Skip to main content

Myxomycetes

  • Reference work entry
  • First Online:
Handbook of the Protists

Abstract

The myxomycetes (class Myxogastria), also commonly known as plasmodial slime molds or acellular slime molds, are the most species-rich group within the Amoebozoa, with approximately 1,000 morphologically recognizable species having been described. These organisms are free-living predators of bacteria and other eukaryotic protists. Myxomycetes have been recorded from every terrestrial habitat investigated to date. The two trophic stages (amoeboflagellates and plasmodia) in the life cycle are usually cryptic, but the fruiting bodies are often large enough to be observed directly in nature. Fruiting bodies release airborne spores that are dispersed by air or, more rarely, animal vectors. Myxomycetes are associated with a wide variety of different microhabitats, the most important of which are coarse woody debris, ground litter, aerial litter, and the bark surface of living trees. Specimens can be obtained as fruiting bodies that have developed in the field under natural conditions or cultured in the laboratory. A substantial body of data on the worldwide biodiversity and distribution of myxomycetes has been assembled over the past 200 years, but there is a relative lack of molecular data, since myxomycetes are neither pathogenic nor of economic importance. However, recent studies have produced the first, albeit still incomplete, molecular phylogenies of the group. Moreover, there appears to be a much higher level of diversity on the molecular level than reflected in the number of morphospecies, with the latter often consisting of reproductively isolated populations which can be considered as biospecies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adl, S. M., Simpson, A. G., Lane, C. E., Lukeš, J., Bass, D., Bowser, S. S., et al. (2012). The revised classification of Eukaryotes. Journal of Eukaryotic Microbiology, 59, 429–493.

    Article  PubMed  PubMed Central  Google Scholar 

  • Adl, S. M., Habura, A., & Eglit, Y. (2014). Amplification primers of SSU rDNA for soil protists. Soil Biology & Biochemistry, 69, 328–342.

    Article  CAS  Google Scholar 

  • Aguilar, M., Fiore-Donno, A.-M., Lado, C., & Cavalier-Smith, T. (2013). Using environmental niche models to test the ‘everything is everywhere’ hypothesis for Badhamia. The ISME Journal, 8, 737–745.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alexopoulos, C. J. (1960). Gross morphology of the plasmodium and its possible significance in the myxomycetes. Mycologia, 52, 1–20.

    Article  Google Scholar 

  • Alexopoulos, C. J. (1963). The myxomycetes II. Botanical Review, 29, 1–77.

    Article  Google Scholar 

  • Alexopoulos, C. J. (1964). The rapid sporulation of some myxomycetes in moist chamber culture. Southwestern Naturalist, 9, 155–159.

    Article  Google Scholar 

  • Baldauf, S. L. (2003). The deep roots of eukaryotes based on combined protein data. Science, 300, 1703–1706.

    Article  CAS  PubMed  Google Scholar 

  • Baldauf, S. L. (2008). An overview of the phylogeny and diversity of eukaryotes. Journal of Systematics and Evolution, 46, 263–273.

    Google Scholar 

  • Bapteste, E., Brinkmann, H., Lee, J. A., Moore, D. V., Sensen, C. W., Gordon, P., et al. (2002). The analysis of 100 genes support the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba. Proceedings of the National Academy of Sciences of the United States of America, 99, 1414–1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bardele, C. F., Foissner, W., & Blanton, R. L. (1991). Morphology, morphogenesis and systematic position of the sorocarp forming ciliate Sorogena stoianovitchae Bradbury & Olive 1980. Journal of Protozoology, 38, 7–17.

    Article  Google Scholar 

  • Blackwell, M., & Busard, A. (1978). The use of pigments as a taxonomic character to distinguish species of the Trichiaceae (Myxomycetes). Mycotaxon, 7, 61–67.

    Google Scholar 

  • Blackwell, M., & Gilbertson, R. L. (1980). Sonoran desert myxomycetes. Mycotaxon, 11, 139–149.

    Google Scholar 

  • Brown, M. W., Spiegel, F. W., & Silberman, J. D. (2009). Phylogeny of the “forgotten” cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta. Molecular Biology and Evolution, 12, 2699–2709.

    Article  CAS  Google Scholar 

  • Brown, M. W., Spiegel, F. W., & Silberman, J. D. (2010). A morphologically simple species of Acrasis (Heterolobosea, Excavata), Acrasis helenhemmesae n. sp. Journal of Eukaryotic Microbiology, 57, 346–353.

    Google Scholar 

  • Brown, M. W., Silberman, J. D., & Spiegel, F. W. (2012). A contemporary evaluation of the acrasids (Acrasidae, Heterolobosea, Excavata). European Journal of Protistology, 48, 103–123.

    Article  PubMed  Google Scholar 

  • Cavalier-Smith, T. (2013). Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. European Journal of Protistology, 49, 115–178.

    Article  PubMed  Google Scholar 

  • Clark, J. (2000). The species problem in the myxomycetes. Stapfia, 73, 39–53.

    Google Scholar 

  • Clark, J., & Haskins, E. F. (2010). Reproductive systems in the myxomycetes: A review. Mycosphere, 1, 337–353.

    Google Scholar 

  • Clark, J., & Haskins, E. F. (2011). Principles and protocols for genetical study of myxomycete reproductive systems and plasmodial coalescence. Mycosphere, 2, 487–496.

    Google Scholar 

  • Clark, J., & Haskins, E. F. (2013). The nuclear reproductive cycle in the myxomycetes: A review. Mycosphere, 4, 233–248.

    Article  Google Scholar 

  • Clissmann, F., Fiore-Donno, A. M., Hoppe, B., Krüger, D., Kahl, T., Unterseher, M., & Schnittler, M. (2015). First insight into dead wood protistean diversity: A molecular sampling of bright-spored myxomycetes (Amoebozoa, slime moulds) in decaying beech logs. FEMS Microbiology Ecology. doi:10.1093/femsec/fiv050.v.

    PubMed  Google Scholar 

  • Collins, O. R. (1979). Myxomycete biosystematics: Some recent developments and future research opportunities. Botanical Review, 45, 145–201.

    Article  Google Scholar 

  • Collins, O. R. (1980). Apomictic-heterothallic conversion in a myxomycete, Didymium iridis. Mycologia, 72, 1109–1116.

    Article  Google Scholar 

  • Collins, O. R. (1981). Myxomycete genetics, 1960–1981. Journal of the Elisha Mitchell Scientific Society, 97, 101–125.

    Google Scholar 

  • Cooke, M. C. (1877). The myxomycetes of Great Britain arranged according to the method of Rostafinski: The characters of all the orders, families and genera, with descriptions of the British species, and original analytical tables, translated from the Polish. London: Williams and Norgate.

    Book  Google Scholar 

  • de Bary, A. (1859). Die Mycetozoen. Ein Beitrag zur Kenntnis der niedersten Thiere. Zeitschrift für Wissenschaftliche Zoologie, 10, 88–175.

    Google Scholar 

  • de Bary, A. (1864). Die Mycetozoa (Schleimpilze). Ein Beitrag zur Kenntnis der niedersten Organismen. Leipzig: Engelmann.

    Google Scholar 

  • Dembitsky, V. M., Rezanka, T., Spizek, J., & Hanus, L. O. (2005). Secondary metabolites of slime molds (myxomycetes). Phytochemistry, 66, 747–769.

    Article  CAS  PubMed  Google Scholar 

  • Domke, W. (1952). Der erste sichere Fund eines Myxomyceten im baltischen Bernstein (Stemonitis splendens Rost. fa. succini fa. nov. foss.). Mitteilungen aus dem Geologischen Staatsinstitut in Hamburg, 21, 154–161.

    Google Scholar 

  • Dörfelt, H., Schmidt, A. R., Ullmann, P., & Wunderlich, J. (2003). The oldest fossil myxogastroid slime mould. Mycological Research, 107, 123–126.

    Article  PubMed  Google Scholar 

  • Dykstra, M. J., & Keller, H. W. (2000). Class Mycetozoa de Bary, 1859. In J. J. Lee, G. F. Leedale, & P. Bradbury (Eds.), An illustrated guide to the Protozoa II (pp. 952–980). Lawrence: Society of Protozoologists.

    Google Scholar 

  • Eliasson, U. (1977). Recent advances in the taxonomy of myxomycetes. Botaniska Notiser, 130, 483–492.

    Google Scholar 

  • Eliasson, U. (2015). Review and remarks on current generic delimitations in the myxomycetes, with special emphasis on Licea, Listerella and Perichaena. Nova Hedwigia. doi.org/10.1127/nova_hedwigia/2015/0283v.

    Google Scholar 

  • Eliasson, U., & Keller, H. W. (1999). Coprophilous myxomycetes: Updated summary, key to species, and taxonomic observations on Trichia brunnea, Arcyria elaterensis, and Arcyria stipata. Karstenia, 39, 1–10.

    Google Scholar 

  • Erastova, D. A., Okun, M., Novozhilov, Y. K., & Schnittler, M. (2013). Phylogenetic position of the enigmatic myxomycete Kelleromyxa fimicola based on SSU rDNA sequences. Mycological Progress, 12, 599–608.

    Article  Google Scholar 

  • Estrada-Torres, A., Gaither, T., & Miller, D. L. (2005). The myxomycete genus Schenella: Morphological and DNA sequence evidence for synonymy with the gasteromycete genus Pyrenogaster. Mycologia, 97, 139–149.

    Article  CAS  PubMed  Google Scholar 

  • Feest, A., Taylor, K. M., & Stephenson, S. L. (2015). The occurrence of myxomycetes in wood? Fungal Ecology, 17, 179–182.

    Article  Google Scholar 

  • Feng, Y., & Schnittler, M. (2015). Sex or no sex? Independent marker genes and group I introns reveal the existence of three sexual but reproductively isolated biospecies in Trichia varia (Myxomycetes). Organisms, Diversity and Evolution, 15, 631–650.

    Article  Google Scholar 

  • Feng, Y., & Schnittler, M. (2017). Molecular or morphological species? Myxomycete diversity in a deciduous forest in northeastern Germany. Nova Hedwigia, 104, 359–380.

    Google Scholar 

  • Feng, Y., Klahr, A., Janik, P., Ronikier, A., Hoppe, T., Novozhilov, Y. K., & Schnittler, M. (2016). What an intron may tell: Several sexual biospecies coexist in Meriderma spp. (Myxomycetes). Protist, 167, 234–253.

    Article  CAS  PubMed  Google Scholar 

  • Ferris, P. J., Vogt, V. M., & Truitt, C. L. (1983). Inheritance of extrachromosomal rDNA in Physarum polycephalum. Molecular and Cellular Biology, 3, 635–642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiore-Donno, A.-M., Meyer, M., Baldauf, S. L., & Pawlowski, J. (2008). Evolution of dark-spored Myxomycetes (slime-molds): Molecules versus morphology. Molecular Phylogenetics and Evolution, 46, 878–889.

    Article  CAS  PubMed  Google Scholar 

  • Fiore-Donno, A.-M., Kamono, A., Chao, E. E., Fukui, M., & Cavalier-Smith, T. (2010a). Invalidation of Hyperamoeba by transferring its species to other genera of Myxogastria. Journal of Eukaryotic Microbiology, 57, 189–196.

    Article  PubMed  Google Scholar 

  • Fiore-Donno, A.-M., Nikolaev, S. I., Nelson, M., Fiore-Donno, A. M., Nikolaev, S. I., Nelson, M., Pawlowski, J., Cavalier-Smith, T., & Baldauf, S. L. (2010b). Deep phylogeny and evolution of slime moulds (Mycetozoa). Protist, 161, 55–70. doi:10.1016/j.protis.2009.05.002.

    Article  CAS  PubMed  Google Scholar 

  • Fiore-Donno, A.-M., Novozhilov, Y. K., Meyer, M., & Schnittler, M. (2011). Genetic structure of two protist species (Myxogastria, Amoebozoa) reveals possible predominant asexual reproduction in sexual amoebae. PLoS ONE, 6, e22872. doi:10.1371/journal.pone.0022872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiore-Donno, A.-M., Kamono, A., Meyer, M., Schnittler, M., Fukui, M., & Cavalier-Smith, T. (2012). 18S rDNA Phylogeny of Lamproderma and allied genera (Stemonitales, Myxomycetes, Amoebozoa). PLoS ONE, 7. doi:10.1371/journal.pone.0035359.

    Google Scholar 

  • Fiore-Donno, A.-M., Clissmann, F., Meyer, M., Schnittler, M., & Cavalier-Smith, T. (2013). Two-gene phylogeny of bright-spored Myxomycetes (slime moulds, superorder Lucisporidia). PLoS ONE, 8, e62586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiore-Donno, A. M., Weinert, J., Wubet, T., & Bonkowski, M. (2016). Metacommunity analysis of amoeboid protists in grassland soils. Scientific Reports, 6, 19068. doi:10.1028/srep19068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiz-Palacios, O., Romeralo, M., Ahmadzadeh, A., Weststrand, S., Ahlberg, P. E., et al. (2013). Did Terrestrial diversification of amoebas (Amoebozoa) occur in synchrony with land plants? PLoS ONE, 8(9), e74374. doi:10.1371/journal.pone.0074374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert, H. C., & Martin, G. W. (1933). Myxomycetes found on the bark of living trees. University of Iowa Studies in Natural History, 15, 3–8.

    Google Scholar 

  • Goddard, M. R., & Burt, A. (1999). Recurrent invasion and extinction of a selfish gene. Proceedings of the National Academy of Sciences of the United States of America, 96, 13880–13885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham, A. (1971). The role of myxomyceta spores in palynology (with a brief note on the morphology of certain algal zygospores). Review of Palaeobotany and Palynology, 11, 89–99.

    Article  Google Scholar 

  • Harkönen, M. (1977). Corticolous myxomycetes in three different habitats in southern Finland. Karstenia, 17, 19–32.

    Google Scholar 

  • Harkönen, M. (1981). Myxomycetes developed on litter of common Finnish trees in moist chamber cultures. Nordic Journal of Botany, 1, 791–794.

    Article  Google Scholar 

  • Haskins, E. F., & Wrigley de Basanta, D. (2008). Methods of agar culture of myxomycetes: An overview. Revista Mexicana de Micologia, 27, 1–7.

    Google Scholar 

  • Haugen, P., Coucheron, D. H., Rønning, S. B., Haugli, K., & Johansen, S. (2003). The molecular evolution and structural organization of self-splicing group I introns at position 516 in nuclear SSU rDNA of myxomycetes. Journal of Eukaryotic Microbiology, 50, 283–292.

    Article  CAS  PubMed  Google Scholar 

  • Hoppe, T., & Kutschera, U. (2013). Chromosome numbers in representative myxomycetes: A cytogenetic study. Mycological Progress, 13(1), 189–192.

    Article  Google Scholar 

  • Hoppe, T., & Schwippert, W. W. (2014). Hydrophobicity of myxomycete spores: An undescribed aspect of spore ornamentation. Mycosphere, 5(4), 601–606. doi:10.5943/mycosphere/5/4/12.

    Google Scholar 

  • Hüttermann, A. (1973). Physarum polycephalum. Munich: Urban & Fischer.

    Google Scholar 

  • Ing, B. (1999). The myxomycetes of Britain and Ireland: An identification handbook. Slough: The Richmond Publishing Company, Ltd.

    Google Scholar 

  • Iwata, D., Ishibashi, M., & Yamamoto, Y. (2003). Cribrarione B, a new naphthoquinone pigment from the myxomycete Cribraria cancellata. Journal of Natural Products, 66, 1611–1612.

    Article  CAS  PubMed  Google Scholar 

  • Johansen, S., Embley, T. M., & Willassen, N. P. (1993). A family of nuclear homing endonucleases. Nucleic Acids Research, 21, 4405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansen, S., Elde, M., Vader, A., Haugen, P., Haugli, K., & Haugli, F. (1997). In vivo mobility of a group I twintron in nuclear ribosomal DNA of the myxomycete Didymium iridis. Molecular Microbiology, 24, 737–745.

    Article  CAS  PubMed  Google Scholar 

  • Kamono, A., Kojima, H., Matsumoto, J., Kawamura, K., & Fukui, M. (2009). Airborne myxomycete spores: Detection using molecular techniques. Naturwissenschaften, 96, 147–151.

    Article  CAS  PubMed  Google Scholar 

  • Kamono, A., Meyer, M., Cavalier-Smith, T., Fukui, M., & Fiore-Donno, A.-M. (2012). Exploring slime mould diversity in high-altitude forests and grasslands by environmental RNA analysis. FEMS Microbiology Ecology, 84, 98–109.

    Article  PubMed  CAS  Google Scholar 

  • Karpov, S. A., & Mylnikov, A. P. (1997). Ultrastructure of the colorless flagellated Hyperamoeba flagellata with special reference to the flagellate apparatus. European Journal of Protistology, 33, 349–355.

    Article  Google Scholar 

  • Keller, H. W., & Braun, K. (1999). Myxomycetes of Ohio: Their systematics, biology and use in teaching. Ohio Biological Survey Bulletin, New Series, 13(2), 1–182.

    Google Scholar 

  • Keller, H. W., & Brooks, T. E. (1976). Corticolous myxomycetes V: Observations on the genus Echinostelium. Mycologia, 68, 1204–1220.

    Article  Google Scholar 

  • Kretzschmar, M., Kuhnt, A., Bonkowski, M., & Fiore-Donno, A. M. (2016). Phylogeny of the highly divergent Echinosteliales (Amoebozoa). Journal of Eukaryotic Microbiology, 63, 453–459.

    Google Scholar 

  • Lado, C. (2005–2016). An on line nomenclatural information system of Eumycetozoa. http://www.nomen.eumycetozoa.com. Accessed Mar 2016.

    Google Scholar 

  • Lado, C., & Wrigley de Basanta, D. (2008). A review of Neotropical myxomycetes (1828–2008). Anales del Jardin Botánico de Madrid, 65(2), 211–254.

    Google Scholar 

  • Lado, C., Mosquera, J., & Beltrán-Tejera, E. (1999). Cribraria zonatispora, development of a new Myxomycete with unique spores. Mycologia, 91(1), 157–165.

    Article  Google Scholar 

  • Lado, C., Estrada-Torres, A., & Stephenson, S. L. (2007). Myxomycetes collected in the first phase of a north-south transect of Chile. Fungal Diversity, 25, 81–101.

    Google Scholar 

  • Lahr, D. J. G., Parfrey, L. W., Mitchell, E. A., Katz, L. A., & Lara, E. (2011). The chastity of amoebae: Re-evaluating evidence for sex in amoeboid organisms. Proceedings of the Royal Society B, 278, 2081–2090.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leontyev, D. V., Schnittler, M., Moreno, G., Stephenson, S. L., Mitchell, D. W., & Rojas, C. (2014). The genus Alwisia (Myxomycetes) revalidated, with two species new to science. Mycologia, 106, 936–948.

    Article  PubMed  Google Scholar 

  • Lindley, L. A., Stephenson, S. L., & Spiegel, F. W. (2007). Protostelids and myxomycetes isolated from aquatic habitats. Mycologia, 99, 504–509.

    Article  PubMed  Google Scholar 

  • Link, J. H. F. (1833). Handbuch zur Erkennung der nutzbarsten und am häufigsten vorkommenden Gewächse 3. Ordo Fungi, Subordo 6. Myxomycetes 405–422, 432–433. Berlin.

    Google Scholar 

  • Lister, A. (1894). A monograph of the Mycetozoa. London.

    Google Scholar 

  • Lister, A. (1911). A monograph of the Mycetozoa, ed. 2, revised by G. Lister. London.

    Google Scholar 

  • Lister, A. (1925). A monograph of the Mycetozoa, ed. 3, revised by G. Lister. London.

    Google Scholar 

  • Loganathan, P., Paramasivan, P., & Kalyanasundaram, I. (1989). Melanin as the spore wall pigment of some myxomycetes. Mycological Research, 92, 286–292.

    Article  Google Scholar 

  • Macbride, T. H. (1899). North American slime-moulds. New York: The Macmillan Company.

    Google Scholar 

  • Macbride, T. H. (1922). North American slime-moulds (2nd ed.). New York: The Macmillan Company.

    Google Scholar 

  • Macbride, T. H., & Martin, G. W. (1934). The myxomycetes. New York: The Macmillan Company.

    Google Scholar 

  • Madelin, M. F. (1984). Presidential address—Myxomycete data of ecological significance. Transactions of the British Mycological Society, 83, 1–19.

    Article  Google Scholar 

  • Martin, G. W., & Alexopoulos, C. J. (1969). The myxomycetes. Iowa City: University of Iowa Press.

    Google Scholar 

  • Martin, G. W., Alexopoulos, C. J., & Farr, M. L. (1983). The genera of myxomycetes. Iowa City: University of Iowa Press.

    Google Scholar 

  • Massee, G. (1892). A monography of the myxogastres. London: Methuen and Company.

    Book  Google Scholar 

  • Mitchell, D. W. (1980). A key to corticolous myxomycetes. Cambridge, UK: The British Mycological Society.

    Google Scholar 

  • Mosquera, J., Lado, C., & Beltrán-Tejera, E. (2000). Morphology and ecology of Didymium subreticulosporum. Mycologia, 92, 378–983.

    Article  Google Scholar 

  • Nakagaki, T., Iima, M., Ueda, T., Nishiura, Y., Saigusa, T., Tero, A., Kobayashi, R., & Showalter, K. (2007). Minimum-risk path finding by an adaptive amoebal network. Physical Review Letters, 99, 068104(4).

    Article  CAS  Google Scholar 

  • Nannenga-Bremekamp, N. B. (1991). A guide to temperate Myxomycetes (De Nederlandse Myxomyceten, English translation by A. Feest & E. Burgraff). Bristol: Biopress Limited.

    Google Scholar 

  • Ndiritu, G. G., Winsett, K. E., Spiegel, F. W., & Stephenson, S. L. (2009). A checklist of African myxomycetes. Mycotaxon, 107, 353–356.

    Article  Google Scholar 

  • Neubert, H., Nowotny, W., & Baumann, K. (1993). Die Myxomyceten Deutschlands und des angrenzenden Alpenraumes unter besonderer Berücksichtigung Österreichs. 1 Ceratiomyxales, Echinosteliales, Liceales, Trichiales. Baumann Verl., Gomaringen.

    Google Scholar 

  • Neubert, H., Nowotny, W., & Baumann, K. (1995) Die Myxomyceten Deutschlands und des angrenzenden Alpenraumes unter besonderer Berücksichtigung Österreichs. 2 Physariales. Baumann Verl., Gomaringen.

    Google Scholar 

  • Neubert, H., Nowotny, W., & Baumann, K. (2000). Die Myxomyceten Deutschlands und des angrenzenden Alpenraumes unter besonderer Berücksichtigung Österreichs. 3 Stemonitales. Baumann Verl., Gomaringen.

    Google Scholar 

  • Novozhilov, Y. K., & Schnittler, M. (2008). Myxomycete diversity and ecology in arid regions of the Great Lake Basin of western Mongolia. Fungal Diversity, 30, 97–119.

    Google Scholar 

  • Novozhilov, Y. K., Schnittler, M., Erastova, D. A., Shchepin, O. N. (2017). Myxomycetes of the Sikhote-Alin State Nature Biosphere Reserve (Far East, Russia). Nova Hedwigia, 104, 183–209.

    Google Scholar 

  • Olive, L. S. (1970). The Mycetozoa: A revised classification. Botanical Review, 36, 59–89.

    Article  Google Scholar 

  • Olive, L. S. (1975). The mycetozoans. New York: Academic.

    Google Scholar 

  • Olive, L. S., & Stoianovitch, C. (1979). Observations of the mycetozoan genus Ceratiomyxa: Description of a new species. Mycologia, 71, 546–555.

    Article  Google Scholar 

  • Pawlowski, J., & Burki, F. (2009). Untangling the phylogeny of amoeboid protists. Journal of Eukaryotic Microbiology, 56, 16–25.

    Article  CAS  PubMed  Google Scholar 

  • Poulain, M., Meyer, M., & Bozonnet, J. (2011). Les myxomycetes. 1. Guide de deterimation. 2. Planches. Féd. Mycol. Bot. Dauphiné-Savoie, Delémont.

    Google Scholar 

  • Rebhahn, M.-A., Schnittler, M., & Liebermann, B. (1999). Taxonomic relevance of pigment patterns in Arcyria species (Trichiales, Myxomycetes) including Arcyodes incarnata. Nova Hedwigia, 69, 415–427.

    Google Scholar 

  • Reichenbach, H. (1993). Biology of the Myxobacteria: Ecology and taxonomy. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Rojas, C., & Stephenson, S. L. (2011). Notes on a rapid assessment of myxomycetes for Kabylie, Algeria. Sydowia, 63, 113–123.

    Google Scholar 

  • Rojas, C., Valverde, R., Stephenson, S. L., & Vargas, M. J. (2010). Biogeographical and ecological patterns of Costa Rican myxomycetes. Fungal Ecology, 3, 39–147.

    Article  Google Scholar 

  • Romeralo, M., Cavender, J. C., Landolt, J. C., Stephenson, S. L., & Baldauf, S. L. (2011). An expanded phylogeny of social amoebas (Dictyostelia) shows increasing diversity and new morphological patterns. BMC Evolutionary Biology, 11, 84. doi:10.1186/1471-2148-11-84.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rostafinski, J. T. (1873). Versuch eines systems der mycetozoen. Inaugural dissertation. Germany: University of Strassberg.

    Google Scholar 

  • Rostafinski, J. T. (1874–1876). Sluzowce (Mycetozoa) monografia. Towarz Nauk Scis Paryzu 5:1–215 (1974); 217–432 (1895); Dodatek [appendix] 8:1–43 (1876).

    Google Scholar 

  • Schaap, P., Winckler, T., Nelson, M., Alvarez-Curto, E., Elgie, B., Hagiwara, H., et al. (2006). Molecular phylogeny and evolution of morphology in the social amoebas. Science, 314, 661–663. doi:10.1126/science.1130670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaap, P., Barrantes, I., Minx, P., Sasaki, N., Anderson, E. W., Bénard, M., et al. (2016). The Physarum polycephalum genome reveals extensive use of prokaryotic two-component and metazoan-type tyrosin kinase signaling. Genome Biology and Evolution, 8, 109–125.

    Article  CAS  Google Scholar 

  • Schnittler, M. (2001a). Foliicolous liverworts as a microhabitat for Neotropical Myxomycetes. Nova Hedwigia, 72, 259–270.

    Google Scholar 

  • Schnittler, M. (2001b). Ecology of myxomycetes from a winter-cold desert in western Kazakhstan. Mycologia, 93, 135–167.

    Article  Google Scholar 

  • Schnittler, M., & Mitchell, D. W. (2000). Species diversity in myxomycetes based on the morphological species concept—a critical examination. Stapfia, 73, 55–61.

    Google Scholar 

  • Schnittler, M., & Stephenson, S. L. (2002). Inflorescences of Neotropical herbs as a newly discovered microhabitat for myxomycetes. Mycologia, 94, 6–20.

    Article  PubMed  Google Scholar 

  • Schnittler, M., & Tesmer, J. (2008). A habitat colonisation model for spore-dispersed organisms—does it work with eumycetozoans? Mycological Research, 112, 697–707.

    Article  PubMed  Google Scholar 

  • Schnittler, M., Stephenson, S. L., & Novozhilov, Y. K. (2000). Ecology and world distribution of Barbeyella minutissima (Myxomycetes). Mycological Research, 104, 1518–1523.

    Article  Google Scholar 

  • Schnittler, M., Unterseher, M., & Tesmer, J. (2006). Species richness and ecological characterization of myxomycetes and myxomycete-like organisms in the canopy of a temperate deciduous forest. Mycologia, 98, 223–232.

    Article  PubMed  Google Scholar 

  • Schnittler, M., Unterseher, M., Pfeiffer, T., Novozhilov, Y. K., & Fiore-Donno, A. M. (2010). Ecology of sandstone ravine myxomycetes from Saxonian Switzerland (Germany). Nova Hedwigia, 90, 227–302.

    Article  Google Scholar 

  • Schnittler, M., Novozhilov, Y. K., Romeralo, M., Brown, M., & Spiegel, F. W. (2012). Myxomycetes and myxomycete-like organisms. In W. Frey (Ed.), Englers syllabus of plant families (Vol. 4, 13th ed., pp. 40–88). Stuttgart: Bornträger.

    Google Scholar 

  • Schnittler, M., Novozhilov, Y. K., Shadwick, J. D. L., Spiegel, F. W., García-Carvajal, E., & König, P. (2015). What substrate cultures can reveal: Myxomycetes and myxomycete-like organisms from the Sultanate of Oman. Mycosphere, 6(3), 356–384.

    Google Scholar 

  • Schnittler, M., Dagamac, N. H. A., Sauke, M., Wilmking, M., Buras, A., Ahlgrimm, S., & Eusemann, P. (2016). Ecological factors limiting the occurrence of corticolous myxomycetes – a case study from Alaska. Fungal Ecology, 21, 16–23.

    Article  Google Scholar 

  • Schnittler, M., Shchepin, O. N., Dagamac, N. H. A., Borg Dahl, M., Novozhilov, Y. K. (2017). Barcoding myxomycetes with molecular markers: challenges and opportunities. Nova Hedwigia, 104, 323–341.

    Google Scholar 

  • Shadwick, L. L., Spiegel, F. W., Shadwick, J. D. L., Brown, M. W., & Silberman, J. D. (2009). Eumycetozoa = Amoebozoa?: SSUrDNA Phylogeny of protosteloid slime molds and its significance for the Amoebozoan supergroup. PLoS ONE, 4(8), e6754. doi:10.1371/journal.pone.0006754.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shchepin, O., Novozhilov, Y. K., & Schnittler, M. (2014). Nivicolous myxomycetes in agar culture: Some results and open problems. Protistology, 8(2), 53–61.

    Google Scholar 

  • Smith, T., & Stephenson, S. L. (2007). Algae associated with myxomycetes and leafy liverworts on decaying spruce logs. Castanea, 72, 50–57.

    Article  Google Scholar 

  • Snell, K. L., & Keller, H. W. (2003). Vertical distribution and assemblages of corticolous myxomycetes on five tree species in the Great Smoky Mountains National Park. Mycologia, 95, 565–576.

    Article  PubMed  Google Scholar 

  • Speijer, D., Lukeš, J., & Eliáš, M. (2015). Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. PNAS, 112, 8827–8834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiegel, F. W. (2011). Commentary on the chastity of amoebae: Re-evaluating evidence for sex in amoeboid organisms. Proceedings of the Royal Society B, 278, 2096–2097.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spiegel, F. W., & Feldman, J. (1989). Fruiting body development in the mycetozoan Echinostelium bisporum. Canadian Journal of Botany, 67, 1285–1283.

    Article  Google Scholar 

  • Spiegel, F. W., Stephenson, S. L., Keller, H. W., Moore, D. L., & Cavender, J. C. (2004). Mycetozoans. In G. M. Mueller, G. F. Bills, & M. S. Foster (Eds.), Biodiversity of fungi, inventory and monitoring methods (pp. 547–576). Burlington: Elsevier Academic Press.

    Chapter  Google Scholar 

  • Stephenson, S. L. (1988). Distribution and ecology of myxomycetes in temperate forests. I. Patterns of occurrence in the upland forests of southwestern Virginia. Canadian Journal of Botany, 66, 2187–2207.

    Article  Google Scholar 

  • Stephenson, S. L. (1989). Distribution and ecology of myxomycetes in temperate forests. II. Patterns of occurrence on bark surface of living trees, leaf litter, and dung. Mycologia, 81, 608–621.

    Article  Google Scholar 

  • Stephenson, S. L. (2003). Myxomycetes of New Zealand. Hong Kong: Fungal Diversity Press.

    Google Scholar 

  • Stephenson, S. L. (2010). The kingdom fungi: The biology of mushrooms, molds, and lichens. Portland: Timber Press.

    Google Scholar 

  • Stephenson, S. L. (2014). Excavata: Acrasiomycota; Amoebozoa: Dictyosteliomycota, Myxomycota. In D. J. McLaughlin & J. W. Spatafora (Eds.), The Mycota: systematics and evolution part A, VII (pp. 21–38). New York: Springer Publishing.

    Google Scholar 

  • Stephenson, S. L., & Feest, A. (2012). Ecology of soil eumycetozoans. Acta Protozoologica, 51, 201–208.

    Google Scholar 

  • Stephenson, S. L., & Stempen, H. (1994). Myxomycetes: A handbook of slime molds. Portland: Timber Press.

    Google Scholar 

  • Stephenson, S. L., Kalyanasundaram, I., & Lakhanpal, T. N. (1993). A comparative biogeographical study of myxomycetes in the mid-Appalachians of eastern North America and two regions of India. Journal of Biogeography, 20, 645–657.

    Article  Google Scholar 

  • Stephenson, S. L., Novozhilov, Y., & Schnittler, M. (2000). Distribution and ecology of myxomycetes in high–latitude regions of the northern hemisphere. Journal of Biogeography, 27, 741–754.

    Article  Google Scholar 

  • Stephenson, S. L., Schnittler, M., & Novozhilov, Y. K. (2008). Myxomycete diversity and distribution from the fossil record to the present. Biodiversity and Conservation, 17, 285–301.

    Article  Google Scholar 

  • Stephenson, S. L., Fiore-Donno, A. M., & Schnittler, M. (2011). Myxomycetes in soil. Soil Biology and Biochemistry, 43, 2237–2242.

    Article  CAS  Google Scholar 

  • Sugimoto, H., & Endoh, H. (2008). Differentially expressed genes during fruit body development in the aggregative ciliate Sorogena stoianovitchae (Ciliophora: Colpodea). Journal of Eukaryotic Microbiology, 55, 110–116.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, K., & Hada, Y. (2009). Distribution of myxomycetes on coarse woody debris of Pinus densiflora at different decay stages in secondary forests of western Japan. Mycoscience, 50(4), 253–260.

    Article  Google Scholar 

  • Torres-Machorro, A. L., Hernández, R., Cevallos, A. M., & López-Villaseñor, I. (2010). Ribosomal RNA genes in eukaryotic microorganisms: Witnesses of phylogeny? FEMS Microbiology Reviews, 34, 59–86.

    Article  CAS  PubMed  Google Scholar 

  • Urich, T., Lanzén, A., Qi, J., Huson, D. H., Schleper, C., & Schuster, S. C. (2008). Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS ONE, 3, e2527. doi:10.1371/journal.pone.0002527.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walker, L. W., & Stephenson, S. L. (2016). The species problem in the myxomycetes revisited. Protist, 167, 319–338.

    Article  PubMed  Google Scholar 

  • Wikmark, O. G., Haugen, P., Lundblad, E. W., Haugli, K., & Johansen, S. D. (2007). The molecular evolution and structural organization of group I introns at position 1389 in nuclear small subunit rDNA of myxomycetes. Journal of Eukaryotic Microbiology, 54, 49–56.

    Article  CAS  PubMed  Google Scholar 

  • Wrigley de Basanta, D. (2000). Acid deposition in Madrid and corticolous myxomycetes. Stapfia, 73, 113–120.

    Google Scholar 

  • Wrigley de Basanta, D., Lado, C., & Estada-Torres, A. (2012). Description and life cycle of a new Physarum (Myxomycetes) from the Atacama Desert in Chile. Mycologia, 104(5), 1206–1212.

    Article  PubMed  Google Scholar 

  • Yoon, H. S., Grant, J., Tekle, Y. I., Wu, M., Chaon, B. C., Cole, J. C., et al. (2008). Broadly sampled multigene trees of eukaryotes. BMC Evolutionary Biology. doi:10.1186/1471-2148-8-14.

    PubMed  PubMed Central  Google Scholar 

  • Zaman, V., Zaki, M., Howe, J., Ng, M., Leipe, D. D., Sogin, M. L., & Silberman, J. D. (1999). Hyperameoba isolated from human feces: Description and phylogenetic affinity. European Journal of Protistology, 35, 197–207.

    Article  Google Scholar 

Download references

Acknowledgments

The first author gratefully acknowledges the support provided by a number of grants from the National Science Foundation and the information gained from numerous colleagues over his career. Angela Mele provided the drawing used as the basis for Fig. 2 and Randy Darrah helped modify this and several of the other figures. The second author would like to thank a number of colleagues, especially Y. K. Novozhilov, D. Wrigley de Basanta, C. Lado, D. Leontyev and several former Ph.D. students, especially Y. Feng, N. Dagamac and J. Tesmer, for fruitful discussions and collaborations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven L. Stephenson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Stephenson, S.L., Schnittler, M. (2017). Myxomycetes. In: Archibald, J., Simpson, A., Slamovits, C. (eds) Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-28149-0_44

Download citation

Publish with us

Policies and ethics