Skip to main content

Supernova Progenitors Observed with HST

  • Reference work entry
  • First Online:
Handbook of Supernovae

Abstract

To understand the relevance of supernovae and to enable their use as probes of stellar evolution throughout time, it is necessary to determine their stellar origins. I describe the direct identification of supernova progenitors in existing pre-explosion images, particularly those obtained through serendipitous imaging of nearby galaxies by the Hubble Space Telescope. Establishing the astrometric coincidence of a supernova with its putative progenitor is straightforward. The interpretation of these results is more complicated and fraught with larger uncertainties. I describe the necessary ingredients for this interpretation. I comment on specific cases, particularly for core-collapse supernova progenitors, which are the only ones that have been detected to date. I also describe the need to revisit the supernova site, long after the supernova has faded, to confirm the progenitor identification through the star’s disappearance and potentially to detect a putative binary companion that may have survived the explosion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams SM, Kochanek CS (2015) LOSS’s first supernova? New limits on the ‘impostor’ SN 1997bs. Mon Not R Astron Soc 452:2195–2207

    Article  ADS  Google Scholar 

  • Aldering G, Humphreys RM, Richmond M (1994) SN 1993J: the optical properties of its progenitor. Astron J 107:662–672

    Article  ADS  Google Scholar 

  • Anderson J, King IR (2006) PSFs, photometry, and astronomy for the ACS/WFC. Instrument Science report ACS 2006-01, 34pp

    Google Scholar 

  • Anderson JP, Habergham SM, James PA, Hamuy M (2012) Progenitor mass constraints for core-collapse supernovae from correlations with host galaxy star formation. Mon Not R Astron Soc 424:1372–1391

    Article  ADS  Google Scholar 

  • Anderson JP, González-Gaitán S, Hamuy M et al (2014) Characterizing the V-band light-curves of hydrogen-rich Type II supernovae. Astrophys J 786(id.67):35

    Google Scholar 

  • Asplund M, Grevesse N, Sauval AJ, Scott P (2009) The chemical composition of the sun. Annu Rev Astron Astrophys 47:481–522

    Article  ADS  Google Scholar 

  • Barbon R, Ciatti F, Rosino L (1979) Photometric properties of Type II supernovae. Astron Astrophys 72:287–292

    ADS  Google Scholar 

  • Barth AJ, Van Dyk SD, Filippenko AV et al (1996) The environments of supernovae in archival hubble space telescope images. Astron J 111:2047–2058

    Article  ADS  Google Scholar 

  • Bersten MC, Benvenuto O, Hamuy M (2011) Hydrodynamical models of Type II plateau supernovae. Astrophys J 729(id.61):19

    Google Scholar 

  • Bersten MC, Benvenuto O, Folatelli G et al (2014) iPTF13bvn: the first evidence of a binary progenitor for a Type Ib supernova. Astron J 148(id.68):6

    Google Scholar 

  • Bose S, Sutaria F, Kumar B et al (2015) SN 2013ej: a Type IIL supernova with weak signs of interaction. Astrophys J 806(id.160):18

    Google Scholar 

  • Cao Y, Kasliwal MM, Arcavi I et al (2013) Discovery, progenitor and early evolution of a stripped envelope supernova iPTF13bvn. Astrophys J 775(id.L7):7

    Google Scholar 

  • Cardelli JA, Clayton GC, Mathis JS (1989) The relationship between infrared, optical, and ultraviolet extinction. Astrophys J 345:245–256

    Article  ADS  Google Scholar 

  • Castelli F, Kurucz RL (2003) New grids of ATLAS9 model atmospheres. In: Piskunov N, Weiss WW, Gray DF (eds) Modelling of stellar atmospheres. ASP, San Francisco, p A20

    Google Scholar 

  • Chen Y, Bressan A, Girardi L et al (2015) PARSEC evolutionary tracks of massive stars up to 350 M at metallicities 0. 0001 ≤ Z ≤ 0. 04. Mon Not R Astron Soc 452:1068–1080

    Article  ADS  Google Scholar 

  • Chevalier RA (1992) Supernova 1987A at five years of age. Nature 355:691–696

    Article  ADS  Google Scholar 

  • Chevalier RA, Soderberg AM (2010) Type IIb supernovae with compact and extended progenitors. Astrophys J 711:L40–L43

    Article  ADS  Google Scholar 

  • Cohen JG, Darling J, Porter A (1995) The nonvariability of the progenitor of supernova 1993J in M81. Astron J 110:308–311

    Article  ADS  Google Scholar 

  • Crockett RM, Smartt SJ, Eldridge JJ et al (2007) A deeper search for the progenitor of the Type Ic supernova 2002ap. Mon Not R Astron Soc 381:835–850

    Article  ADS  Google Scholar 

  • Crockett RM, Maund JM, Smartt SJ et al (2008a) The birth place of the Type Ic supernova 2007gr. Astrophys J 672:L99–L102

    Article  ADS  Google Scholar 

  • Crockett RM, Eldridge JJ, Smartt SJ et al (2008b) The Type IIb SN 2008ax: the nature of the progenitor. Mon Not R Astron Soc 391:L5–L9

    ADS  Google Scholar 

  • Crockett RM, Smartt SJ, Pastorello A et al (2011) On the nature of the progenitors of three Type II-P supernovae: 2004et, 2006my and 2006ov. Mon Not R Astron Soc 410:2767–2786

    Article  ADS  Google Scholar 

  • Dalcanton JJ, Williams BF, Seth AC et al (2009) The ACS nearby galaxy survey treasury. Astrophys J Supp 183:67–108

    Article  ADS  Google Scholar 

  • Dall’Ora M, Botticella MT, Pumo ML et al (2014) The Type IIP supernova 2012aw in M95: hydrodynamical modeling of the photospheric phase from accurate spectrophotometric monitoring. Astrophys J 787(id.139):18

    Google Scholar 

  • de Jaeger T, González-Gaitán S, Anderson JP et al (2015) A hubble diagram from Type II supernovae based solely on photometry: the photometric color method. Astrophys J 815(id.121):13

    Google Scholar 

  • Dolphin AE (2000a) WFPC2 stellar photometry with HSTPHOT. Publ Astron Soc Pac 112:1383–1396

    Article  ADS  Google Scholar 

  • Dolphin AE (2000b) The charge-transfer efficiency and calibration of WFPC2. Publ Astron Soc Pac 112:1397–1410

    Article  ADS  Google Scholar 

  • Drout MR, Soderberg AM, Gal-Yam A et al (2011) The first systematic study of Type Ibc supernova multi-band light curves. Astrophys J 741(id.97):20

    Google Scholar 

  • Eggleton PP (1971) The evolution of low mass stars. Mon Not R Astron Soc 151:351–364

    Article  ADS  Google Scholar 

  • Ekstöm S, Georgy C, Eggenberger P et al (2012) Grids of stellar models with rotation. I. models from 0.8 to 120 M at solar metallicity (Z = 0.014). Astron Astrophys 537(id.A146):18

    Google Scholar 

  • Eldridge JJ, Fraser M, Smartt SJ et al (2013) The death of massive stars – II. observational constraints on the progenitors of Type Ibc supernovae. Mon Not R Astron Soc 436:774–795

    Article  ADS  Google Scholar 

  • Eldridge JJ, Fraser M, Maund JR, Smartt SJ (2015) Possible binary progenitors for the Type Ib supernova iPTF13bvn. Mon Not R Astron Soc 446:2689–2695

    Article  ADS  Google Scholar 

  • Elias-Rosa N, Van Dyk SD, Li W et al (2009) On the progenitor of the Type II-Plateau SN 2008cn in NGC 4603. Astrophys J 706:1174–1183 [Erratum: Astrophys. J. 711, 1343 (2010)]

    Google Scholar 

  • Elias-Rosa N, Van Dyk SD, Li W et al (2010) The massive progenitor of the Type II-linear supernova 2009kr. Astrophys J 714:L254–L259

    Article  ADS  Google Scholar 

  • Elias-Rosa N, Van Dyk SD, Li W et al (2011) The massive progenitor of the possible Type II-linear supernova 2009hd in Messier 66. Astrophys J 742(id.6):11

    Google Scholar 

  • Elias-Rosa N (2013) The progenitors of stripped-envelope supernovae. In: Guirado JC, Lara LM, Quilis V, Gorgas J (eds) Highlights of Spanish astrophysics VII. Spanish Astronomical Society, Valencia, pp 649–649

    Google Scholar 

  • Elias-Rosa N, Pastorello A, Maund JR et al (2013) On the progenitor of the Type Ic SN 2013dk in the Antennae galaxies. Mon Not R Astron Soc 436:L109–L113

    Article  ADS  Google Scholar 

  • Elias-Rosa N, Benetti S, Tomasella L et al (2015) Asiago spectroscopic classification of the SN impostor SNhunt275. Astron Telegram No. 7042

    Google Scholar 

  • Faran T, Poznanski D, Filippenko AV et al (2014) A sample of Type II-L supernovae. Mon Not R Astron Soc 445:554–569

    Article  ADS  Google Scholar 

  • Filippenko AV (1997) Optical spectra of supernovae. Annu Rev Astron Astrophys 35:309–355

    Article  ADS  Google Scholar 

  • Filippenko AV, Barth AJ, Bower GC et al (1995) Was Fritz Zwicky’s “Type V” SN 1961V a Genuine Supernova? Astron J 110:2261–2273

    Article  ADS  Google Scholar 

  • Flower PJ (1996) Transformations from theoretical Hertzsprung-Russell diagrams to color-magnitude diagrams: effective temperatures, B-V colors, and bolometric corrections. Astrophys J 469:355–365

    Article  ADS  Google Scholar 

  • Folatelli G, Bersten MC, Benvenuto OG et al (2014) A blue point source at the location of supernova 2011dh. Astrophys J 793(id.L22):5

    Google Scholar 

  • Folatelli G, Bersten MC, Kuncarayakti H et al (2015) The progenitor of the Type IIb SN 2008ax revisited. Astrophys J 811(id.147):13

    Google Scholar 

  • Foley RJ, Berger E, Fox O et al (2011) The diversity of massive star outbursts. I. observations of SN 2009ip, UGC 2773 OT2009-1, and their progenitors. Astrophys J 732(id.32):13

    Google Scholar 

  • Foley RJ, Van Dyk SD, Jha SW et al (2015) On the progenitor system of the Type Iax supernova 2014dt in M61. Astrophys J 798(id.L37):4

    Google Scholar 

  • Fox OD, Bostroem KA, Van Dyk SD et al (2014) Uncovering the putative B-star binary companion of the SN 1993J progenitor. Astrophys J 790(id.17):13

    Google Scholar 

  • Fraser M (2016) The disappearance of the progenitor of SN 2012aw in late-time imaging. Mon Not R Astron Soc 456:L16–L19

    Article  ADS  Google Scholar 

  • Fraser M, Takáts K, Pastorello A et al (2010) On the progenitor and early evolution of the Type II supernova 2009kr. Astrophys J 714:L280–L284

    Article  ADS  Google Scholar 

  • Fraser M, Ergon M, Eldridge JJ et al (2011) SN 2009md: another faint supernova from a low-mass progenitor. Mon Not R Astron Soc 417:1417–1433

    Article  ADS  Google Scholar 

  • Fraser M, Maund JR, Smartt SJ et al (2012) Red and dead: the progenitor of SN 2012aw in M95. Astrophys J 759(id.L13):5

    Google Scholar 

  • Fraser M, Inserra C, Jerkstrand A et al (2013a) SN 2009ip à la PESSTO: no evidence for core collapse yet. Mon Not R Astron Soc 433:1312–1337

    Article  ADS  Google Scholar 

  • Fraser M, Magee M, Kotak R et al (2013b) Detection of an outburst one year prior to the explosion of SN 2011ht. Astrophys J 779(id.L8):6

    Google Scholar 

  • Fraser M, Maund JR, Smartt SJ et al (2014) On the progenitor of the Type IIP SN 2013ej in M74. Mon Not R Astron Soc 439:L56–L60

    Article  ADS  Google Scholar 

  • Fraser M, Kotak R, Pastorello A et al (2015) SN 2009ip at late times – an interacting transient at +2 years. Mon Not R Astron Soc 453:3886–3905

    Article  ADS  Google Scholar 

  • Freedman WL, Madore BF, Mould JR et al (1994) Distance to the Virgo cluster galaxy M100 from Hubble Space Telescope observations of Cepheids. Nature 371:757–762

    Article  ADS  Google Scholar 

  • Fruchter AS, Hack W, Dencheva N et al (2010) BetaDrizzle: a redesign of the multiDrizzle package. In: Deustua S, Oliveira C (eds) Space telescope science institute calibration workshop proceedings, STScI, Baltimore, pp 376–381

    Google Scholar 

  • Gall EEE, Polshaw J, Kotak R et al (2015) A comparative study of Type II-P and II-L supernova rise times as exemplified by the case of LSQ13cuw. Astron Astrophys 582(id.A3):19

    Google Scholar 

  • Gal-Yam A, Leonard DC (2009) A massive hypergiant star as the progenitor of the supernova SN 2005gl. Nature 458:865–867

    Article  ADS  Google Scholar 

  • Gal-Yam A, Fox DB, Kulkarni SR et al (2005) A high angular resolution search for the progenitor of the Type Ic Supernova 2004gt. Astrophys J 630:L29–L32

    Article  ADS  Google Scholar 

  • Gal-Yam A, Leonard DC, Fox DB et al (2007) On the progenitor of SN 2005gl and the nature of Type IIn Supernovae. Astrophys J 656:372–381

    Article  ADS  Google Scholar 

  • Georgy C (2012) Yellow supergiants as supernova progenitors: an indication of strong mass loss for red supergiants? Astron Astrophys 538(id.L8):5

    Google Scholar 

  • Gilmozzi R, Cassatella A, Clavel J et al (1987) The progenitor of SN 1987A. Nature 328:318–320

    Article  ADS  Google Scholar 

  • Gonzaga S, Hack W, Fruchter A, Mack J (eds) (2012) The DrizzlePac handbook. STScI, Baltimore

    Google Scholar 

  • Graham ML, Sand DJ, Valenti S et al (2014) Clues to the nature of SN 2009ip from photometric and spectroscopic evolution to late times. Astroph J 787(id.163):16

    Google Scholar 

  • Graur O, Maoz D, Shara MM (2014) Progenitor constraints on the Type-Ia supernova SN 2011fe from pre-explosion Hubble Space Telescope He II narrow-band observations. Mon Not R Astron Soc 442:L28–L32

    Article  ADS  Google Scholar 

  • Groh JH, Georgy C, Ekström S (2013) Progenitors of supernova Ibc: a single Wolf-Rayet star as the possible progenitor of the SN Ib iPTF13bvn. Astron Astrophys 558(id.L1):4

    Google Scholar 

  • Gustafsson B, Edvardsson B, Eriksson K et al (2008) A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties. Astron Astrophys 486:951–970

    Article  ADS  Google Scholar 

  • Hendry MA, Smartt SJ, Maund JR et al (2005) A study of the Type II-P supernova 2003gd in M74. Mon Not R Astron Soc 359:906–926

    Article  ADS  Google Scholar 

  • Hendry MA, Smartt SJ, Crockett RM et al (2006) SN 2004A: another Type II-P supernova with a red supergiant progenitor. Mon Not R Astron Soc 369:1303–1320

    Article  ADS  Google Scholar 

  • Holtzman JA, Hester JJ, Casertano S et al (1995) The performance and calibration of WFPC2 on the Hubble Space Telescope. Publ Astron Soc Pac 107:156–178

    Article  ADS  Google Scholar 

  • Huang F, Wang X, Zhang J et al (2015) SN 2013ej in M74: a luminous and fast-declining Type II-P Supernova. Astroph J 807(id.59):12

    Google Scholar 

  • Humphreys EML, Reid MJ, Moran JM et al (2013) Toward a new geometric distance to the active galaxy NGC 4258. III. Final results and the Hubble constant. Astroph J 775(id.13):10

    Google Scholar 

  • Isserstedt J (1975) Photoelectric photometry of supergiants in the Large Magellanic Cloud. Astron Astrophys Suppl 19:259–269

    ADS  Google Scholar 

  • Jerkstrand A, Fransson C, Maguire K et al (2012) The progenitor mass of the Type IIP supernova SN 2004et from late-time spectral modeling. Astron Astrophys 546(id.A28):21

    Google Scholar 

  • Kankare E, Mattila S, Ryder S et al (2014) The nature of supernovae 2010O and 2010P in Arp 299 – I. Near-infrared and optical evolution. Mon Not R Astron Soc 440:1052–1066

    Article  ADS  Google Scholar 

  • Kelly PL, Kirshner RP, Pahre M (2008) Long γ-ray bursts and Type Ic core-collapse supernovae have similar locations in hosts. Astroph J 687:1201–1207

    Article  ADS  Google Scholar 

  • Kelly PL, Fox OD, Filippenko AV et al (2014) Constraints on the progenitor system of the Type Ia Supernova 2014J from pre-explosion Hubble Space Telescope Imaging. Astroph J 790(id.3):9

    Google Scholar 

  • Kewley LJ, Ellison SL (2008) Metallicity calibrations and the mass-metallicity relation for star-forming galaxies. Astroph J 681:1183–1204

    Article  ADS  Google Scholar 

  • Kochanek CS, Szczygiel DM, Stanek KZ (2011) The Supernova Impostor Impostor SN 1961V: spitzer shows that Zwicky was right (again). Astroph J 737(id.76):11

    Google Scholar 

  • Kochanek CS, Khan R, Dai X (2012) On absorption by circumstellar dust, with the progenitor of SN 2012aw as a case study. Astroph J 759(id.20):10

    Google Scholar 

  • Kuncarayakti H, Maeda K, Bersten MC et al (2015) Nebular phase observations of the Type-Ib supernova iPTF13bvn favour a binary progenitor. Astron Astrophys 579(id.A95):9

    Google Scholar 

  • Kurucz R (1993) ATLAS9 stellar atmosphere programs and 2 km/s grid. Kurucz CD-ROM, No. 13. Smithsonian Astrophysical Observatory, Cambridge

    Google Scholar 

  • Lee MG, Freedman WL, Madore BF (1993) The tip of the red giant branch as a distance indicator for resolved galaxies. Astrophys J 417:553–559

    Article  ADS  Google Scholar 

  • Leonard DC, Gal-Yam A, Fox DB et al (2008) An upper mass limit on a red supergiant progenitor for the Type II-Plateau Supernova SN 2006my. Publ Astron Soc Pac 120:1259–1266

    Article  ADS  Google Scholar 

  • Levesque EM, Massey P, Olsen KAG et al (2005) The effective temperature scale of galactic red supergiants: cool, but not as cool as we thought. Astrophys J 628:973–985

    Article  ADS  Google Scholar 

  • Li W, Van Dyk SD, Filippenko AV, Cuillandre J-C (2005) On the progenitor of the Type II Supernova 2004et in NGC 6946. Publ Astron Soc Pac 117:121–131

    Article  ADS  Google Scholar 

  • Li W, Van Dyk SD, Filippenko AV et al (2006) Identification of the red supergiant progenitor of Supernova 2005cs: do the progenitors of Type II-P supernovae have low mass? Astrophys J 641:1060–1070

    Article  ADS  Google Scholar 

  • Li W, Wang X, Van Dyk SD et al (2007) On the progenitors of two Type II-P Supernovae in the Virgo cluster. Astrophys J 661:1013–1024

    Article  ADS  Google Scholar 

  • Li W, Bloom JS, Podsiadlowski P et al (2011) Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe. Nature 480:348–350

    Article  ADS  Google Scholar 

  • Maíz-Apellániz J, Bond HE, Siegel MH et al (2004) The progenitor of the Type II-P SN 2004dj in NGC 2403. Astrophys J 615:L113–L116

    Article  ADS  Google Scholar 

  • Mamajek EE, Torres G, Prsa A et al (2015) IAU 2015 resolution B2 on recommended zero points for the absolute and apparent bolometric magnitude scales. eprint arXiv:1510.06262

    Google Scholar 

  • Maoz D, Mannucci F (2008) A search for the progenitors of two Type Ia Supernovae in NGC 1316. Mon Not R Astron Soc 388:421–428

    Article  ADS  Google Scholar 

  • Maoz D, Mannucci F, Nelemans G (2014) Observational clues to the progenitors of Type Ia Supernovae. Annu Rev Astron Astrophys 52:107–170

    Article  ADS  Google Scholar 

  • Margutti R, Miliisavljevic D, Soderberg AM et al (2014) A panchromatic view of the restless SN 2009ip reveals the explosive ejection of a massive star envelope. Astrophys J 780(id.21):38

    Google Scholar 

  • Mattila S, Smartt SJ, Eldridge JJ et al (2008) VLT detection of a red supergiant progenitor of the Type II-P Supernova 2008bk. Astrophys J 688:L91–L94

    Article  ADS  Google Scholar 

  • Mauerhan JC, Smith N, Filippenko AV et al (2013) The unprecedented 2012 outburst of SN 2009ip: a luminous blue variable star becomes a true supernova. Mon Not R Astron Soc 430:1801–1810

    Article  ADS  Google Scholar 

  • Mauerhan J, Williams GG, Smith N et al (2014) Multi-epoch spectropolarimetry of SN 2009ip: direct evidence for aspherical circumstellar material. Mon Not R Astron Soc 442:1166–1180

    Article  ADS  Google Scholar 

  • Maund JR, Smartt SJ (2005) Hubble Space Telescope imaging of the progenitor sites of six nearby core-collapse supernovae. Mon Not R Astron Soc 360:288–304

    Article  ADS  Google Scholar 

  • Maund JR, Smartt SJ (2009) The disappearance of the progenitors of supernovae 1993J and 2003gd. Science 324:486–488

    Article  ADS  Google Scholar 

  • Maund JR, Smartt SJ, Kudritzki RP et al (2004) The massive binary companion star to the progenitor of supernova 1993J. Nature 427:129–131

    Article  ADS  Google Scholar 

  • Maund JR, Smartt SJ, Schweizer F (2005a) Luminosity and mass limits for the progenitor of the Type Ic Supernova 2004gt in NGC 4038. Astrophys J 630:L33–L36

    Article  ADS  Google Scholar 

  • Maund JR, Smartt SJ, Danziger IJ (2005b) The progenitor of SN 2005cs in the Whirlpool Galaxy. Mon Not R Astron Soc 364:L33–L37

    Article  ADS  Google Scholar 

  • Maund JR, Fraser M, Ergon M et al (2011) The yellow supergiant progenitor of the Type II Supernova 2011dh in M51. Astrophys J 739(id.L37):5

    Google Scholar 

  • Maund JR, Fraser M, Smartt SJ et al (2013) Supernova 2012ec: identification of the progenitor and early monitoring with PESSTO. Mon Not R Astron Soc 431:L102–L106

    Article  ADS  Google Scholar 

  • Maund JR, Reilly E, Mattila S (2014a) A late-time view of the progenitors of five Type IIP supernovae. Mon Not R Astron Soc 438:938–958

    Article  ADS  Google Scholar 

  • Maund JR, Mattila S, Ramirez-Ruiz E, Eldridge JJ (2014b) A new precise mass for the progenitor of the Type IIP SN 2008bk. Mon Not R Astron Soc 438:1577–1592

    Article  ADS  Google Scholar 

  • Maund JR, Fraser M, Reilly E et al (2015a) Whatever happened to the progenitors of supernovae 2008cn, 2009kr and 2009md? Mon Not R Astron Soc 447:3207–3217

    Article  ADS  Google Scholar 

  • Maund JR, Arcavi I, Ergon M et al (2015b) Did the progenitor of SN 2011dh have a binary companion? Mon Not R Astron Soc 454:2580–2585

    Article  ADS  Google Scholar 

  • McCully C, Jha SW, Foley RJ et al (2014) A luminous, blue progenitor system for the Type Iax supernova 2012Z. Nature 512:54–56

    Article  ADS  Google Scholar 

  • Milisavljevic D, Fesen RA, Chevalier RA et al (2012) Late-time optical emission from core-collapse supernovae. Astrophys J 751(id.25):14

    Google Scholar 

  • Nakano S, Itagaki K, Puckett T (2006) Possible Supernova in UGC 4904, vol 666. Central Bureau Electronic Telegrams, Cambridge, MA, USA

    Google Scholar 

  • Ofek EO, Sullivan M, Cenko SB et al (2013) An outburst from a massive star 40 days before a supernova explosion. Nature 494:65–67

    Article  ADS  Google Scholar 

  • Felipe Olivares E, Hamuy M, Pignata G et al (2010) The standardized candle method for Type II Plateau Supernovae. Astrophys J 715:833–853

    Article  ADS  Google Scholar 

  • Pastorello A, Crockett RM, Martin R et al (2009) SN 1999ga: a low-luminosity linear Type II supernova? Astron Astrophys 500:1013–1023

    Article  ADS  Google Scholar 

  • Pastorello A, Cappellaro E, Inserra C et al (2013) Interacting supernovae and supernova impostors: SN 2009ip, is this the End? Astrophys J 767(id.1):19

    Google Scholar 

  • Phillips MM, Simon JD, Morrell N et al (2013) On the source of the dust extinction in Type Ia Supernovae and the discovery of anomalously strong Na I absorption. Astrophys J 779(id.38):21

    Google Scholar 

  • Pilyugin LS, Vlchez JM, Thuan TX (2010) New improved calibration relations for the determination of electron temperatures and oxygen and nitrogen abundances in H II regions. Astrophys J 720:1738–1751

    Article  ADS  Google Scholar 

  • Poznanski D, Butler N, Filippenko AV et al (2009) Improved standardization of Type II-P Supernovae: application to an expanded sample. Astrophys J 694:1067–1079

    Article  ADS  Google Scholar 

  • Poznanski D, Prochaska JX, Bloom JS (2012) An empirical relation between sodium absorption and dust extinction. Mon Not R Astron Soc 426:1465–1474

    Article  ADS  Google Scholar 

  • Prieto JL, Kistler MD, Thompson TA et al (2008) Discovery of the dust-enshrouded progenitor of SN 2008S with Spitzer. Astrophys J 681:L9–L12

    Article  ADS  Google Scholar 

  • Prieto JL, Osip D, Palunas P (2012) Candidate progenitor of the Type II SN 2012A in the Near-IR. Astron Telegram No. 3863

    Google Scholar 

  • Prieto JL, Brimacombe J, Drake AJ, Howerton S (2013) The 2012 rise of the remarkable Type IIn SN 2009ip. Astrophys J 763(id.L27):5

    Google Scholar 

  • Radburn-Smith DJ, Dalcanton JJ, De Jong RS, Streich D, Vlajic M, Seth AC et al (2011) The GHOSTS survey. I. Hubble Space Telescope advanced camera for surveys data. Astrophys J Supp 195(id.18):22

    Google Scholar 

  • Rousseau J, Martin N, Prévot L et al (1978) Studies of the Large Magellanic Cloud stellar content: III. spectral types and V magnitudes of 1822 members. Astron Astrophys Suppl 31:243–260

    ADS  Google Scholar 

  • Ryder S, Staveley-Smith L, Dopita M et al (1993) SN 1978K: an extraordinary supernova in the nearby galaxy NGC 1313. Astrophys J 416:167–181

    Article  ADS  Google Scholar 

  • Sana H, de Mink SE, de Koter A et al (2012) Binary interaction dominates the evolution of massive stars. Science 337:444–446

    Article  ADS  Google Scholar 

  • Sanders NE, Soderberg AM, Gezari S et al (2015) Toward characterization of the Type IIP supernova progenitor population: a statistical sample of Light Curves from Pan-STARRS1. Astrophys J 799(id.208):23

    Google Scholar 

  • Schlafly EF, Finkbeiner DP (2011) Measuring reddening with sloan digital sky survey stellar spectra and recalibrating SFD. Astrophys J 737(id.103):13

    Google Scholar 

  • Schlafly EF, Green G, Finkbeiner DP et al (2014) A map of dust reddening to 4.5 kpc from Pan-STARRS1. Astrophys J 789(id.15):9

    Google Scholar 

  • Schmidt BP, Kirshner RP, Eastman RG (1992) Expanding photospheres of Type II supernovae and the extragalactic distance scale. Astrophys J 395:366–386

    Article  ADS  Google Scholar 

  • Sirianni M, Jee MJ, Benítez N et al (2005) The photometric performance and calibration of the Hubble Space Telescope Advanced Camera for Surveys. Publ Astron Soc Pac 117:1049–1112

    Article  ADS  Google Scholar 

  • Smartt SJ, Gilmore GF, Trentham N et al (2001) An upper mass limit for the progenitor of the Type II-P supernova SN 1999gi. Astrophys J 556:L29–L32

    Article  ADS  Google Scholar 

  • Smartt SJ, Gilmore GF, Tout CA, Hodgkin ST (2002a) The nature of the progenitor of the Type II-P Supernova 1999em. Astrophys J 565:1089–1100

    Article  ADS  Google Scholar 

  • Smartt SJ, Vreeswijk PM, Ramirez-Ruiz E et al (2002b) On the progenitor of the Type Ic supernova 2002ap. Astrophys J 572:L147–L151

    Article  ADS  Google Scholar 

  • Smartt SJ, Maund JR, Gilmore GF et al (2003) Mass limits for the progenitor star of supernova 2001du and other Type II-P supernovae. Mon Not R Astron Soc 343:735–749

    Article  ADS  Google Scholar 

  • Smartt SJ, Maund JR, Hendry MA et al (2004) Detection of a red supergiant progenitor star of a Type II-Plateau supernova. Science 303:499–503

    Article  ADS  Google Scholar 

  • Smartt SJ, Eldridge JJ, Crockett RM, Maund JR (2009) The death of massive stars I. Observational constraints on the progenitors of Type II-P supernovae. Mon Not R Astron Soc 395:1409–1437

    Article  ADS  Google Scholar 

  • Smartt SJ (2015) Observational constraints on the progenitors of core-collapse supernovae: the case for missing high-mass stars. Publ Astron Soc Austr 32(id.e016):22

    Google Scholar 

  • Smith N, Miller A, Li W et al (2010) Discovery of precursor luminous blue variable outbursts in two recent optical transients: the fitfully variable missing links UGC 2773-OT and SN 2009ip. Astron J 139:1451–1467

    Article  ADS  Google Scholar 

  • Smith N, Li W, Miller AA et al (2011a) A massive progenitor of the luminous Type IIn Supernova 2010jl. Astrophys J 732(id.63):6

    Google Scholar 

  • Smith N, Li W, Silverman JM et al (2011b) Luminous blue variable eruptions and related transients: diversity of progenitors and outburst properties. Mon Not R Astron Soc 415:773–810

    Article  ADS  Google Scholar 

  • Sonneborn G, Altner B, Kirshner RP (1987) The progenitor of SN 1987A – spatially resolved ultraviolet spectroscopy of the supernova field. Astrophys J 323:L35–L39

    Article  ADS  Google Scholar 

  • Stancliffe RJ, Eldridge JJ (2009) Modelling the binary progenitor of Supernova 1993J. Mon Not R Astron Soc 396:1699–1708

    Article  ADS  Google Scholar 

  • Stetson PB (1987) DAOPHOT – a computer program for crowded-field stellar photometry. Publ Astron Soc Pac 99:191–222

    Article  ADS  Google Scholar 

  • Takáts K, Pignata G, Pumo ML et al (2015) SN 2009ib: a Type II-P supernova with an unusually long plateau. Mon Not R Astron Soc 450:3137–3154

    Article  ADS  Google Scholar 

  • Thöne C, de Ugarte Postigo A, Leloudas G et al (2015) SN 2009ip is now below the proposed progenitor level observed in 1999. Astron Telegram No. 8417

    Google Scholar 

  • Tomasella L, Cappellaro E, Fraser M et al (2013) Comparison of progenitor mass estimates for the Type IIP SN 2012A. Mon Not R Astron Soc 434:1636–1657

    Article  ADS  Google Scholar 

  • Torres G (2010) On the use of empirical bolometric corrections for stars. Astron J 140:1158–1162

    Article  ADS  Google Scholar 

  • Valenti S, Sand D, Stritzinger M et al (2015) Supernova 2013by: a Type IIL supernova with a IIP-like light-curve drop. Mon Not R Astron Soc 448:2608–2616

    Article  ADS  Google Scholar 

  • Van Dyk SD (2013) An echo of supernova 2008bk. Astron J 146(id.24):6

    Google Scholar 

  • Van Dyk SD, Matheson T (2012) It’s Alive! The supernova impostor 1961V. Astrophys J 746(id.179):10

    Google Scholar 

  • Van Dyk SD, Peng CY, Barth AJ, Filippenko AV (1999) The environments of supernovae in post-refurbishment Hubble Space Telescope Images. Astron J 118:2331–2349

    Article  ADS  Google Scholar 

  • Van Dyk SD, Garnavich PM, Filippenko AV et al (2002) The progenitor of supernova 1993J revisited. Publ Astron Soc Pac 114:1322–1332

    Article  ADS  Google Scholar 

  • Van Dyk SD, Li W, Filippenko AV (2003a) A search for core-collapse supernova progenitors in Hubble Space Telescope Images. Publ Astron Soc Pac 115:1–20

    Article  ADS  Google Scholar 

  • Van Dyk SD, Li W, Filippenko AV (2003b) On the progenitor of supernova 2001du in NGC 1365. Publ Astron Soc Pac 115:448–452

    Article  ADS  Google Scholar 

  • Van Dyk SD, Li W, Filippenko AV (2003c) On the progenitor of the Type II-Plateau supernova 2003gd in M74. Publ Astron Soc Pac 115:1289–1295

    Article  ADS  Google Scholar 

  • Van Dyk SD, Li W, Cenko SB et al (2011) The progenitor of supernova 2011dh/PTF11eon in Messier 51. Astrophys J 741(id.L28):5

    Google Scholar 

  • Van Dyk SD, Davidge TJ, Elias-Rosa N et al (2012a) Supernova 2008bk and its red supergiant progenitor. Astron J 143(id.19):12

    Google Scholar 

  • Van Dyk SD, Cenko SB, Poznanski D et al (2012b) The red supergiant progenitor of supernova 2012aw (PTF12bvh) in Messier 95. Astrophys J 756(id.131):9

    Google Scholar 

  • Van Dyk SD, Zheng W, Clubb KI et al (2013) The progenitor of supernova 2011dh has vanished. Astrophys J 772(id.L32):5

    Google Scholar 

  • Van Dyk SD, Zheng WK, Fox OD et al (2014) The Type IIb supernova 2013df and its cool supergiant progenitor. Astron J 147(id.37):9

    Google Scholar 

  • Van Dyk SD, Lee JC, Sabbi E et al (2015a) Supernova progenitors and a light echo in LEGUS galaxies. In: AAS meeting of the American Astronomical Society, Seattle, vol 225, Id.140.25

    Google Scholar 

  • Van Dyk SD, Lee JC, Anderson J et al (2015b) LEGUS discovery of a light echo around supernova 2012aw. Astrophys J 806(id.195):9

    Google Scholar 

  • Van Dyk SD, de Mink SE, Zapartas E (2016) Constraints on the binary companion to the SN Ic 1994I progenitor. Astroph J 818:75

    Article  ADS  Google Scholar 

  • Walborn NR, Prevot ML, Prevot L et al (1989) The spectrograms of Sanduleak -69.202 deg, precursor to supernova 1987A in the Large Magellanic Cloud. Astron Astrophys 219:229–236

    ADS  Google Scholar 

  • Weaver TA, Zimmerman GB, Woosley SE (1978) Presupernova evolution of massive stars. Astroph J 225:1021–1029

    Article  ADS  Google Scholar 

  • White GL, Malin DF (1987) Possible binary star progenitor for SN 1987A. Nature 327:36–38

    Article  ADS  Google Scholar 

  • Williams BF, Peterson S, Murphy J et al (2014a) Constraints for the progenitor masses of 17 Historic core-collapse supernovae. Astroph J 791(id.105):9

    Google Scholar 

  • Williams BF, Lang D, Dalcanton JJ et al (2014b) The panchromatic hubble andromeda treasury. X. Ultraviolet to infrared photometry of 117 million equidistant stars. Astrophys J Suppl 215(id.9):34

    Google Scholar 

  • Woosley SE, Weaver TA (1986) The physics of supernova explosions. Annu Rev Astron Astrophys 24:205–253

    Article  ADS  Google Scholar 

  • Yoon S-C, Cantiello M (2010) Evolution of massive stars with pulsation-driven superwinds during the red supergiant phase. Astrophys J 717:L62–L65

    Article  ADS  Google Scholar 

  • Yoon S-C, Gräfener G, Vink JS et al (2012) On the nature and detectability of type Ib/c supernova progenitors. Astron Astrophys 544(id.L11):5

    Google Scholar 

  • Zwicky F (1964) NGC 1058 and its supernova 1961. Astrophys J 139:514–519

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Schuyler D. Van Dyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Van Dyk, S.D. (2017). Supernova Progenitors Observed with HST . In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-21846-5_126

Download citation

Publish with us

Policies and ethics