Oxymonas sp. European Journal of Protistology, 35, 1–16.

    Article  Google Scholar 

  • Sato, T., Kuwahara, H., Fujita, K., Noda, S., Kihara, K., Yamada, A., Ohkuma, M., & Hongoh, Y. (2014). Intranuclear verrucomicrobial symbionts and evidence of lateral gene transfer to the host protist in the termite gut. ISME Journal, 8(5), 1008–1019.

    Article  CAS  PubMed  Google Scholar 

  • Simpson, A. G. B. (2003). Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). International Journal of Systematic and Evolutionary Microbiology, 53, 1759–1777.

    Article  PubMed  Google Scholar 

  • Simpson, A. G. B., Bernard, C., & Patterson, D. J. (2000). The ultrastructure of Trimastix marina Kent, 1880. European Journal of Protistology, 36, 229–251.

    Article  Google Scholar 

  • Simpson, A. G. B., Radek, R., Dacks, J. B., & O’Kelly, C. J. (2002). How oxymonads lost their groove: An ultrastructural comparison of Monocercomonoides and excavate taxa. Journal of Eukaryotic Microbiology, 49, 239–248.

    Article  PubMed  Google Scholar 

  • Simpson, A. G. B., Inagaki, Y., & Roger, A. J. (2006). Comprehensive multigene phylogenies of excavate protists reveal the evolutionary positions of “primitive” eukaryotes. Molecular Biology and Evolution, 23, 615–625.

    Article  CAS  PubMed  Google Scholar 

  • Slamovits, C. H., & Keeling, P. J. (2006a). A high density of ancient spliceosomal introns in oxymonad excavates. BMC Evolutionary Biology, 6, 34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slamovits, C. H., & Keeling, P. J. (2006b). Pyruvate-phosphate dikinase of oxymonads and parabasalia and the evolution of pyrophosphate-dependent glycolysis in anaerobic eukaryotes. Eukaryotic Cell, 5, 148–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, H. S., & Arnott, H. J. (1973). Scales associated with external surface of Pyrsonympha vertens. Transactions of the American Microscopical Society, 92, 670–677.

    Article  Google Scholar 

  • Smith, H. E., & Arnott, H. J. (1974a). Axostyle structure in termite protozoan Pyrsonympha vertens. Tissue & Cell, 6, 193–207.

    Article  CAS  Google Scholar 

  • Smith, H. E., & Arnott, H. J. (1974b). Epibiotic and endobiotic bacteria associated with Pyrsonympha vertens – Symbiotic protozoan of termite Reticulitermes flavipes. Transactions of the American Microscopical Society, 93, 180–194.

    Article  CAS  PubMed  Google Scholar 

  • Smith, H. E., Stamler, S. J., & Buhse, B. E., Jr. (1975). A scanning electron microscope survey of the surface features of polymastigote flagellates from Reticulitermes flavipes. Transactions of the American Microscopical Society, 94, 401–410.

    Article  Google Scholar 

  • Stechmann, A., Baumgartner, M., Silberman, J. D., & Roger, A. J. (2006). The glycolytic pathway of Trimastix pyriformis is an evolutionary mosaic. BMC Evolutionary Biology, 6, 101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stingl, U., & Brune, A. (2003). Phylogenetic diversity and whole-cell hybridization of oxymonad flagellates from the hindgut of the wood-feeding lower termite Reticulitermes flavipes. Protist, 154, 147–155.

    Article  CAS  PubMed  Google Scholar 

  • Stingl, U., Radek, R., Yang, H., & Brune, A. (2005). “Endomicrobia”: Cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes. Applied and Environmental Microbiology, 71, 1473–1479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sultana, T. (1975). A redescription of Monocercomonoides ganapatii Bhaskar Rao, 1969 from Gryllotalpa africana. Natural Science. Journal of Marathwada University, 14, 229–232.

    Google Scholar 

  • Sultana, T. (1976). Monocercomonoides krishnamurthii n. sp., a new flagellate (Protozoa: Plastigophora) from the gut of a blattid in India. Natural Science. Journal of Marathwada University, 15, 149–152.

    Google Scholar 

  • Sultana, T. (1976). Studies on two new species of flagellates of the genus Polymastix Butschli, 1884 from insects in India. Acta Protozoologica, 15, 1–8.

    Google Scholar 

  • Sultana, T., & Krishnamurthy, R. (1978). Monocercomonoides gryllusae n. sp. (Mastigophora: Oxymonadida) from Gryllus bimaculatus. Geobios, 6, 114–115.

    Google Scholar 

  • Tamschick, S., & Radek, R. (2013). Colonization of termite hindgut walls by oxymonad flagellates and prokaryotes in Incisitermes tabogae, I. marginipennis and Reticulitermes flavipes. European Journal of Protistology, 49, 1–14.

    Article  PubMed  Google Scholar 

  • Tanabe, M. (1933). The morphology and division of Monocercomonas lacertae, n. sp. from lizards. Keijo Journal of Medicine, 4, 367–377.

    Google Scholar 

  • Tiwari, D. N. (2005). Oxymonas bastiensis sp.nov. (Oxymonadidae) a new flagellate from the termite Neotermes bosei synder of Uttar Pradesh, India. Journal of Advanced Zoology, 26, 50–51.

    Google Scholar 

  • Todd, S. R. (1963). Studies on some parasitic flagellates of certain wild mammals of Hyderabad. Archiv fur Protistenkunde, 107, 1–116.

    Google Scholar 

  • Tokura, M., Ohkuma, M., & Kudo, T. (2000). Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. FEMS Microbiology Ecology, 33, 233–240.

    Article  CAS  PubMed  Google Scholar 

  • Travis, B. V. (1932). A discussion of synonymy in the nomenclature of certain insect flagellates, with the description of a new flagellate from the larvae of Ligyrodes relictus Say (Coleoptera-Scarabaeidae). Iowa State College Journal of Science, 6, 317–323.

    Google Scholar 

  • Travis, B. V., & Becker, E. R. (1931). A preliminary report on the intestinal protozoa of white grubs. (Phyllophaga sp. Coleoptera). Iowa State Journal of Science, 5, 223–235.

    Google Scholar 

  • Upcroft, J., & Upcroft, P. (1998). My favorite cell: Giardia. Bioessays, 20, 256–263.

    Article  CAS  PubMed  Google Scholar 

  • Yamin, M. A. (1981). Cellulose metabolism by the flagellate Trichonympha from a termite is independent of endosymbiotic bacteria. Science, 211, 58–59.

    Article  CAS  PubMed  Google Scholar 

  • Yang, H., Schmitt-Wagner, D., Stingl, U., & Brune, A. (2005). Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis). Environmental Microbiology, 7, 916–932.

    Article  CAS  PubMed  Google Scholar 

  • Yubuki, N., & Leander, B. S. (2013). Evolution of microtubule organizing centers across the tree of eukaryotes. The Plant Journal, 75(2), 230–244.

    Article  CAS  PubMed  Google Scholar 

  • Yubuki, N., Simpson, A. G., & Leander, B. S. (2013). Comprehensive ultrastructure of Kipferlia bialata provides evidence for character evolution within the Fornicata (Excavata). Protist, 164(3), 423–439.

    Article  CAS  PubMed  Google Scholar 

  • Zeliff, C. C. (1930). Kirbyella zeteki, a new genus and species of protozoa from Kalotermes (Calcaritermes) brevicollis from the canal zone. American Journal of Epidemiology, 11, 740–742.

    Google Scholar 

  • Zeliff, C. C. (1930). A cytological study of Oxymonas, a flagellate, including descriptions of new species. American Journal of Epidemiology, 11, 714–739.

    Article  Google Scholar 

  • Zhang, Q., Táborský, P., Silberman, J. D., Pánek, T., Čepička, I., & Simpson, A. G. B. (2015). Marine Isolates of Trimastix marina form a plesiomorphic deep-branching lineage within Preaxostyla, separate from other known trimastigids (Paratrimastix n. gen.). Protist, 166(4), 468–491.

    Article  PubMed  Google Scholar 

  • Zhou, X., Smith, J. A., Oi, F. M., Koehler, P. G., Bennett, G. W., & Scharf, M. E. (2007). Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene, 395(1–2), 29–39.

    Article  CAS  PubMed  Google Scholar 

  • Zubáčová, Z., Novák, L., Bublíková, J., Vacek, V., Fousek, J., Rídl, J., Tachezy, J., Doležal, P., Vlček, C., & Hampl, V. (2013). The mitochondrion-like organelle of Trimastix pyriformis contains the complete glycine cleavage system. PLoS One, 8, e55417.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Guy Brugerolle, Patrick Keeling, Kevin Carpenter, and Eva Nohýnková for kindly providing figures; Joel B Dacks, Jaroslav Kulda, Naoji Yubuki, Alastair Simpson, and an anonymous reviewer for proofreading the manuscript and helpful comments; Ivan Čepička for providing protargol preparations; and Ivan Hrdý for providing termites. Support for the author’s salary came from the project of the Ministry of Education, Youth, and Sports of CR within the National Sustainability Program II (Project BIOCEV-FAR) LQ1604 and by the project “BIOCEV” (CZ.1.05/1.1.00/02.0109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Hampl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Hampl, V. (2017). Preaxostyla. In: Archibald, J., Simpson, A., Slamovits, C. (eds) Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-28149-0_8

Download citation

Publish with us

Policies and ethics