Skip to main content

Characterization of Reachable Attractors Using Petri Net Unfoldings

  • Conference paper
Computational Methods in Systems Biology (CMSB 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8859))

Included in the following conference series:

Abstract

Attractors of network dynamics represent the long-term behaviours of the modelled system. Their characterization is therefore crucial for understanding the response and differentiation capabilities of a dynamical system. In the scope of qualitative models of interaction networks, the computation of attractors reachable from a given state of the network faces combinatorial issues due to the state space explosion.

In this paper, we present a new algorithm that exploits the concurrency between transitions of parallel acting components in order to reduce the search space. The algorithm relies on Petri net unfoldings that can be used to compute a compact representation of the dynamics. We illustrate the applicability of the algorithm with Petri net models of cell signalling and regulation networks, Boolean and multi-valued. The proposed approach aims at being complementary to existing methods for deriving the attractors of Boolean models, while being generic since it applies to any safe Petri net.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aracena, J.: Maximum number of fixed points in regulatory boolean networks. Bull. Math. Biol. 70(5), 1398–1409 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baldan, P., Bruni, A., Corradini, A., König, B., Rodríguez, C., Schwoon, S.: Efficient unfolding of contextual Petri nets. TCS 449, 2–22 (2012)

    Article  MATH  Google Scholar 

  3. Berntenis, N., Ebeling, M.: Detection of attractors of large boolean networks via exhaustive enumeration of appropriate subspaces of the state space. BMC Bioinformatics 14(1), 361 (2013)

    Article  Google Scholar 

  4. Casu, G., Pinna, G.M.: Flow unfolding of safe nets. In: Petri Nets (2014)

    Google Scholar 

  5. Chaouiya, C., Naldi, A., Remy, E., Thieffry, D.: Petri net representation of multi-valued logical regulatory graphs. Natural Computing 10(2), 727–750 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Esparza, J., Heljanko, K.: Unfoldings – A Partial-Order Approach to Model Checking. Springer (2008)

    Google Scholar 

  8. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding algorithm. FMSD 20, 285–310 (2002)

    MATH  Google Scholar 

  9. Esparza, J., Schröter, C.: Unfolding based algorithms for the reachability problem. Fund. Inf. 47(3-4), 231–245 (2001)

    MATH  Google Scholar 

  10. Faure, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14), 124–131 (2006)

    Article  Google Scholar 

  11. Garg, A., Di Cara, A., Xenarios, I., Mendoza, L., De Micheli, G.: Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics 24(17), 1917–1925 (2008)

    Article  Google Scholar 

  12. Hinkelmann, F., Brandon, M., Guang, B., McNeill, R., Blekherman, G., Veliz-Cuba, A., Laubenbacher, R.: ADAM: Analysis of discrete models of biological systems using computer algebra. BMC Bioinformatics 12(1), 295 (2011)

    Article  Google Scholar 

  13. Khomenko, V.: Punf, http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/

  14. Khomenko, V., Koutny, M., Vogler, W.: Canonical prefixes of Petri net unfoldings. Acta Inf. 40(2), 95–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khomenko, V., Mokhov, A.: An algorithm for direct construction of complete merged processes. In: Kristensen, L.M., Petrucci, L. (eds.) PETRI NETS 2011. LNCS, vol. 6709, pp. 89–108. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. McMillan, K.L.: Using unfoldings to avoid the state explosion problem inthe verification of asynchronous circuits. In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 164–177. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  17. Melliti, T., Noual, M., Regnault, D., Sené, S., Sobieraj, J.: Full characterization of attractors for two intersected asynchronous boolean automata cycles. CoRR, abs/1310.5747 (2013)

    Google Scholar 

  18. Murata, T.: Petri nets: Properties, analysis and applications. Proc. of the IEEE 77(4), 541–580 (1989)

    Article  Google Scholar 

  19. Naldi, A., Berenguier, D.: Logical modelling of regulatory networks with GINsim. Biosystems 97(2), 134–139 (2009)

    Article  Google Scholar 

  20. Naldi, A., Thieffry, D., Chaouiya, C.: Decision diagrams for the representation and analysis of logical models of genetic networks. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 233–247. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Paulevé, L., Magnin, M., Roux, O.: Refining dynamics of gene regulatory networks in a stochastic π-calculus framework. In: Priami, C., Back, R.-J., Petre, I., de Vink, E. (eds.) Transactions on Computational Systems Biology XIII. LNCS, vol. 6575, pp. 171–191. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Paulevé, L., Richard, A.: Topological Fixed Points in Boolean Networks. C. R. Acad. Sci. - Series I - Mathematics 348(15-16), 825–828 (2010)

    MATH  Google Scholar 

  23. Richard, A.: Positive circuits and maximal number of fixed points in discrete dynamical systems. Discrete Appl. Math. 157(15), 3281–3288 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Richard, A.: Negative circuits and sustained oscillations in asynchronous automata networks. Adv. in Appl. Math. 44(4), 378–392 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sahin, O., Frohlich, H., Lobke, C., Korf, U., Burmester, S., Majety, M., Mattern, J., Schupp, I., Chaouiya, C., Thieffry, D., Poustka, A., Wiemann, S., Beissbarth, T., Arlt, D.: Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance. BMC Systems Biology 3(1) (2009)

    Google Scholar 

  26. Schwoon, S.: Mole, http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/

  27. Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory networks – II. Immunity control in bacteriophage lambda. Bull. Math. Biol. 57, 277–297 (1995)

    MATH  Google Scholar 

  28. Weinstein, N., Mendoza, L.: A network model for the specification of vulval precursor cells and cell fusion control in caenorhabditis elegans. Frontiers in Genetics 4(112) (2013)

    Google Scholar 

  29. Zañudo, J.G.T., Albert, R.: An effective network reduction approach to find the dynamical repertoire of discrete dynamic networks. Chaos 23, 025111 (2013)

    Google Scholar 

  30. Zheng, D., Yang, G., Li, X., Wang, Z., Liu, F., He, L.: An efficient algorithm for computing attractors of synchronous and asynchronous boolean networks. PLoS ONE 8(4), e60593 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chatain, T., Haar, S., Jezequel, L., Paulevé, L., Schwoon, S. (2014). Characterization of Reachable Attractors Using Petri Net Unfoldings. In: Mendes, P., Dada, J.O., Smallbone, K. (eds) Computational Methods in Systems Biology. CMSB 2014. Lecture Notes in Computer Science(), vol 8859. Springer, Cham. https://doi.org/10.1007/978-3-319-12982-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12982-2_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12981-5

  • Online ISBN: 978-3-319-12982-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics