Skip to main content

H2S and Pain: A Novel Aspect for Processing of Somatic, Visceral and Neuropathic Pain Signals

  • Chapter
Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 230))

Abstract

Hydrogen sulfide (H2S) formed by multiple enzymes including cystathionine-γ-lyase (CSE) targets Cav3.2 T-type Ca2+ channels (T-channels) and transient receptor potential ankyrin-1 (TRPA1). Intraplantar and intracolonic administration of H2S donors promotes somatic and visceral pain, respectively, via activation of Cav3.2 and TRPA1 in rats and/or mice. Injection of H2S donors into the plantar tissues, pancreatic duct, colonic lumen, or bladder causes T-channel-dependent excitation of nociceptors, determined as phosphorylation of ERK or expression of Fos in the spinal dorsal horn. Electrophysiological studies demonstrate that exogenous and/or endogenous H2S facilitates membrane currents through T-channels in NG108-15 cells and isolated mouse dorsal root ganglion (DRG) neurons that abundantly express Cav3.2 and also in Cav3.2-transfected HEK293 cells. In mice with cerulein-induced pancreatitis and cyclophosphamide-induced cystitis, visceral pain and/or referred hyperalgesia are inhibited by CSE inhibitors and by pharmacological blockade or genetic silencing of Cav3.2, and CSE protein is upregulated in the pancreas and bladder. In rats with neuropathy induced by L5 spinal nerve cutting or by repeated administration of paclitaxel, an anticancer drug, the neuropathic hyperalgesia is reversed by inhibitors of CSE or T-channels and by silencing of Cav3.2. Upregulation of Cav3.2 protein in DRG is detectable in the former, but not in the latter, neuropathic pain models. Thus, H2S appears to function as a nociceptive messenger by facilitating functions of Cav3.2 and TRPA1, and the enhanced function of the CSE/H2S/Cav3.2 pathway is considered to be involved in the pancreatitis- and cystitis-related pain and in neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071

    CAS  PubMed  Google Scholar 

  • Andersson DA, Gentry C, Bevan S (2012) TRPA1 has a key role in the somatic pro-nociceptive actions of hydrogen sulfide. PLoS One 7, e46917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Asimakopoulou A, Panopoulos P, Chasapis CT, Coletta C, Zhou Z, Cirino G et al (2013) Selectivity of commonly used pharmacological inhibitors for cystathionine beta synthase (CBS) and cystathionine gamma lyase (CSE). Br J Pharmacol 169:922–932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bhatia M, Wong FL, Fu D, Lau HY, Moochhala SM, Moore PK (2005) Role of hydrogen sulfide in acute pancreatitis and associated lung injury. FASEB J 19:623–625

    CAS  PubMed  Google Scholar 

  • Boroujerdi A, Zeng J, Sharp K, Kim D, Steward O, Luo ZD (2011) Calcium channel alpha-2-delta-1 protein upregulation in dorsal spinal cord mediates spinal cord injury-induced neuropathic pain states. Pain 152:649–655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bourinet E, Alloui A, Monteil A, Barrere C, Couette B, Poirot O et al (2005) Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J 24:315–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cao XH, Byun HS, Chen SR, Cai YQ, Pan HL (2010) Reduction in voltage-gated K+ channel activity in primary sensory neurons in painful diabetic neuropathy: role of brain-derived neurotrophic factor. J Neurochem 114:1460–1475

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheung NS, Peng ZF, Chen MJ, Moore PK, Whiteman M (2007) Hydrogen sulfide induced neuronal death occurs via glutamate receptor and is associated with calpain activation and lysosomal rupture in mouse primary cortical neurons. Neuropharmacology 53:505–514

    Article  CAS  PubMed  Google Scholar 

  • Cunha TM, Dal-Secco D, Verri WA Jr, Guerrero AT, Souza GR, Vieira SM et al (2008) Dual role of hydrogen sulfide in mechanical inflammatory hypernociception. Eur J Pharmacol 590:127–135

    Article  CAS  PubMed  Google Scholar 

  • Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T et al (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 117:1979–1987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Distrutti E, Sediari L, Mencarelli A, Renga B, Orlandi S, Antonelli E et al (2006) Evidence that hydrogen sulfide exerts antinociceptive effects in the gastrointestinal tract by activating KATP channels. J Pharmacol Exp Ther 316:325–335

    Article  CAS  PubMed  Google Scholar 

  • Donatti AF, Araujo RM, Soriano RN, Azevedo LU, Leite-Panissi CA, Branco LG (2014) Role of hydrogen sulfide in the formalin-induced orofacial pain in rats. Eur J Pharmacol 738:49–56

    Article  CAS  PubMed  Google Scholar 

  • Elies J, Scragg JL, Huang S, Dallas ML, Huang D, MacDougall D et al (2014) Hydrogen sulfide inhibits Cav3.2 T-type Ca2+ channels. FASEB J 28(12):5376–5387

    Article  CAS  PubMed  Google Scholar 

  • Eto K, Ogasawara M, Umemura K, Nagai Y, Kimura H (2002) Hydrogen sulfide is produced in response to neuronal excitation. J Neurosci 22:3386–3391

    CAS  PubMed  Google Scholar 

  • Flatters SJ, Bennett GJ (2004) Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain 109:150–161

    Article  CAS  PubMed  Google Scholar 

  • Francois A, Laffray S, Pizzoccaro A, Eschalier A, Bourinet E (2014) T-type calcium channels in chronic pain: mouse models and specific blockers. Pflugers Arch 466:707–717

    Article  CAS  PubMed  Google Scholar 

  • Fukushima O, Nishimura S, Matsunami M, Aoki Y, Nishikawa H, Ishikura H et al (2010) Phosphorylation of ERK in the spinal dorsal horn following pancreatic pronociceptive stimuli with proteinase-activated receptor-2 agonists and hydrogen sulfide in rats: evidence for involvement of distinct mechanisms. J Neurosci Res 88:3198–3205

    Article  CAS  PubMed  Google Scholar 

  • Geng B, Yang J, Qi Y, Zhao J, Pang Y, Du J et al (2004) H2S generated by heart in rat and its effects on cardiac function. Biochem Biophys Res Commun 313:362–368

    Article  CAS  PubMed  Google Scholar 

  • Iftinca MC, Zamponi GW (2009) Regulation of neuronal T-type calcium channels. Trends Pharmacol Sci 30:32–40

    Article  CAS  PubMed  Google Scholar 

  • Ise F, Takasuka H, Hayashi S, Takahashi K, Koyama M, Aihara E et al (2011) Stimulation of duodenal HCO3 secretion by hydrogen sulphide in rats: relation to prostaglandins, nitric oxide and sensory neurones. Acta Physiol (Oxf) 201:117–126

    Article  CAS  Google Scholar 

  • Jacus MO, Uebele VN, Renger JJ, Todorovic SM (2012) Presynaptic Cav3.2 channels regulate excitatory neurotransmission in nociceptive dorsal horn neurons. J Neurosci 32:9374–9382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jagodic MM, Pathirathna S, Joksovic PM, Lee W, Nelson MT, Naik AK et al (2008) Upregulation of the T-type calcium current in small rat sensory neurons after chronic constrictive injury of the sciatic nerve. J Neurophysiol 99:3151–3156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawabata A, Ishiki T, Nagasawa K, Yoshida S, Maeda Y, Takahashi T et al (2007) Hydrogen sulfide as a novel nociceptive messenger. Pain 132:74–81

    Article  CAS  PubMed  Google Scholar 

  • Kelada E, Jones A (2007) Interstitial cystitis. Arch Gynecol Obstet 275:223–229

    Article  PubMed  Google Scholar 

  • Kimura H (2000) Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem Biophys Res Commun 267:129–133

    Article  CAS  PubMed  Google Scholar 

  • Kimura H (2010) Hydrogen sulfide: from brain to gut. Antioxid Redox Signal 12:1111–1123

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Kimura H (2004) Hydrogen sulfide protects neurons from oxidative stress. FASEB J 18:1165–1167

    CAS  PubMed  Google Scholar 

  • Kimura Y, Dargusch R, Schubert D, Kimura H (2006) Hydrogen sulfide protects HT22 neuronal cells from oxidative stress. Antioxid Redox Signal 8:661–670

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Mikami Y, Osumi K, Tsugane M, Oka J, Kimura H (2013) Polysulfides are possible H2S-derived signaling molecules in rat brain. FASEB J 27:2451–2457

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa Y, Sekiguchi F, Kubo S, Yamasaki Y, Matsuda S, Okamoto Y et al (2011) Involvement of ERK in NMDA receptor-independent cortical neurotoxicity of hydrogen sulfide. Biochem Biophys Res Commun 414:727–732

    Article  CAS  PubMed  Google Scholar 

  • Lee AT, Shah JJ, Li L, Cheng Y, Moore PK, Khanna S (2008) A nociceptive-intensity-dependent role for hydrogen sulphide in the formalin model of persistent inflammatory pain. Neuroscience 152:89–96

    Article  CAS  PubMed  Google Scholar 

  • Li L, Xie R, Hu S, Wang Y, Yu T, Xiao Y et al (2012) Upregulation of cystathionine beta-synthetase expression by nuclear factor-kappa B activation contributes to visceral hypersensitivity in adult rats with neonatal maternal deprivation. Mol Pain 8:89

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maeda Y, Aoki Y, Sekiguchi F, Matsunami M, Takahashi T, Nishikawa H et al (2009) Hyperalgesia induced by spinal and peripheral hydrogen sulfide: evidence for involvement of Cav3.2 T-type calcium channels. Pain 142:127–132

    Article  CAS  PubMed  Google Scholar 

  • Marger F, Gelot A, Alloui A, Matricon J, Ferrer JF, Barrere C et al (2011) T-type calcium channels contribute to colonic hypersensitivity in a rat model of irritable bowel syndrome. Proc Natl Acad Sci U S A 108:11268–11273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsunami M, Tarui T, Mitani K, Nagasawa K, Fukushima O, Okubo K et al (2009) Luminal hydrogen sulfide plays a pronociceptive role in mouse colon. Gut 58:751–761

    Article  CAS  PubMed  Google Scholar 

  • Matsunami M, Kirishi S, Okui T, Kawabata A (2011) Chelating luminal zinc mimics hydrogen sulfide-evoked colonic pain in mice: possible involvement of T-type calcium channels. Neuroscience 181:257–264

    Article  CAS  PubMed  Google Scholar 

  • Matsunami M, Kirishi S, Okui T, Kawabata A (2012a) Hydrogen sulfide-induced colonic mucosal cytoprotection involves T-type calcium channel-dependent neuronal excitation in rats. J Physiol Pharmacol 63:61–68

    CAS  PubMed  Google Scholar 

  • Matsunami M, Miki T, Nishiura K, Hayashi Y, Okawa Y, Nishikawa H et al (2012b) Involvement of the endogenous hydrogen sulfide/Cav3.2 T-type Ca2+ channel pathway in cystitis-related bladder pain in mice. Br J Pharmacol 167:917–928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McGowan E, Hoyt SB, Li X, Lyons KA, Abbadie C (2009) A peripherally acting Nav1.7 sodium channel blocker reverses hyperalgesia and allodynia on rat models of inflammatory and neuropathic pain. Anesth Analg 109:951–958

    Article  CAS  PubMed  Google Scholar 

  • Messinger RB, Naik AK, Jagodic MM, Nelson MT, Lee WY, Choe WJ et al (2009) In vivo silencing of the Ca(V)3.2 T-type calcium channels in sensory neurons alleviates hyperalgesia in rats with streptozocin-induced diabetic neuropathy. Pain 145:184–195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miao X, Meng X, Wu G, Ju Z, Zhang HH, Hu S et al (2014) Upregulation of cystathionine-beta-synthetase expression contributes to inflammatory pain in rat temporomandibular joint. Mol Pain 10:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Miyamoto R, Otsuguro K, Ito S (2011) Time- and concentration-dependent activation of TRPA1 by hydrogen sulfide in rat DRG neurons. Neurosci Lett 499:137–142

    Article  CAS  PubMed  Google Scholar 

  • Munchberg U, Anwar A, Mecklenburg S, Jacob C (2007) Polysulfides as biologically active ingredients of garlic. Org Biomol Chem 5:1505–1518

    Article  PubMed  Google Scholar 

  • Nagasawa K, Tarui T, Yoshida S, Sekiguchi F, Matsunami M, Ohi A et al (2009) Hydrogen sulfide evokes neurite outgrowth and expression of high-voltage-activated Ca2+ currents in NG108-15 cells: involvement of T-type Ca2+ channels. J Neurochem 108:676–684

    Article  CAS  PubMed  Google Scholar 

  • Nelson MT, Joksovic PM, Perez-Reyes E, Todorovic SM (2005) The endogenous redox agent L-cysteine induces T-type Ca2+ channel-dependent sensitization of a novel subpopulation of rat peripheral nociceptors. J Neurosci 25:8766–8775

    Article  CAS  PubMed  Google Scholar 

  • Nelson MT, Woo J, Kang HW, Vitko I, Barrett PQ, Perez-Reyes E et al (2007a) Reducing agents sensitize C-type nociceptors by relieving high-affinity zinc inhibition of T-type calcium channels. J Neurosci 27:8250–8260

    Article  CAS  PubMed  Google Scholar 

  • Nelson MT, Joksovic PM, Su P, Kang HW, Van Deusen A, Baumgart JP et al (2007b) Molecular mechanisms of subtype-specific inhibition of neuronal T-type calcium channels by ascorbate. J Neurosci 27:12577–12583

    Article  CAS  PubMed  Google Scholar 

  • Nishimura S, Fukushima O, Ishikura H, Takahashi T, Matsunami M, Tsujiuchi T et al (2009) Hydrogen sulfide as a novel mediator for pancreatic pain in rodents. Gut 58:762–770

    Article  CAS  PubMed  Google Scholar 

  • Ogawa H, Takahashi K, Miura S, Imagawa T, Saito S, Tominaga M et al (2012) H2S functions as a nociceptive messenger through transient receptor potential ankyrin 1 (TRPA1) activation. Neuroscience 218:335–343

    Article  CAS  PubMed  Google Scholar 

  • Ohge H, Furne JK, Springfield J, Sueda T, Madoff RD, Levitt MD (2003) The effect of antibiotics and bismuth on fecal hydrogen sulfide and sulfate-reducing bacteria in the rat. FEMS Microbiol Lett 228:137–142

    Article  CAS  PubMed  Google Scholar 

  • Okubo K, Takahashi T, Sekiguchi F, Kanaoka D, Matsunami M, Ohkubo T et al (2011) Inhibition of T-type calcium channels and hydrogen sulfide-forming enzyme reverses paclitaxel-evoked neuropathic hyperalgesia in rats. Neuroscience 188:148–156

    Article  CAS  PubMed  Google Scholar 

  • Okubo K, Matsumura M, Kawaishi Y, Aoki Y, Matsunami M, Okawa Y et al (2012) Hydrogen sulfide-induced mechanical hyperalgesia and allodynia require activation of both Cav3.2 and TRPA1 channels in mice. Br J Pharmacol 166:1738–1743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patacchini R, Santicioli P, Giuliani S, Maggi CA (2004) Hydrogen sulfide (H2S) stimulates capsaicin-sensitive primary afferent neurons in the rat urinary bladder. Br J Pharmacol 142:31–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83:117–161

    Article  CAS  PubMed  Google Scholar 

  • Pozsgai G, Hajna Z, Bagoly T, Boros M, Kemeny A, Materazzi S et al (2012) The role of transient receptor potential ankyrin 1 (TRPA1) receptor activation in hydrogen-sulphide-induced CGRP-release and vasodilation. Eur J Pharmacol 689:56–64

    Article  CAS  PubMed  Google Scholar 

  • Roediger WE, Moore J, Babidge W (1997) Colonic sulfide in pathogenesis and treatment of ulcerative colitis. Dig Dis Sci 42:1571–1579

    Article  CAS  PubMed  Google Scholar 

  • Rose KE, Lunardi N, Boscolo A, Dong X, Erisir A, Jevtovic-Todorovic V et al (2013) Immunohistological demonstration of Cav3.2 T-type voltage-gated calcium channel expression in soma of dorsal root ganglion neurons and peripheral axons of rat and mouse. Neuroscience 250:263–274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schicho R, Krueger D, Zeller F, Von Weyhern CW, Frieling T, Kimura H et al (2006) Hydrogen sulfide is a novel prosecretory neuromodulator in the Guinea-pig and human colon. Gastroenterology 131:1542–1552

    Article  CAS  PubMed  Google Scholar 

  • Sekiguchi F, Kawabata A (2013) T-type calcium channels: functional regulation and implication in pain signaling. J Pharmacol Sci 122:244–250

    Article  CAS  PubMed  Google Scholar 

  • Sekiguchi F, Miyamoto Y, Kanaoka D, Ide H, Yoshida S, Ohkubo T et al (2014) Endogenous and exogenous hydrogen sulfide facilitates T-type calcium channel currents in Cav3.2-expressing HEK293 cells. Biochem Biophys Res Commun 445:225–229

    Article  CAS  PubMed  Google Scholar 

  • Streng T, Axelsson HE, Hedlund P, Andersson DA, Jordt SE, Bevan S et al (2008) Distribution and function of the hydrogen sulfide-sensitive TRPA1 ion channel in rat urinary bladder. Eur Urol 53:391–399

    Article  CAS  PubMed  Google Scholar 

  • Stucky CL, Dubin AE, Jeske NA, Malin SA, McKemy DD, Story GM (2009) Roles of transient receptor potential channels in pain. Brain Res Rev 60:2–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi T, Aoki Y, Okubo K, Maeda Y, Sekiguchi F, Mitani K et al (2010) Upregulation of Cav3.2 T-type calcium channels targeted by endogenous hydrogen sulfide contributes to maintenance of neuropathic pain. Pain 150:183–191

    Article  CAS  PubMed  Google Scholar 

  • Tamizhselvi R, Moore PK, Bhatia M (2007) Hydrogen sulfide acts as a mediator of inflammation in acute pancreatitis: in vitro studies using isolated mouse pancreatic acinar cells. J Cell Mol Med 11:315–326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taniguchi E, Matsunami M, Kimura T, Yonezawa D, Ishiki T, Sekiguchi F et al (2009) Rhodanese, but not cystathionine-gamma-lyase, is associated with dextran sulfate sodium-evoked colitis in mice: a sign of impaired colonic sulfide detoxification? Toxicology 264:96–103

    Article  CAS  PubMed  Google Scholar 

  • Terada Y, Fujimura M, Nishimura S, Tsubota M, Sekiguchi F, Nishikawa H et al (2013) Contribution of TRPA1 as a downstream signal of proteinase-activated receptor-2 to pancreatic pain. J Pharmacol Sci 123:284–287

    Article  CAS  PubMed  Google Scholar 

  • Terada Y, Fujimura M, Nishimura S, Tsubota M, Sekiguchi F, Kawabata A (2014) Roles of Cav3.2 and TRPA1 channels targeted by hydrogen sulfide in pancreatic nociceptive processing in mice with or without acute pancreatitis. J Neurosci Res 93(2):361–369

    Article  PubMed  Google Scholar 

  • Theoharides TC, Whitmore K, Stanford E, Moldwin R, O’Leary MP (2008) Interstitial cystitis: bladder pain and beyond. Expert Opin Pharmacother 9:2979–2994

    Article  CAS  PubMed  Google Scholar 

  • Todorovic SM, Jevtovic-Todorovic V (2011) T-type voltage-gated calcium channels as targets for the development of novel pain therapies. Br J Pharmacol 163:484–495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Todorovic SM, Jevtovic-Todorovic V, Meyenburg A, Mennerick S, Perez-Reyes E, Romano C et al (2001) Redox modulation of T-type calcium channels in rat peripheral nociceptors. Neuron 31:75–85

    Article  CAS  PubMed  Google Scholar 

  • Trevisani M, Patacchini R, Nicoletti P, Gatti R, Gazzieri D, Lissi N et al (2005) Hydrogen sulfide causes vanilloid receptor 1-mediated neurogenic inflammation in the airways. Br J Pharmacol 145:1123–1131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Velasco-Xolalpa ME, Barragan-Iglesias P, Roa-Coria JE, Godinez-Chaparro B, Flores-Murrieta FJ, Torres-Lopez JE et al (2013) Role of hydrogen sulfide in the pain processing of non-diabetic and diabetic rats. Neuroscience 250:786–797

    Article  CAS  PubMed  Google Scholar 

  • Wallace JL, Vong L, McKnight W, Dicay M, Martin GR (2009) Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. Gastroenterology 137:569–578

    Article  CAS  PubMed  Google Scholar 

  • Wantuch C, Piesla M, Leventhal L (2007) Pharmacological validation of a model of cystitis pain in the mouse. Neurosci Lett 421:250–252

    Article  CAS  PubMed  Google Scholar 

  • Warenycia MW, Goodwin LR, Benishin CG, Reiffenstein RJ, Francom DM, Taylor JD et al (1989) Acute hydrogen sulfide poisoning. Demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochem Pharmacol 38:973–981

    Article  CAS  PubMed  Google Scholar 

  • Xu GY, Winston JH, Shenoy M, Zhou S, Chen JD, Pasricha PJ (2009) The endogenous hydrogen sulfide producing enzyme cystathionine-beta synthase contributes to visceral hypersensitivity in a rat model of irritable bowel syndrome. Mol Pain 5:44

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J 20:6008–6016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsufumi Kawabata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Terada, Y., Kawabata, A. (2015). H2S and Pain: A Novel Aspect for Processing of Somatic, Visceral and Neuropathic Pain Signals. In: Moore, P., Whiteman, M. (eds) Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide. Handbook of Experimental Pharmacology, vol 230. Springer, Cham. https://doi.org/10.1007/978-3-319-18144-8_11

Download citation

Publish with us

Policies and ethics