Skip to main content

Can Modern Evolutionary Theory Explain Macroevolution?

  • Chapter
  • First Online:
Macroevolution

Part of the book series: Interdisciplinary Evolution Research ((IDER,volume 2))

Abstract

Ever since the Evolutionary Synthesis of the 1930s and 1940s, some biologists have expressed doubt that the Synthetic Theory, based principally on mutation, genetic variation, and natural selection, adequately accounts for macroevolution, or evolution above the species level. Some questions pertain to the history of biological diversity, but the greatest argument has concerned the evolution of major changes in organisms’ form and function. Such changes have been the subject of debate on the nature and phenotypic effect of mutations (especially the role of “macromutations” or saltations), the role of developmental mechanisms and processes, and the importance of internal constraints on adaptive evolution. Bridging the two major macroevolutionary themes, the hypothesis of punctuated equilibria invoked constraints on phenotypic evolution and the role of speciation in both diversification and the evolution of form. This chapter describes the Evolutionary Synthesis and the challenges to it and addresses the extent to which the modern formulation of the Synthetic Theory (ST) adequately addresses the observations that have prompted skeptical challenge. I conclude that although several proposed extensions and seemingly unorthodox ideas have some merit, the observations they purport to explain can mostly be interpreted within the framework of the Synthetic Theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The group of lobe-finned fishes known as coelacanths was thought to have become extinct in the Cretaceous until a living species, named Latimeria chalumnae, was described from the Indian Ocean in 1938.

  2. 2.

    This example loomed large in Gould’s first book, Ontogeny and Phylogeny (1977). It is with some amusement that I read in my review (entitled, with some slight pretension, “The axolotl as Parsifal”) that when evolutionary biology embraces developmental biology, “it is then most likely to prove that slight changes in the regulatory systems of development—micromutations, no doubt, at the molecular level—can be amplified by exponential growth and allometric relations, and by the profusion of developmental effects that we call pleiotropy, into major phenotypic changes, some of which will seem discontinuous” (Futuyma 1978, p. 43). Both of these anticipated results, especially discontinuity, still await discovery.

  3. 3.

    I referred earlier to the intense controversy at a symposium on macroevolution held in Chicago in October 1980. I attended the symposium, and was scheduled to become editor of Evolution three months later. When it became evident that no proceedings of the symposium would be published, I invited several participants, representing diverse views, to contribute manuscripts to Evolution. This paper, “A neo-Darwinian commentary on macroevolution,” as well as a paper by Steven Stanley on macroevolution and the fossil record, a paper on evolution and development by George Oster and Pere Alberch, and a paper by Sewall Wright (based on his plenary address) were the result.

  4. 4.

    As a graduate student, I recognized the gap between developmental biology and evolution, partly because my advisory committee included two “physiological geneticists” (as developmental geneticists were called then): Tahir Rizki (a Drosophila geneticist), who had been a student of Dobzhansky, and Morris Foster (a mouse geneticist), who had been one of Sewall Wright’s few students. Rizki and his students attempted to (verbally) model mechanisms of gene action, and Foster imparted the importance of Jacob and Monod’s work in his course. For some years afterward, it was easy to keep abreast of the little research at the interface. Two chapters in my 1979 textbook prominently featured developmental aspects of evolution.

  5. 5.

    For example, genetic assimilation is not mentioned in Dobzhansky’s Genetics of the Evolutionary Process (1970) or in textbooks by Dobzhansky et al. (1977), Freeman and Herron (2001), or Barton et al. (2007). I treated the topic sparingly, in the context of canalization, in all the editions of my textbook.

References

  • Adams MB (1980) Sergei Chetverikov, the Kol’tsov Institute, and the evolutionary synthesis. In: Mayr E, Provine WB (eds) The evolutionary synthesis: perspectives on the unification of biology. Harvard University Press, Cambridge, Massachusetts, pp 242–278

    Google Scholar 

  • Adams DC, Berns CM, Kozak KH, Wiens JJ (2009) Are rates of species diversification correlated with rates of morphological evolution? Proc R Soc B 276:2729–2738

    PubMed Central  PubMed  Google Scholar 

  • Aguilee R, Claessen D, Lambert A (2013) Adaptive radiation driven by the interplay of eco-evolutionary and landscape dynamics. Evolution 67:1291–1306

    PubMed  Google Scholar 

  • Allen CE, Beldade P, Zwaan BJ, Brakefield PM (2008) Differences in the selection response of serially repeated color pattern characters: standing variation, development, and evolution. BMC Evol Biol 8:94

    PubMed Central  PubMed  Google Scholar 

  • Amundson R (2005) The changing role of the embryo in evolutionary thought: Roots of Evo-Devo. Cambridge University Press, New York

    Google Scholar 

  • Anderson EA (1949) Introgressive hybridization. Wiley, New York

    Google Scholar 

  • Arendt J, Reznick D (2008) Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? Trends Ecol Evol 23:26–32

    PubMed  Google Scholar 

  • Aubret F, Shine R, Bonnet X (2004) Adaptive developmental plasticity in snakes. Nature 431:261

    PubMed  CAS  Google Scholar 

  • Aubret F, Bonnet X, Shine R (2007) The role of adaptive plasticity in a major evolutionary transition: early aquatic experience affects locomotor performance of terrestrial snakes. Func Ecol 21:1154–1161

    Google Scholar 

  • Avise JC (1977) Is evolution gradual or rectangular? Evidence from living fishes. Proc Nat Acad Sci USA 74:5083–5087

    PubMed Central  PubMed  CAS  Google Scholar 

  • Barker JSF, Thomas RH (1987) A quantitative genetic perspective on adaptive evolution. In: Loeschcke V (ed) Genetic constraints on adaptive evolution. Springer, Berlin, pp 3–23

    Google Scholar 

  • Barrett RDH, Schluter D (2008) Adaptation from standing genetic variation. Trends Ecol Evol 23:38–44

    PubMed  Google Scholar 

  • Barton NH, Charlesworth B (1984) Genetic revolutions, founder effects, and speciation. Annu Rev Ecol Syst 15:133–164

    Google Scholar 

  • Barton N, Partridge L (2000) Limits to natural selection. BioEssays 22:1075–1084

    PubMed  CAS  Google Scholar 

  • Barton NH, Briggs DEG, Eisen JA, Goldstein DB, Patel NH (2007) Evolution. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Baum DA, Donoghue MJ (2010) Transference of function, heterotopy and the evolution of plant development. In: Cronk QCB, Bateman RM, Hawkins JA (eds) Developmental genetics and plant evolution. Taylor & Francis, London, pp 52–69

    Google Scholar 

  • Beldade P, Koops K, Brakefield PM (2002) Developmental constraints versus flexibility in morphological evolution. Nature 416:844–847

    PubMed  CAS  Google Scholar 

  • Bokma F (2010) Time, species, and separating their effects on trait variance. Syst Biol 59:602–607

    PubMed  Google Scholar 

  • Bonduriansky R (2012) Rethinking heredity, again. Trends Ecol Evol 27(6):330–336

    Google Scholar 

  • Bonduriansky R, Day T (2009) Nongenetic inheritance and its evolutionary implications. Annu Rev Ecol Evol Syst 40:103–125

    Google Scholar 

  • Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11:106–115

    PubMed  Google Scholar 

  • Bowler PJ (1983) The eclipse of Darwinism. Johns Hopkins University Press, Baltimore, Maryland

    Google Scholar 

  • Bradshaw AD (1991) Genostasis and the limits to evolution. Phil Trans R/Soc Lond B 333:289–305

    CAS  Google Scholar 

  • Bradshaw HD, Wilbert SM, Otto KG, Schemske DW (1998) Quantitative trait loci affecting differences in floral morphology between two species of monkeyflower (Mimulus). Genetics 149:367–382

    PubMed Central  PubMed  CAS  Google Scholar 

  • Britten RJ, Davidson EH (1971) Repetitive and non-repetitive DNA and a speculation on the origin of evolutionary novelty. Quart Rev Biol 46:111–133

    PubMed  CAS  Google Scholar 

  • Carroll SB, Grenier JK, Weatherbee SD (2005) From DNA to diversity: molecular genetics and the evolution of animal design, 2nd edn. Blackwell, Malden, Massachusetts

    Google Scholar 

  • Carson HL, Templeton AR (1984) Genetic revolutions in relation to speciation phenomena: the founding of new populations. Annu Rev Ecol Syst 15:97–131

    Google Scholar 

  • Charlesworth B (1980) The evolutionary genetics of adaptation. In: Nitecki MH (ed) Evolutionary innovations. University of Chicago Press, Chicago, pp 47–98

    Google Scholar 

  • Charlesworth B (1982) Hopeful monsters cannot fly. Paleobiology 8:469–474

    Google Scholar 

  • Charlesworth B (1984) Some quantitative methods for studying evolutionary patterns in single characters. Paleobiology 10:308–318

    Google Scholar 

  • Charlesworth B, Langley CH (1989) The population genetics of Drosophila transposable elements. Annu Rev Genet 23:251–287

    PubMed  CAS  Google Scholar 

  • Charlesworth B, Rouhani S (1988) The probability of peak shifts in a founder population. II. An additive polygenic trait. Evolution 42:1129–1145

    Google Scholar 

  • Charlesworth B, Lande R, Slatkin M (1982) A neo-Darwinian commentary on macroevolution. Evolution 36:474–498

    Google Scholar 

  • Chevin L-M, Lande R (2013) Evolution of discrete phenotypes from continuous norms of reaction. Am Nat 182:13–27

    PubMed  Google Scholar 

  • Chevin L-M, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biology 8(4):e1000357

    Google Scholar 

  • Clausen J, Keck DD, Hiesey WM (1948) Experimental studies on the nature of species. III. Environmental responses of climatic races of Achillea. Carnegie Inst Washington Publ 581:129

    Google Scholar 

  • Conner JK (2012) Quantitative genetic approaches to evolutionary constraint: how useful? Evolution 66:3313–3320

    PubMed  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer, Sunderland, Massachusetts

    Google Scholar 

  • Coyne JA, Barton NH, Turelli M (1997) A critique of Sewall Wright’s shifting balance theory of evolution. Evolution 51:306–317

    Google Scholar 

  • Darlington CD (1939) The evolution of genetic systems. Basic Books, New York

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or preservation of favoured races in the struggle for life. Murray, London

    Google Scholar 

  • Davidson EH (2011) Evolutionary bioscience as regulatory systems biology. Developmental Biology 357:35–40

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dawkins R (1976) The selfish gene. Oxford University Press, Oxford

    Google Scholar 

  • Day T, Bonduriansky R (2011) A unified approach to the evolutionary consequences of genetic and nongenetic inheritance. Am Nat 178:E18–E36

    PubMed  Google Scholar 

  • de Beer G (ed) (1938) Evolution: essays on aspects of evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • de Beer G (1940) Embryos and ancestors. Clarendon Press, Oxford

    Google Scholar 

  • Depew DJ, Weber BH (2013) Challenging Darwinism: expanding, extending, replacing. In: Ruse M (ed) The Cambridge encyclopedia of Darwin and evolutionary thought. Cambridge University Press, Cambridge, pp 405–411

    Google Scholar 

  • DeWitt TJ, Sih A, Wilson DS (1998) Costs and limits of phenotypic plasticity. Trends Ecol Evol 13:77–81

    PubMed  CAS  Google Scholar 

  • Dickerson GE (1955) Genetic slippage in response to selection for multiple objectives. Cold Spring Harbor Symp Quant Biol 20:213–224

    PubMed  CAS  Google Scholar 

  • Dickins TE, Rahman Q (2012) The extended evolutionary synthesis and the role of soft inheritance in evolution. Proc R Soc B 279:2913–2921

    PubMed Central  PubMed  Google Scholar 

  • Dobzhansky Th (1937) Genetics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Dobzhansky Th (1951) Genetics and the origin of species, 3rd edn. Columbia University Press, New York

    Google Scholar 

  • Dobzhansky Th (1956) What is an adaptive trait? Am Nat 40:337–347

    Google Scholar 

  • Dobzhansky Th (1970) Genetics of the evolutionary process. Columbia University Press, New York

    Google Scholar 

  • Dobzhansky Th, Ayala FJ, Stebbins GL, Valentine JW (1977) Evolution. Freeman, San Francisco

    Google Scholar 

  • Duchene D, Bromham L (2013) Rates of molecular evolution and diversification in plants: chloroplast substitution rates correlate with species richness in the Proteaceae. BMC Evol Biol 13(65). doi:10.1186/1471-2148-13-65

  • Eldredge N (2001) The sloshing bucket: how the physical realm controls evolution. In: Crutchfield J, Schuster P (eds) Evolutionary dynamics: exploring the interplay of selection, neutrality, accident, and function. Oxford University Press, New York, pp 3–32

    Google Scholar 

  • Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. Freeman, Cooper, San Francisco, pp 82–115

    Google Scholar 

  • Eldredge N, Thomson JN, Brakefield PM et al (2005) The dynamics of evolutionary stasis. Paleobiology 31(suppl 5):133–145

    Google Scholar 

  • Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton

    Google Scholar 

  • Eroukhmanoff F, Svensson EI (2008) Phenotypic integration and conserved covariance structure in calopterygid damselflies. J Evol Biol 21:514–526

    PubMed  CAS  Google Scholar 

  • Erwin DH (2010) Microevolution and macroevolution are not governed by the same evolutionary processes. In: Ayala FJ, Arp R (eds) Contemporary debates in philosophy of biology. Wiley, Chichester, pp 180–193

    Google Scholar 

  • Etterson JR, Shaw RG (2001) Constraint to adaptive evolution in response to global warming. Science 294:151–154

    PubMed  CAS  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford

    Google Scholar 

  • FitzJohn RG, Maddison WP, Otto SP (2009) Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst. Biol. 58:595–611

    Google Scholar 

  • Foote M (2010) The geological history of biodiversity. In: Bell MA, Futuyma DJ, Eanes WF, Levinton JS (eds) Evolution since Darwin: the first 150 years, pp 479–510. Sinauer Associates, Inc., Sunderland, Massachusetts

    Google Scholar 

  • Ford EB, Huxley JS (1929) Genetic rate factors in Gammarus. Ark Entw Mech Org 117:67

    Google Scholar 

  • Freeman S, Herron JC (2001) Evolutionary analysis, 2d edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Futuyma DJ (1979) Evolutionary biology. Sinauer, Sunderland, Massachusetts

    Google Scholar 

  • Futuyma DJ (1984) Neo-Darwinism under opprobrium. Science 226:532–533 (Review of M.-W. Ho and P.T. Saunders, Beyond Neo-Darwinism.)

    Google Scholar 

  • Futuyma DJ (1987) On the role of species in anagenesis. Am Nat 130:465–473

    Google Scholar 

  • Futuyma DJ (2010) Evolutionary constraint and ecological consequences. Evolution 64:1865–1884

    PubMed  Google Scholar 

  • Futuyma DJ, Keese MC, Funk DJ (1995) Genetic constraints on macroevolution: the evolution of host affiliation in the leaf beetles genus Ophraella. Evolution 49:797–809

    Google Scholar 

  • Gavrilets S (2004) Fitness landscapes and the origin of species. Princeton University Press, Princeton

    Google Scholar 

  • Gavrilets S, Losos JB (2009) Adaptive radiation: contrasting theory with data. Science 23:732–737

    Google Scholar 

  • Gavrilets S, Vose A (2005) Dynamic patterns of adaptive radiation. Proc Nat Acad Sci USA 102:18040–18045

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Func Ecol 21:394–407

    Google Scholar 

  • Gilbert SF (2006) Developmental biology, 8th edn. Sinauer, Sunderland, Massachusetts

    Google Scholar 

  • Gilbert SF, Epel D (2009) Ecological developmental biology: integrating epigenetics, medicine, and evolution. Sinauer, Sunderland, Massachusetts

    Google Scholar 

  • Gingerich PD (1983) Rates of evolution: effects of time and temporal scaling. Science 222:159–161

    PubMed  CAS  Google Scholar 

  • Goldie X, Lanfear R, Bromham L (2011) Diversification and the rate of molecular evolution: no evidence of a link in mammals. BMC Evol Biol 11(286). doi:10.1186/1471-2148-11-286

  • Goldschmidt R (1940) The material basis of evolution. Yale University Press, New Haven, Connecticut

    Google Scholar 

  • Gomulkiewicz R, Holt RD (1995) When does evolution by natural selection prevent extinction? Evolution 49:201–209

    Google Scholar 

  • Goodwin BC (1984) A relational or field theory of reproduction and its evolutionary implications. In: Ho M-W, Saunders PT (eds) Beyond Neo-Darwinism: an Introduction to the new evolutionary paradigm, pp 219–241. Academic Press, London

    Google Scholar 

  • Gottlieb LD (1984) Genetics and morphological evolution in plants. Am Nat 123:681–709

    Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Gould SJ (1980) Is a new and general theory of evolution emerging? Paleobiology 6:119–130

    Google Scholar 

  • Gould SJ (1983) The hardening of the modern synthesis. In: Grene M (ed) Dimensions of Darwinism. Cambridge University Press, Cambridge

    Google Scholar 

  • Gould SJ (1988) Trends as changes in variance: a new slant on progress and directionality in evolution. J Paleont 62:319–329

    Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Gould SJ, Eldredge N (1993) Punctuated equilibrium comes of age. Nature 366:223–227

    PubMed  CAS  Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B 205:581–598

    PubMed  CAS  Google Scholar 

  • Goulson D, McGuire K, Munro EE et al (2009) Functional significance of the dark central floret of Daucus carota (Apiaceae) L.: is it an insect mimic? Plant Species Biol 24:77–82

    Google Scholar 

  • Grigg JW, Buckley LB (2013) Conservation of lizard thermal tolerances and body temperatures across evolutionary history and geography. Biol Lett 9:20121056

    Google Scholar 

  • Haig D (2007) Weismann rules! OK? Epigenetics and the Lamarckian temptation. Biol Phil 22:415–428

    Google Scholar 

  • Haldane JBS (1932a) The causes of evolution. Longmans, Green, New York

    Google Scholar 

  • Haldane JBS (1932b) The time of action of genes and its bearing on some evolutionary problems. Am Nat 66:5–24

    Google Scholar 

  • Hamburger V (1980) Evolutionary theory in Germany: a comment. In: Mayr E, Provine WB (eds) The evolutionary synthesis: perspectives on the unification of biology. Harvard University Press, Cambridge, Massachusetts, pp 303–308

    Google Scholar 

  • Hartl DL, Taubes CH (2008) Towards a theory of evolutionary adaptation. Genetica 102(103):525–533

    Google Scholar 

  • Heberer E (ed) (1943) Die Evolution der Organismen. Ergebnisse und Probleme der Abstammungsgeschichte, Gustav Fischer, Jena

    Google Scholar 

  • Holeski LM, Jander G, Agrawal AA (2012) Transgenerational defense induction and epigenetic inheritance in plants. Trends Ecol Evol 27:618–626

    PubMed  Google Scholar 

  • Holt RD, Gaines MS (1992) Analysis of adaptation in heterogeneous landscapes—implications for the evolution of fundamental niches. Evol Ecol 6:433–447

    Google Scholar 

  • Houle D (1998) How should we explain the variation in the genetic variance of traits? Genetica 102(103):241–253

    PubMed  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Hunt G (2010) Evolution in fossil lineages: paleontology and the origin of species. Am Nat 176(SupplS1):S61–S76

    Google Scholar 

  • Huxley J (ed) (1940) The new systematics. Clarendon Press, Oxford

    Google Scholar 

  • Huxley JS (1942) Evolution, the modern synthesis. Allen and Unwin, London

    Google Scholar 

  • Innocenti P, Morrow EH, Dowling DK (2011) Experimental evidence supports a sex-specific selective sieve in mitochondrial genome evolution. Science 332:845–848

    PubMed  CAS  Google Scholar 

  • Jablonka E, Lamb MJ (1995) Epigenetic inheritance and evolution: the Lamarckian dimension. Oxford University Press, Oxford

    Google Scholar 

  • Jablonka E, Lamb MJ (2005) Evolution in four dimensions. MIT Press, Cambridge, Masachusetts

    Google Scholar 

  • Jablonka E, Lamb MJ (2010) Transgenerational epigenetic inheritance. In: Pigliucci M, Müller G (eds) Evolution: the extended synthesis. MIT Press, Cambridge, Massachusetts, pp 137–174

    Google Scholar 

  • Jablonski D (2008) Species selection: theory and data. Annu Rev Ecol Evol Syst 39:501–524

    Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318

    PubMed  CAS  Google Scholar 

  • Kellermann VM, van Heerwaarden B, Hoffmann AA, Sgró CM (2006) Very low additive genetic variance and evolutionary potential in multiple populations of two rainforest Drosophila species. Evolution 60:1104–1108

    PubMed  Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626

    PubMed  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • King JL, Jukes TH (1969) Non-darwinian evolution. Science 164:788–798

    PubMed  CAS  Google Scholar 

  • King M-C, Wilson AC (1975) Evolution at two levels: molecular similarities and biological differences between humans and chimpanzees. Science 188:107–116

    PubMed  CAS  Google Scholar 

  • Kingsolver JG, Hoekstra HE, Hoekstra JM et al (2001) The strength of phenotypic selection in natural populations. Am Nat 157:245–261

    PubMed  CAS  Google Scholar 

  • Kirkpatrick M (2009) Patterns of quantitative genetic variation in multiple dimensions. Genetica 136:271–284

    PubMed  Google Scholar 

  • Kirkpatrick M, Barton NH (1997) Evolution of a species’ range. Am Nat 150:1–23

    PubMed  CAS  Google Scholar 

  • Kirschner MW, Gerhart JC (2005) The plausibility of life: resolving Darwin’s dilemma. Yale University Press, New Haven, Connecticut

    Google Scholar 

  • Kirschner MW, Gerhart JC (2010) Facilitated variation. In: Pigliucci M, Müller G (eds) Evolution: the extended synthesis. MIT Press, Cambridge, Massachusetts, pp 253–280

    Google Scholar 

  • Koonin EV, Wolf YI (2009) Is evolution Darwinian and/or Lamarckian? Biol Direct 4:42

    PubMed Central  PubMed  Google Scholar 

  • Kutschera U, Niklas KJ (2004) The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91:255–276

    PubMed  CAS  Google Scholar 

  • Lande R (2009) Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J Evol Biol 22:1435–1446

    PubMed  Google Scholar 

  • Ledón-Rettig CC, Pfennig DW, Crespi EJ (2010) Diet and hormonal manipulation reveal cryptic genetic variation: implications for the evolution of novel feeding strategies. Proc R Soc B 277:3569–3578

    PubMed Central  PubMed  Google Scholar 

  • Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122:1–25

    Google Scholar 

  • Levinton JS (2001) Genetics, paleontology, and macroevolution, 2d edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Levinton JS, Futuyma DJ (1982) Macroevolution: pattern and process introduction and background. Evolution 36:425–473

    Google Scholar 

  • Lewontin RC (1974) The genetic basis of evolutionary change. Columbia University Press, New York

    Google Scholar 

  • Lewontin RC (1977) Caricature of Darwinism. Nature 266:283–284 (Book review of R. Dawkins, The selfish gene.)

    Google Scholar 

  • Lewontin RC (1979) Sociobiology as an adaptationist program. Behav Sci 24:5–14

    PubMed  CAS  Google Scholar 

  • Lieberman BS, Dudgeon (1995) An evaluation of stabilizing selection as an explanation for stasis. Palaeogeogr, Palaeoclimatol Palaeoecol 127:229–238

    Google Scholar 

  • Love AC (2003) Evolutionary morphology, innovation, and the synthesis of evolutionary and developmental biology. Biol Phil 18:309–345

    Google Scholar 

  • Love AC (2009) Marine invertebrates, model organisms and the modern synthesis: epistemic values, evo-devo, and exclusion. Theor Biosci 128:19–42

    Google Scholar 

  • Love AC, Raff RA (2003) Knowing your ancestors: themes in the history of evo-devo. Evol Devel 5:327–330

    Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland, Massachusetts

    Google Scholar 

  • Macnair M (1997) The evolution of plants in metal-contaminated environments. In: Bijlsma R, Loeschcke V (eds) Environmental stress, adaptation and evolution. Birkhäuser, Basel, pp 3–24

    Google Scholar 

  • Magnuson-Ford K, Otto SP (2012) Linking the investigations of character evolution and species diversification. Am Nat 180:225–245

    PubMed  Google Scholar 

  • Malmgren BA, Berggren WA, Lohmann GP (1983) Evidence for punctuated gradualism in the Late Neogene Globorotalia tumida lineage of planktonic Foraminifera. Paleobiology 9:377–389

    Google Scholar 

  • Marroig G, Cheverud JM (2005) Size as a line of least resistance: diet and adaptive morphological radiation in New World monkeys. Evolution 59:1128–1142

    PubMed  Google Scholar 

  • Martin M, Orgogozo V (2013) The loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation. Evolution 67:1235–1250

    PubMed  CAS  Google Scholar 

  • Masel J, King OD, Maughan H (2007) The loss of adaptive plasticity during long periods of environmental stasis. Am Nat 169:38–46

    Google Scholar 

  • Mather K (1955) Response to selection: synthesis. Cold Spring Harbor Symp Quant Biol 20:1128–1142

    Google Scholar 

  • Mattila TM, Bokma F (2008) Extant mammal body masses suggest punctuated equilibrium. Proc R Soc B 275:2195–2199

    PubMed Central  PubMed  Google Scholar 

  • Maynard Smith J (1966) Sympatric speciation. Am Nat 100:637–650

    Google Scholar 

  • Maynard Smith J (1978) Optimization theory in evolution. Annu Rev Ecol Syst 9:31–56

    Google Scholar 

  • Maynard Smith J, Burian R, Kaufman S et al (1985) Developmental constraints and evolution. Quart Rev Biol 60:265–287

    Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Mayr E (1954) Change of genetic environment and evolution. In: Huxley J, Hardy AC, Ford EB (eds) Evolution as a process, pp 157–180. Allen and Unwin, London. (Reprinted in Mayr E, Evolution and the diversity of life, pp 188–210, Harvard University Press, 1976.)

    Google Scholar 

  • Mayr E (1960) The emergence of evolutionary novelties. In: Tax S (ed) The evolution of life. University of Chicago Press, Chicago, pp 157–180

    Google Scholar 

  • Mayr E (1961) Cause and effect in biology. Science 134:1501–1506

    PubMed  CAS  Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Mayr E (1976) Evolution and the diversity of life: selected essays. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Mayr E (1982) The growth of biological thought. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Mayr E (1993) What was the evolutionary synthesis? Trends Ecol Evol 8:31–34

    PubMed  CAS  Google Scholar 

  • Mayr E, Provine WB (eds) (1980) The evolutionary synthesis: perspectives on the unification of biology. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Mc Guigan K, Nishimura N, Currey M et al (2010) Cryptic genetic variation and body size evolution in threespine stickleback. Evolution 65:1203–1211

    Google Scholar 

  • McCauley DE (1993) Evolution in metapopulations with frequent local extinction and recolonization. Oxford Surv Evol Biol 9:109–134. Oxford University Press, Oxford

    Google Scholar 

  • McShea DW (1994) Mechanisms of large-scale evolutionary trends. Evolution 48:1747–1763

    Google Scholar 

  • Minelli A (2010) Evolutionary developmental biology does not offer a significant challenge to the neo-Darwinian paradigm. In: Ayala FJ, Arp R (eds) Contemporary debates in philosophy of biology. Wiley, Chichester, pp 213–226

    Google Scholar 

  • Mitter C, Farrell BD, Wiegmann B (1988) The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification? Am Nat 132:107–128

    Google Scholar 

  • Moczek AP (2012) The nature of nurture and the future of evodevo: toward a theory of developmental evolution. Integr Comp Biol 52:108–119

    PubMed  Google Scholar 

  • Moczek AP, Sultan S, Foster S et al (2011) The role of developmental plasticity in evolutionary innovation. Proc R Soc B 278:2705–2713

    PubMed Central  PubMed  Google Scholar 

  • Monroe MJ, Bokma F (2009) Do speciation rates drive rates of body size evolution in mammals? Am Nat 174:912–918

    PubMed  Google Scholar 

  • Moran NA (1992) The evolutionary maintenance of alternative phenotypes. Am Nat 139:971–989

    Google Scholar 

  • Müller G (2007) Evo-devo: extending the evolutionary synthesis. Nature Rev Genet 8:943–949

    PubMed  Google Scholar 

  • Müller G (2010) Epigenetic innovation. In: Pigliucci M, Müller G (eds) Evolution: the extended synthesis. MIT Press, Cambridge, Massachusetts, pp 307–332

    Google Scholar 

  • Murray JD (1981) A pre-pattern formation mechanism for animal coat markings. J Theor Biol 88:161–199

    Google Scholar 

  • Newman SA (2010) Dynamic patterning modules. In: Pigliucci M, Müller G (eds) Evolution: the extended synthesis. MIT Press, Cambridge, Massachusetts, pp 281–306

    Google Scholar 

  • Nosil P (2012) Ecological speciation. Oxford University Press, Oxford

    Google Scholar 

  • Orr HA (1999) An evolutionary dead end? (Review of Phenotypic evolution, by CD Schlichting and M Pigliucci). Science 285:343–344

    CAS  Google Scholar 

  • Orr HA, Coyne JA (1992) The genetics of adaptation revisited. Am Nat 140:725–774

    PubMed  CAS  Google Scholar 

  • Oster G, Odell G, Alberch P (1980) Mechanics, morphogenesis, and evolution. Lect Math Life Sci 13:165–255

    Google Scholar 

  • Pavlicev M, Wagner GP (2012) A model of developmental evolution: selection, pleiotropy and compensation. Trends Ecol Evol 27:316–322

    PubMed  Google Scholar 

  • Pfennig DW, Wund MA, Snell-Rood EC et al (2010) Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol 25:459–467

    PubMed  Google Scholar 

  • Pigliucci M (2001) Phenotypic plasticity: beyond nature and nurture. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Pigliucci M, Müller G (eds) (2010) Evolution: the extended synthesis. MIT Press, Cambridge, Massachusetts

    Google Scholar 

  • Price TD, Qvarnström A, Irwin DE (2003) The role of phenotypic plasticity in driving genetic evolution. Proc R Soc Lond B 270:1433–1440

    Google Scholar 

  • Provine WB (1986) Sewall Wright and evolutionary biology. University of Chicago Press, Chicago

    Google Scholar 

  • Provine WB (2001) The origins of theoretical population genetics, 2nd edn. University of Chicago Press, Chicago

    Google Scholar 

  • Rabosky D (2010) Extinction rates should not be estimated from molecular phylogenies. Evolution 64:1816–1824

    PubMed  Google Scholar 

  • Rabosky DL (2012) Positive correlation between diversification rates and phenotypic evolvability can mimic punctuated equilibrium on molecular phylogenies. Evolution 66:2622–2627

    PubMed  Google Scholar 

  • Ramsey J (2011) Polyploidy and ecological adaptation in wild yarrow. Proc Nat Acad Sci USA 108:7096–7101

    PubMed Central  PubMed  CAS  Google Scholar 

  • Raup DM, Gould SJ, Schopf TJM et al (1973) Stochastic models of phylogeny and the evolution of diversity. J Geol 81:525–542

    Google Scholar 

  • Reif W-E, Junker T, Hoßfeld U (2000) The synthetic theory of evolution: general problems and the German contribution to the synthesis. Theor Biosci 119:41–91

    Google Scholar 

  • Rensch B (1939) Typen der Artbildung. Biol Rev 14:180–222

    Google Scholar 

  • Rensch B (1943) Die paläontologischen Evolutionsregeln in zoologischer Betrachtung. Biologia Generalis 17:1–55

    Google Scholar 

  • Rensch B (1947) Neuere Probleme der Abstammungslehre. Enke, Stuttgart

    Google Scholar 

  • Rensch B (1959) Evolution above the species level. Wiley, New York

    Google Scholar 

  • Ricklefs RE (1980) Phyletic gradualism versus punctuated equilibrium: applicability of neontological data. Paleobiology 6:271–275

    Google Scholar 

  • Riedl R (1978) Order in living organisms: a systems analysis of evolution. Wiley, New York

    Google Scholar 

  • Robson GC, Richards OW (1936) The variation of animals in nature. Longmans, Green, London

    Google Scholar 

  • Rovito SM (2010) Lineage divergence and speciation in the web-toed salamanders (Plethodontidae: Hydromantes) of the Sierra Nevada. California Mol Ecol 19:4554–4571

    Google Scholar 

  • Schindewolf OH (1950) Grundfragen der Paläontologie. Schweitzerbart, Stuttgart

    Google Scholar 

  • Schlichting CD, Pigliucci M (1998) Phenotypic evolution: a reaction norm perspective. Sinauer, Sunderland, Massachusetts

    Google Scholar 

  • Schluter D (1996) Adaptive radiation along genetic lines of least resistance. Evolution 50:1766–1774

    Google Scholar 

  • Schmalhausen II (1949) Factors of evolution. Blakiston, Philadelphia

    Google Scholar 

  • Schwander T, Leimar O (2011) Genes as leaders and followers in evolution. Trends Ecol Evol 26:143–151

    PubMed  Google Scholar 

  • Schwenk K, Wagner GP (2004) The relativism of constraints on phenotypic evolution. In: Pigliucci M, Preston K (eds) Phenotypic integration: studying the ecology and evolution of complex phenotypes. Oxford University Press, Oxford, pp 390–408

    Google Scholar 

  • Scoville AG, Pfrender ME (2010) Phenotypic plasticity facilitates recurrent rapid adaptation to introduced predators. Proc Nat Acad Sci USA 107:4260–4263

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sepkoski JJ Jr (1996) Competition in macroevolution: the double wedge revisited. In: Jablonski D, Erwin DH, Lipps J (eds) Evolutionary paleobiology. University of Chicago Press, Chicago, pp 211–255

    Google Scholar 

  • Sheppard PM, Turner JRG, Brown KS et al (1985) Genetics and the evolution of Müllerian mimicry in Heliconius butterflies. Phil Trans R Soc Lond B 308:433–613

    Google Scholar 

  • Simpson GG (1944) Tempo and mode in evolution. Columbia University Press, New York

    Google Scholar 

  • Simpson GG (1949) Essay-review of recent works on evolutionary theory by Rensch, Zimmermann, and Schindewolf. Evolution 3:178–184

    PubMed  CAS  Google Scholar 

  • Simpson GG (1953a) The Baldwin effect. Evolution 7:110–117

    Google Scholar 

  • Simpson GG (1953b) The major features of evolution. Columbia University Press, New York

    Google Scholar 

  • Slatkin M (1977) Gene flow and genetic drift in a species subject to frequent local extinctions. Theor Pop Biol 12:253–262

    CAS  Google Scholar 

  • Slatkin M (1996) In defense of founder-flush theories of speciation. Am Nat 147:493–505

    Google Scholar 

  • Slatkin M (2009) Epigenetic inheritance and the missing heritability problem. Genetics 182:845–850

    PubMed Central  PubMed  Google Scholar 

  • Smocovitis VB (1996) Unifying biology: the evolutionary synthesis and evolutionary biology. Princeton University Press, Princeton

    Google Scholar 

  • Smocovitis VB (2010) “Where are we?” Historical reflections on evolutionary biology in the twentieth century. In: Bell MA, Futuyma DJ, Eanes WF, Levinton JS (eds) Evolution since Darwin: the first 150 years. Sinauer, Sunderland, Massachusetts, pp 49–58

    Google Scholar 

  • Snell-Rood EC, Van Dyken JD, Cruikshank T et al (2010) Toward a population genetic framework of developmental evolution: the costs, limits, and consequences of phenotypic plasticity. BioEssays 32:71–81

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stanley SM (1973) An explanation for Cope’s rule. Evolution 27:1–26

    Google Scholar 

  • Stanley SM (1975) A theory of evolution above the species level. Proc Nat Acad Sci USA 72:646–650

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stebbins GL (1974) Flowering plants: evolution above the species level. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Stebbins GL, Ayala FJ (1981) Is a new evolutionary synthesis necessary? Science 213:967–971

    PubMed  CAS  Google Scholar 

  • Sterelny K (2000) Development, evolution, and adaptation. Phil Sci (Proc) 67:S369–S387

    Google Scholar 

  • Stern DL (2011) Evolution, development, and the predictable genome. Roberts, Greenwood Village, Colorado

    Google Scholar 

  • Stolfus A (2006) Mutationism and the dual causation of evolutionary change. Evol Develop 8:304–317

    Google Scholar 

  • Storz JF, Scott GR, Cheviron ZA (2010) Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. J Exp Biol 213:4125–4136

    PubMed Central  PubMed  Google Scholar 

  • Strotz LC, Allen AP (2013) Assessing the role of cladogenesis in macroevolution by integrating fossil and molecular evidence. Proc Nat Acad Sci USA 110:2904–2909

    PubMed Central  PubMed  CAS  Google Scholar 

  • Suzuki Y, Nijhout HF (2006) Evolution of a polyphenism by genetic accommodation. Science 311:650–652

    PubMed  CAS  Google Scholar 

  • Templeton A (1982) Why read Goldschmidt? Paleobiology 8:474–481

    Google Scholar 

  • Thompson DW (1917) On growth and form. Cambridge University Press, Cambridge

    Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Google Scholar 

  • Thompson JN (2013) Relentless evolution. University of Chicago Press, Chicago

    Google Scholar 

  • True JR, Carroll SB (2002) Gene co-option in physiological and morphological evolution. Annu Rev Cell Devel Biol 18:53–80

    CAS  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Phil Trans R Soc Lond B 237:37–72

    Google Scholar 

  • Uyeda JC, Hansen TF, Arnold SJ, Pienaar J (2011) The million-year wait for evolutionary bursts. Proc Nat Acad Sci USA 108:15908–15913

    PubMed Central  PubMed  CAS  Google Scholar 

  • Venditti C, Pagel M (2010) Speciation as an active force in promoting genetic evolution. Trends Ecol Evol 25:14–20

    PubMed  Google Scholar 

  • Voss SR, Smith JJ (2005) Evolution of salamander life cycles: a major-effect quantitative trait locus contributes to discrete and continuous variation for metamorphic timing. Genetics 170:275–281

    PubMed Central  PubMed  CAS  Google Scholar 

  • Waddington CH (1953) Genetic assimilation of an acquired character. Evolution 7:118–126

    Google Scholar 

  • Waddington CH (1957) The strategy of the genes. Allen and Unwin, London

    Google Scholar 

  • Wade MJ, Beeman RW (1994) The population dynamics of maternal-effect and selfish genes. Genetics 138:1309–1314

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wade MJ, Goodnight CJ (2000) The ongoing synthesis: a reply to Coyne et al. Evolution 54:317–324

    Google Scholar 

  • Wagner GP (2010) Evolvability: the missing piece in the neo-Darwinian synthesis. In: Bell MA, Futuyma DJ, Eanes WF, Levinton JS (eds) Evolution since Darwin: the first 150 years, pp 197–213. Sinauer, Sunderland, Massachusetts

    Google Scholar 

  • Wagner GP, Pavlicev M, Cheverud JM (2007) The road to modularity. Nature Rev Genet 8:921–931

    PubMed  CAS  Google Scholar 

  • Wake DB (2009) What salamanders have taught us about evolution. Annu Rev Ecol Evol Syst 40:333–352

    Google Scholar 

  • Walsh B, Blows MW (2009) Abundant genetic variation + strong selection = multivariate genetic constraints: a geometric view of adaptation. Annu Rev Ecol Evol Syst 40:41–59

    Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539

    Google Scholar 

  • Williams GC (1992) Natural selection: domains, levels, and challenges. Oxford University Press, New York

    Google Scholar 

  • Winsor MP (2006) The creation of the essentialism story: an exercise in metahistory. Hist Phil Life Sci 28:149–174

    Google Scholar 

  • Wolf JB, Brodie ED Jr, Moore AJ (1999) The role of maternal and paternal effects in the evolution of parental quality by sexual selection. J Evol Biol 12:1157–1167

    Google Scholar 

  • Wood TE, Burke JM, Rieseberg LH (2005) Parallel genotypic adaptation: when evolution repeats itself. Genetica 123:157–170

    PubMed Central  PubMed  Google Scholar 

  • Wright S (1932) The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proc 6th Int Cong Genet 1:356–366

    Google Scholar 

  • Wund MA (2012) Assessing the impact of phenotypic plasticity on evolution. Integr Comp Biol 52:5–18

    PubMed  Google Scholar 

  • Wund MA, Valeney S, Wood S, Baker JA (2012) Ancestral plasticity and allometry in threespine stickleback reveal phenotypes associated with derived, freshwater ecotypes. Biol J Linn Soc 105:573–583

    Google Scholar 

  • Yeung CKL, Tsai PW, Chesser RT et al (2011) Testing founder effect speciation: divergence population genetics of the spoonbills Platalea regia and Pl. minor (Threskiornithidae: Aves). Mol Biol Evol 28:473–482

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to Michael Bell for calling my attention to a passage in The Origin of Species in which Darwin seems to foreshadow punctuated equilibria, to Alan Love for enlightening discussion of the relationship of developmental biology to the Evolutionary Synthesis, and to two anonymous reviewers for suggestions and queries. I wish also to thank members of the several audiences to whom I have presented some of these thoughts, whose questions and criticisms have impelled me to learn more and (I hope) to think more carefully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas J. Futuyma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Futuyma, D.J. (2015). Can Modern Evolutionary Theory Explain Macroevolution?. In: Serrelli, E., Gontier, N. (eds) Macroevolution. Interdisciplinary Evolution Research, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-15045-1_2

Download citation

Publish with us

Policies and ethics