Skip to main content

3D Force Field Spectroscopy

  • Chapter
  • First Online:
Noncontact Atomic Force Microscopy

Part of the book series: NanoScience and Technology ((NANO))

Abstract

With recent advances in instrumentation and experimental methodology, noncontact atomic force microscopy is now being frequently used to measure the atomic-scale interactions acting between a sharp probe tip and surfaces of interest as a function of three spatial dimensions, via the method of three-dimensional atomic force microscopy (3D-AFM). In this chapter, we discuss the different data collection and processing approaches taken towards this goal while highlighting the associated advantages and disadvantages in terms of correct interpretation of results. Additionally, common sources of artifacts in 3D-AFM measurements, including thermal drift, piezo nonlinearities, and tip-related issues such as asymmetry and elasticity are considered. Finally, the combination of 3D-AFM with simultaneous scanning tunneling microscopy (STM) is illustrated on surface-oxidized Cu(100). We conclude the chapter by an outlook regarding the future development of the 3D-AFM method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Binnig, H. Rohrer, Helvetica Physica Acta 55, 726 (1982)

    Google Scholar 

  2. G. Binnig, C.F. Quate, C. Gerber, Phys. Rev. Lett. 56, 930 (1986)

    Article  ADS  Google Scholar 

  3. P.J. Eaton, P. West, Atomic Force Microscopy (Oxford University Press, Oxford, 2010)

    Book  Google Scholar 

  4. F.J. Giessibl, Science 267, 68 (1995)

    Article  ADS  Google Scholar 

  5. Y. Sugawara, M. Ohta, H. Ueyama, S. Morita, Science 270, 1646 (1995)

    Article  ADS  Google Scholar 

  6. S. Morita, R. Wiesendanger, E. Meyer, Noncontact Atomic Force Microscopy (Springer, Berlin, 2002)

    Book  Google Scholar 

  7. S. Morita, F.J. Giessibl, R. Wiesendanger, Noncontact Atomic Force Microscopy (Springer, Berlin, 2009)

    Book  Google Scholar 

  8. T.R. Albrecht, P. Grutter, D. Horne, D. Rugar, J. Appl. Phys. 69, 668 (1991)

    Article  ADS  Google Scholar 

  9. M. Bammerlin, R. Luthi, E. Meyer, A. Baratoff, J. Lu, M. Guggisberg et al., Appl. Phys. A 66, S293 (1998)

    Article  ADS  Google Scholar 

  10. M. Reichling, C. Barth, Phys. Rev. Lett. 83, 768 (1999)

    Article  ADS  Google Scholar 

  11. R. Hoffmann, D. Weiner, A. Schirmeisen, A.S. Foster, Phys. Rev. B 80, 115426 (2009)

    Article  ADS  Google Scholar 

  12. C. Loppacher, M. Bammerlin, M. Guggisberg, S. Schar, R. Bennewitz, A. Baratoff et al., Phys. Rev. B 62, 16944 (2000)

    Article  ADS  Google Scholar 

  13. V. Caciuc, H. Hölscher, D. Weiner, H. Fuchs, A. Schirmeisen, Phys. Rev. B 77, 045411 (2008)

    Google Scholar 

  14. T. Konig, G.H. Simon, H.P. Rust, M. Heyde, Appl. Phys. Lett. 95, 083116 (2009)

    Article  ADS  Google Scholar 

  15. J.V. Lauritsen, M. Reichling, J Phys.: Condens. Matter 22, 263001 (2010)

    Google Scholar 

  16. M.P. Boneschanscher, J. van der Lit, Z.X. Sun, I. Swart, P. Liljeroth, D. Vanmaekelbergh, ACS Nano 6, 10216 (2012)

    Article  Google Scholar 

  17. Y. Dedkov, E. Voloshina, Phys. Chem. Chem. Phys. 16, 3894 (2014)

    Article  Google Scholar 

  18. Z. Majzik et al., J. Phys. Condens. Matter 25, 225301 (2013)

    Article  ADS  Google Scholar 

  19. H. Hölscher, A. Schwarz, W. Allers, U.D. Schwarz, R. Wiesendanger, Phys. Rev. B 61, 12678 (2000)

    Google Scholar 

  20. M.A. Lantz, H.J. Hug, R. Hoffmann, P.J.A. van Schendel, P. Kappenberger, S. Martin et al., Science 291, 2580 (2001)

    Article  ADS  Google Scholar 

  21. Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morita et al., Nature 446, 64 (2007)

    Article  ADS  Google Scholar 

  22. J.E. Sader, S.P. Jarvis, Appl. Phys. Lett. 84, 1801 (2004)

    Article  ADS  Google Scholar 

  23. B.J. Albers, M. Liebmann, T.C. Schwendemann, M.Z. Baykara, M. Heyde, M. Salmeron et al., Rev. Sci. Instrum. 79, 033704 (2008)

    Article  ADS  Google Scholar 

  24. M. Abe, Y. Sugimoto, O. Custance, S. Morita, Appl. Phys. Lett. 87, 173503 (2005)

    Article  ADS  Google Scholar 

  25. M. Abe, Y. Sugimoto, T. Namikawa, K. Morita, N. Oyabu, S. Morita, Appl. Phys. Lett. 90, 203103 (2007)

    Article  ADS  Google Scholar 

  26. B.J. Albers, T.C. Schwendemann, M.Z. Baykara, N. Pilet, M. Liebmann, E.I. Altman et al., Nat. Nanotechnol. 4, 307 (2009)

    Article  ADS  Google Scholar 

  27. L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, Science 325, 1110 (2009)

    Article  ADS  Google Scholar 

  28. M.Z. Baykara, T.C. Schwendemann, E.I. Altman, U.D. Schwarz, Adv. Mater. 22, 2838 (2010)

    Article  Google Scholar 

  29. B. Such, T. Glatzel, S. Kawai, S. Koch, E. Meyer, J. Vacuum Sci. Technol. B 28, C4B1–C4B5 (2010)

    Google Scholar 

  30. S. Kawai, T. Glatzel, S. Koch, A. Baratoff, E. Meyer, Phys. Rev. B 83, 035421 (2011)

    Article  ADS  Google Scholar 

  31. S. Fremy, S. Kawai, R. Pawlak, T. Glatzel, A. Baratoff, E. Meyer, Nanotechnology 23, 055401 (2012)

    Article  ADS  Google Scholar 

  32. B. Such, T. Glatzel, S. Kawai, E. Meyer, R. Turansky, J. Brndiar et al., Nanotechnology 23, 045705 (2012)

    Article  ADS  Google Scholar 

  33. R. Pawlak, S. Kawai, S. Fremy, T. Glatzel, E. Meyer, ACS Nano 5, 6349 (2011)

    Article  Google Scholar 

  34. Y. Sugimoto, K. Ueda, M. Abe, S. Morita, J. Phys.: Condens. Matter 24, 084008 (2012)

    Google Scholar 

  35. R. Pawlak, S. Kawai, S. Fremy, T. Glatzel, E. Meyer, J. Phys.: Condens. Matter 24(8), 084005 (2012)

    Google Scholar 

  36. M.Z. Baykara, M. Todorovic, H. Monig, T.C. Schwendemann, O. Unverdi, L. Rodrigo et al., Phys. Rev. B 87, 155414 (2013)

    Article  ADS  Google Scholar 

  37. A.M. Sweetman et al., Nat. Commun. 5, 7 (2014)

    Article  Google Scholar 

  38. T. Fukuma, Y. Ueda, S. Yoshioka, H. Asakawa, Phys. Rev. Lett. 104, 016101 (2010)

    Article  ADS  Google Scholar 

  39. H. Asakawa, S. Yoshioka, K. Nishimura, T. Fukuma, ACS Nano 6, 9013 (2012)

    Article  Google Scholar 

  40. E.T. Herruzo, H. Asakawa, T. Fukuma, R. Garcia, Nanoscale 5, 2678 (2013)

    Article  ADS  Google Scholar 

  41. M.Z. Baykara, O.E. Dagdeviren, T.C. Schwendemann, H. Monig, E.I. Altman, U.D. Schwarz, Beilstein J. Nanotechnol. 3, 637 (2012)

    Article  Google Scholar 

  42. B. Uluutku, M.Z. Baykara, J. Vacuum Sci. Technol. B 31, 041801 (2013)

    Article  ADS  Google Scholar 

  43. B.J. Albers, T.C. Schwendemann, M.Z. Baykara, N. Pilet, M. Liebmann, E.I. Altman et al., Nanotechnology 20, 264002 (2009)

    Article  ADS  Google Scholar 

  44. S.O.R. Moheimani, Rev. Sci. Instrum. 79, 071101 (2008)

    Article  ADS  Google Scholar 

  45. H.J. Hug, B. Stiefel, P.J.A. van Schendel, A. Moser, S. Martin, H.J. Guntherodt, Rev. Sci. Instrum. 70, 3625 (1999)

    Article  ADS  Google Scholar 

  46. C.Z. Cai, X.Y. Chen, Q.Q. Shu, X.L. Zheng, Rev. Sci. Instrum. 63, 5649 (1992)

    Article  ADS  Google Scholar 

  47. W. Allers, A. Schwarz, U.D. Schwarz, R. Wiesendanger, Rev. Sci. Instrum. 69, 221 (1998)

    Article  ADS  Google Scholar 

  48. W.A. Hofer, A.S. Foster, A.L. Shluger, Rev. Mod. Phys. 75, 1287 (2003)

    Article  ADS  Google Scholar 

  49. N. Oyabu, P. Pou, Y. Sugimoto, P. Jelinek, M. Abe, S. Morita et al., Phys. Rev. Lett. 96, 106101 (2006)

    Article  ADS  Google Scholar 

  50. G.H. Enevoldsen, H.P. Pinto, A.S. Foster, M.C.R. Jensen, A. Kuhnle, M. Reichling et al., Phys. Rev. B 78, 045416 (2008)

    Article  ADS  Google Scholar 

  51. P. Pou, S.A. Ghasemi, P. Jelinek, T. Lenosky, S. Goedecker, R. Perez, Nanotechnology 20, 264015 (2009)

    Article  ADS  Google Scholar 

  52. H. Hölscher, W. Allers, U.D. Schwarz, A. Schwarz, R. Wiesendanger, Appl. Phys. A 72, S35 (2001)

    Google Scholar 

  53. S. Kawai, T. Glatzel, S. Koch, B. Such, A. Baratoff, E. Meyer, Phys. Rev. B 81, 085420 (2010)

    Article  ADS  Google Scholar 

  54. J. Welker, A.J. Weymouth, F.J. Giessibl, ACS Nano 7, 7377 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Eric I. Altman, Omur E. Dagdeviren, Harry Mönig, Rubén Pérez, Lucia Rodrigo, Todd C. Schwendemann, Milica Todorović, Berkin Uluutku and Özhan Ünverdi for their invaluable contributions to the experimental and numerical studies presented in this chapter. Financial support from the National Science Foundation through the Yale Materials Research Science and Engineering Center (grant No. MRSEC DMR-1119826) and the Materials World Network program (grant No. MWN DMR-0806893) as well as the US Department of Energy (Basic Energy Sciences grant No. DE-FG02-06ER15834) are gratefully acknowledged. M.Z.B gratefully acknowledges support from the Turkish Academy of Sciences via the TÜBA-GEBİP program and the Marie Curie Actions of the European Commission’s FP7 Program in the form of a Career Integration Grant (grant No. PCIG12-GA-2012-333843).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Z. Baykara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baykara, M.Z., Schwarz, U.D. (2015). 3D Force Field Spectroscopy. In: Morita, S., Giessibl, F., Meyer, E., Wiesendanger, R. (eds) Noncontact Atomic Force Microscopy. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15588-3_2

Download citation

Publish with us

Policies and ethics