Skip to main content

Substrate Oxidation by Cytochrome P450 Enzymes

  • Chapter
  • First Online:
Cytochrome P450

Abstract

Cytochrome P450 enzymes catalyze a broad diversity of reactions, including well-established transformations such as carbon and nitrogen hydroxylation, heteroatom oxidation, double-bond epoxidation, aromatic “hydroxylation,” and, in the case of sterol biosynthetic enzymes, carbon–carbon bond cleavage. However, our expanding knowledge on microbial, plant, and insect P450 enzymes has led to the recognition of other reactions, including carbon–carbon bond formation in the coupling of aromatic rings and reactions that derive from cationic intermediates. All these reactions are catalyzed by the P450 ferryl porphyrin radical cation intermediate known as compound I, or in some cases by the ferric hydroperoxide anion that precedes compound I. The cytochrome P450 reactivity manifold is best viewed as one in which the enzyme generates transient radical intermediates that undergo radical recombination with either the iron-bound oxygen atom or other substrate radicals, fragmentation reactions that often involve carbon–carbon bond cleavage, or transfer of an electron to the P450 oxidizing species to produce cationic intermediates and cation-derived products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shimizu T, Hirano K, Takahashi M, Hatano M, Fujii-Kuriyama Y (1988) Site-directed mutagenesis of cytochrome P-450d: axial ligand and heme incorporation. Biochemistry 27:4138–4141

    CAS  PubMed  Google Scholar 

  2. Auclair K, Moënne-Loccoz P, Ortiz de Montellano PR (2001) Roles of the proximal heme thiolate ligand in cytochrome P450cam. J Am Chem Soc 123:4877–4885

    CAS  PubMed  Google Scholar 

  3. Yoshioka S, Takahashi S, Hori H, Ishimori K, Morishima I (2001) Proximal cysteine residue is essential for the enzymatic activities of cytochrome P450cam. Eur J Biochem 268:252–259

    CAS  PubMed  Google Scholar 

  4. Vatsis KP, Peng HM, Coon MJ (2004) Abolition of oxygenase function, retention of NADPH oxidase activity, and emergence of peroxidase activity upon replacement of the axial cysteine-436 ligand by histidine in cytochrome P450 2B4. Arch Biochem Biophys 434:128–138

    Google Scholar 

  5. Vatsis KP, Peng HM, Coon MJ (2002) Replacement of active-site cysteine-436 by serine converts cytochrome P450 2B4 into an NADPH oxidase with negligible monooxygenase activity. J Inorg Biochem 91:542–553

    CAS  PubMed  Google Scholar 

  6. Perera R, Sono M, Voegtle HL, Dawson JH (2011) Molecular basis for the inability of an oxygen atom donor ligand to replace the natural sulfur donor heme axial ligand in cytochrome P450 catalysis. Spectroscopic characterization of the Cys436Ser CYP2B4 mutant. Arch Biochem Biophys 507:119–125

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Murugan R, Mazumdar S (2005) Structure and redox properties of the haem centre in the C357M mutant of cytochrome P450cam. Chembiochem 6:1204–1211

    CAS  PubMed  Google Scholar 

  8. Sivaramakrishnan S, Ouellet H, Matsumura H, Guan S, Moënne-Loccoz P, Burlingame AL, Ortiz de Montellano PR (2012) Proximal ligand electron donation and reactivity of the cytochrome P450 ferric-peroxo anion. J Chem Soc 134:6673–6684

    CAS  Google Scholar 

  9. Aldag C, Gromov IA, García-Rubio L, von Koenig K, Schlichting L, Jaun B, Hilvert D (2009) Probing the role of the proximal heme ligand in cytochrome P450cam by recombinant incorporation of selenocysteine. Proc Natl Acad Sci U S A 106:5481–5486

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Yosca TH, Rittle J, Krest CM, Onderko EL, Silakov A, Calixto JC, Behan RK, Green MT (2013) Iron(IV)hydroxide pKa and the role of thiolate ligation in C–H bond activation by cytochrome P450. Science 342:825–829

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Behan RK, Hoffart LM, Stone KL, Krebs C, Green MT (2006) Evidence for basic ferryls in cytochromes P450. J Am Chem Soc 128:11471–11474

    CAS  PubMed  Google Scholar 

  12. Behan RK, Green MT (2006) On the status of ferryl protonation. J Inorg Biochem 100:448–459

    CAS  PubMed  Google Scholar 

  13. Galinato MGI, Spolitak T, Ballou DP, Lehnert N (2011) Elucidating the role of the proximal cysteine hydrogen bonding network in ferric cytochrome P450cam and corresponding mutants using magnetic circular dichroism spectroscopy. Biochemistry 50:1053–1069

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Brunel A, Wilson A, Henry L, Dorlet P, Santolini J (2011) The proximal hydrogen bond network modulates Bacillus subtilis nitric-oxide synthase electronic and structural properties. J Biol Chem 286:11997–12005

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Yoshioka S, Tosha T, Takahashi S, Ishimori K, Hori H, Morishima I (2002) Roles of the proximal hydrogen bonding network in cytochrome P450cam-catalyzed oxygenation. J Am Chem Soc 124:14571–14579

    CAS  PubMed  Google Scholar 

  16. Mak PJ, Yang Y, Sangchoul I, Waskell LA, Kincaid JR (2012) Experimental documentation of the structural consequences of hydrogen-bonding interactions to the proximal cysteine of a cytochrome P450. Angew Chem Int Ed Engl 51:10403–10407

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Higgins L, Bennett G, Shimoji M, Jones J (1998) Evaluation of cytochrome P450 mechanism and kinetics using kinetic deuterium isotope effects. Biochemistry 37:7039–7040

    CAS  PubMed  Google Scholar 

  18. Dowers TS, Jones JP (2006) Kinetic isotope effects implicate a single oxidant for cytochrome P450-mediated O-dealkylation, N-oxygenation, and aromatic hydroxylation of 6-methoxyquinoline. Drug Metab Dispos 34:1288–1290

    CAS  PubMed  Google Scholar 

  19. Imai M, Shimada H, Watanabe Y, Matsushima-Hibiya Y, Makino R, Koga H, Horiuchi T, Ishimura Y (1989) Uncoupling of the cytochrome P-450cam monooxygenase reaction by a single mutation, threonine-252 to alanine or valine: possible role of the hydroxy amino acid in oxygen activation. Proc Natl Acad Sci U S A 86:7823–7827

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Altarsha M, Benighaus T, Kumar D, Thiel W (2009) How is the reactivity of cytochrome P450cam affected by Thr252X mutation? A QM/MM study for X = serine, valine, alanine, glycine. J Am Chem Soc 131:4755–4763

    CAS  PubMed  Google Scholar 

  21. Madrona Y, Hollingsworth SA, Khan B, Poulos TL (2013) P450cin active site water: implications for substrate binding and solvent accessibility. Biochemistry 52:5039–5050

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Denisov IG, Grinkova YV, Baas BJ, Sligar SG (2006) The ferrous-dioxygen intermediate in human cytochrome P450 3A4. Substrate dependence of formation and decay kinetics. J Biol Chem 281:233313–23318

    Google Scholar 

  23. Grinkova YV, Denisov IG, McLean MA, Sligar SG (2013) Oxidase uncoupling in heme monooxygenases: human cytochrome P450 CYP3A4 in nanodiscs. Biochem Biophys Res Commun 430:1223–1227

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Locuson CW, Wienkers LC, Jones JP, Tracy TS (2007) CYP2C9 protein interactions with cytochrome b5: effects on the coupling of catalysis. Drug Metab Dispos 35:1174–1181

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Fruetel JA, Collins JR, Camper DL, Loew GH, Ortiz de Montellano PR (1992) Calculated and experimental absolute stereochemistry of the styrene and beta-methylstyrene epoxides formed by cytochrome P450cam. J Am Chem Soc 114:6987–6993

    CAS  Google Scholar 

  26. Groves JT, McClusky GA, White RE, Coon MJ (1978) Aliphatic hydroxylation by highly purified liver microsomal cytochrome P-450. Evidence for a carbon radical intermediate. Biochem Biophys Res Commun 81:154–160

    CAS  PubMed  Google Scholar 

  27. Krauser JA, Guengerich FP (2005) Cytochrome P450 3A4-catalyzed testosterone 6β-hydroxylation stereochemistry, kinetic deuterium isotope effects, and rate-limiting steps. J Biol Chem 280:19496–19506

    CAS  PubMed  Google Scholar 

  28. Kim KH, Isin EM, Yun CH, Kim DH, Guengerich F (2006) Kinetic deuterium isotope effects for 7-alkoxycoumarin O-dealkylation reactions catalyzed by human cytochromes P450 and in liver microsomes. FEBS J 273:2223–2231

    CAS  PubMed  Google Scholar 

  29. Rittle J, Green MT (2010) Cytochrome P450 compound I: capture, characterization, C–H bond activation kinetics. Science 330:933–937

    CAS  PubMed  Google Scholar 

  30. Wang X, Peter S, Kinne M, Hofrichter M, Groves JT (2012) Detection and kinetic characterization of a highly reactive heme-thiolate peroxygenase Compound I. J Am Chem Soc 134:12897–12900

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Peter S, Kinne M, Wang X, Ullrich R, Kayser G, Groves JT, Hofrichter M (2011) Selective hydroxylation of alkanes by an extracellular fungal peroxygenase. FEBS J 278:3667–3675

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Chun YJ, Shimada T, Sanchez-Ponce R, Martin MV, Lei L, Zhao B, Kelly SL, Waterman MR, Lamb DC, Guengerich FP (2007) Electron transport pathway for a Streptomyces cytochrome P450. J Biol Chem 282:17486–17500

    CAS  PubMed  Google Scholar 

  33. Kumar D, de Visser SP, Shaik S (2003) How does product isotope effect prove the operation of a two-state “rebound” mechanism in C–H hydroxylation by cytochrome P450? J Am Chem Soc 125:13024–13025

    CAS  PubMed  Google Scholar 

  34. Kumar D, de Visser SP, Sharma PK, Cohen S, Shaik S (2004) Radical clock substrates, their C–H hydroxylation mechanism by cytochrome P450, other reactivity patterns: what does theory reveal about the clocks’ behavior? J Am Chem Soc 126:1907–1920

    CAS  PubMed  Google Scholar 

  35. Iyer KR, Jones JP, Darbyshire JF, Trager WF (1997) Intramolecular isotope effects for benzylic hydroxylation of isomeric xylenes and 4,4-dimethylbiphenyl by cytochrome P450: relationship between distance of methyl groups and masking of the intrinsic isotope effect. Biochemistry 36:7136–7143

    CAS  PubMed  Google Scholar 

  36. Harrelson JP, Henne KR, Alonso DOV, Nelson SD (2007) A comparison of substrate dynamics in human CYP2E1 and CYP2A6. Biochem Biophys Res Commun 352:843–849

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Audergon C, Iyer KR, Jones JP, Darbyshire JF, Trager WF (1999) Experimental and theoretical study of the effect of active-site constrained substrate motion on the magnitude of the observed intramolecular isotope effect for the P450 101 catalyzed benzylic hydroxylation of isomeric xylenes and 4,4’-dimethylbiphenyl. J Am Chem Soc 121:41–47

    CAS  Google Scholar 

  38. Harrelson JP, Atkins WM, Nelson SD (2008) Multiple-ligand binding in CYP2A6: probing mechanisms of cytochrome P450 cooperativity by assessing substrate dynamics. Biochemistry 47:2978–2988

    CAS  PubMed  Google Scholar 

  39. Gelb MH, Heimbrook DC, Malkönen P, Sligar SG (1982) Stereochemistry and deuterium isotope effects in camphor hydroxylation by the cytochrome P450cam monooxygenase system. Biochemistry 21:370–377

    CAS  PubMed  Google Scholar 

  40. Fourneron JD, Archelas A, Furstoss R (1989) Microbial transformations. 10. Evidence for a carbon-radial intermediate in the biohydroxylations achieved by the fungus Beauveria sulfurescens. J Org Chem 54:2478–2483

    CAS  Google Scholar 

  41. White RE, Miller JP, Favreau LV, Bhattacharyaa A (1986) Stereochemical dynamics of aliphatic hydroxylation by cytochrome P-450. J Am Chem Soc 108:6024–6031

    CAS  PubMed  Google Scholar 

  42. Bergstrom S, Lindstredt S, Samuelson B, Corey EJ, Gregoriou GA (1958) The stereochemistry of 7α-hydroxylation in the biosynthesis of cholic acid from cholesterol. J Am Chem Soc 80:2337–2338

    CAS  Google Scholar 

  43. Corey EJ, Gregoriou GA, Peterson DH (1958) The stereochemistry of 11α-hydroxylation of steroids. J Am Chem Soc 80:2338–2338

    CAS  Google Scholar 

  44. Fretz H, Woggon WD, Voges R (1989) The allylic oxidation of geraniol catalyzed by cytochrome P450Cath, proceeding with retention of configuration. Helv Chim Acta 72:391–400

    CAS  Google Scholar 

  45. Shapiro S, Piper JU, Caspi E (1982) Steric course of hydroxylation at primary carbon atoms: biosynthesis of l-octanol from (1R)- and (lS)-[1–3H,2H,1H; 1–14C]octane by rat liver microsomes. J Am Chem Soc 104:2301–2305

    CAS  Google Scholar 

  46. Krauser JA, Guengerich FP (2005) Cytochrome P450 3A4-catalyzed testosterone 6β-hydroxylation stereochemistry, kinetic deuterium isotope effects, and rate-limiting steps. J Biol Chem 280:19496–10506

    CAS  PubMed  Google Scholar 

  47. Groves JT, Subramanian DV (1984) Hydroxylation by cytochrome P-450 and metalloporphyrin models. Evidence for allylic rearrangement. J Am Chem Soc 106:2177–2181

    CAS  Google Scholar 

  48. Tanaka K, Kurihara N, Nakajima M (1979) Oxidative metabolism of tetrachlorocyclohexenes, pentachlorocyclohexenes, and hexachlorocyclohexenes with microsomes from rat liver and house fly abdomen. Pestic Biochem Physiol 10:79–95

    CAS  Google Scholar 

  49. Oliw EH, Brodowsky ID, Hörnsten L, Hamberg M (1993) Bis-allylic hydroxylation of polyunsaturated fatty acids by hepatic monooxygenases and its relation to the enzymatic and nonenzymatic formation of conjugated hydroxy fatty acids. Arch Biochem Biophys 300:434–439

    CAS  PubMed  Google Scholar 

  50. Hefner J, Rubenstein SM, Ketchum REB, Gibson DM, Williams RM, Croteau R (1996) Cytochrome P450-catalyzed hydroxylation of taxa-4(5),11(12)-diene to taxa-(20),11(12)-dien-5α-ol: the first oxygenation step in taxol biosynthesis. Chem Biol 3:479–489

    CAS  PubMed  Google Scholar 

  51. Kamdem LK, Flockhart DA, Desta Z (2011) In vitro cytochrome P450-mediated metabolism of exemestane. Drug Metab Dispos 39:98–105

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Barriuso J, Nguyen DT, Li JWH, Roberts JN, MacNevin G, Chaytor JL, Marcus SL, Vederas JC, Ro DK (2011) Double oxidation of the cyclic nonaketide dihydromonacolin L to monacolin J by a single cytochrome P450 monooxygenase, LovA. J Am Chem Soc 133:8078–8081

    CAS  PubMed  Google Scholar 

  53. McClanahan RH, Huitric AC, Pearson PG, Desper JC, Nelson SD (1988) Evidence for a cytochrome P450 catalyzed allylic rearrangement with double bond topomerization. J Am Chem Soc 110:1979–1981

    CAS  Google Scholar 

  54. Ortiz de Montellano PR, Stearns RA (1987) Timing of the radical recombination step in cytochrome P-450 catalysis with ring-strained probes. J Am Chem Soc 109:3415–3420

    CAS  Google Scholar 

  55. Houghton JD, Beddows SE, Suckling KE, Brown L, Suckling CJ (1986) 5α,6α-Methanocholestan-3β-ol as a probe of the mechanism of action of cholesterol 7α-hydroxylase. Tetrahedron Lett 27:4655–4658

    CAS  Google Scholar 

  56. Bowry VW, Ingold KU (1991) A radical clock investigation of microsomal cytochrome P-450 hydroxylation of hydrocarbons. Rate of oxygen rebound. J Am Chem Soc 113:5699–5707

    CAS  Google Scholar 

  57. Newcomb M, Toy PH (2000) Hypersensitive radical probes and the mechanisms of cytochrome P450-catalyzed hydroxylation reactions. Acc Chem Res 33:449–455

    CAS  PubMed  Google Scholar 

  58. Atkinson JK, Ingold KU (1993) Cytochrome P450 hydroxylation of hydrocarbons: variation in the rate of oxygen rebound using cyclopropyl radical clocks including two new ultrafast probes. Biochemistry 32:9209–9214

    CAS  PubMed  Google Scholar 

  59. Atkinson JK, Hollenberg PF, Ingold KU, Johnson CC, Le Tadic MH, Newcomb M, Putt DA (1994) Cytochrome P450-catalyzed hydroxylation of hydrocarbons: kinetic deuterium isotope effects for the hydroxylation of an ultrafast radical clock. Biochemistry 33:10630–10637

    CAS  PubMed  Google Scholar 

  60. Newcomb M, Le Tadic MH, Putt DA, Hollenberg PF (1995) An incredibly fast apparent oxygen rebound rate constant for hydrocarbon hydroxylation by cytochrome P-450 enzymes. J Am Chem Soc 117:3312–3313

    CAS  Google Scholar 

  61. Newcomb M, Le Tadic-Biadatti MH, Chestney DL, Roberts ES, Hollenberg PF (1995) A nonsynchronous concerted mechanism for cytochrome P450 catalyzed hydroxylation. J Am Chem Soc 117:12085–12091

    CAS  Google Scholar 

  62. Ortiz de Montellano PR (2010) Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem Rev 110:932–948

    PubMed Central  CAS  PubMed  Google Scholar 

  63. He X, Ortiz de Montellano PR (2004) Radical rebound mechanism in cytochrome P450-catalyzed hydroxylation of the multifaceted radical clocks α- and β-thujone. J Biol Chem 279:39479–39484

    CAS  PubMed  Google Scholar 

  64. Jiang Y, He X, Ortiz de Montellano PR (2006) Radical intermediates in the catalytic oxidation of hydrocarbons by bacterial and human cytochrome P450 enzymes. Biochemistry 45:533–542

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Atkinson JK, Ingold KU (1993) Cytochrome P450 hydroxylation of hydrocarbons: variation in the rate of oxygen rebound using cyclopropyl radical clocks including two new ultrafast probes. Biochemistry 32:9209–9214

    CAS  PubMed  Google Scholar 

  66. Newcomb M, Hollenberg PF, Coon MJ (2003) Multiple mechanisms and multiple oxidants in P450-catalyzed hydroxylations. Arch Biochem Biophys 409:72–79

    CAS  PubMed  Google Scholar 

  67. Newcomb M, Le Tadic MH, Putt DA, Hollenberg PF (1995) An incredibly fast apparent oxygen rebound rate constant for hydrocarbon hydroxylation by cytochrome P450 enzymes. J Am Chem Soc 117:3312–3313

    CAS  Google Scholar 

  68. Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W (2010) P450 enzymes: their structure, reactivity, and selectivity—modeled by QM/MM calculations. Chem Rev 110:949–1017

    CAS  PubMed  Google Scholar 

  69. Shaik S, De Visser SP (2005) Computational approaches to cytochrome P450 function. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Elsevier, New York, pp 45–85

    Google Scholar 

  70. Vaz A, McGinnity D, Coon M (1998) Epoxidation of olefins by cytochrome P450: evidence from site-specific mutagenesis for hydroperoxo-iron as an electrophilic oxidant. Proc Natl Acad Sci U S A 95:3555–3560

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Newcomb M, Hollenberg PF, Coon MJ (2003) Multiple mechanisms and multiple oxidants in P450-catalyzed hydroxylations. Arch Biochem Biophys 409:72–79

    CAS  PubMed  Google Scholar 

  72. Newcomb M, Chandrasena REP (2005) Highly reactive electrophilic oxidants in cytochrome P450 catalysis. Biochem Biophys Res Commun 338:394–403

    CAS  PubMed  Google Scholar 

  73. Toy PH, Dhanabalasingam B, Newcomb M, Hanna IH, Hollenberg PF (1997) A substituted hypersensitive radical probe for enzyme-catalyzed hydroxylations: synthesis of racemic and enantiomerically enriched forms and application in a cytochrome P450-catalyzed oxidation. J Org Chem 62:9114–9122

    CAS  Google Scholar 

  74. Toy PH, Newcomb M, Hollenberg PF (1998) Hypersensitive mechanistic probe studies of cytochrome P450-catalyzed hydroxylation reactions. Implications for the cationic pathway. J Am Chem Soc 120:7719–7729

    CAS  Google Scholar 

  75. Toy PH, Newcomb M, Coon MJ, Vaz ADN (1998) Two distinct electrophilic oxidants effect hydroxylation in cytochrome P-450-catalyzed reactions. J Am Chem Soc 120:9718–9719

    CAS  Google Scholar 

  76. Sheng X, Zhang H, Hollenberg PF, Newcomb M (2009) Kinetic isotope effects in hydroxylation reactions effected by cytochrome P450 compounds I implicate multiple electrophilic oxidants for P450-catalyzed oxidations. Biochemistry 48:1620–1627

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Newcomb M, Zhang R, Chandrasena REP, Halgrimson JA, Horner JH, Makris TM, Sligar SG (2006) Cytochrome P450 Compound I. J Am Chem Soc 128:4580–4581

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Sheng X, Horner JH, Newcomb MJ (2008) Spectra and kinetic studies of the Compound I derivative of cytochrome P450 119. J Am Chem Soc 130:13310–13320

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Sheng X, Zhang H, Im SC, Horner JH, Waskell L, Hollenberg PF, Newcomb MJ (2009) Kinetics of oxidation of benzphetamine by Compounds I of cytochrome P450 2B4 and its mutants. J Am Chem Soc 131:2971–2976

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Behan RK, Hoffart LM, Stone KL, Krebs C, Green MT (2007) Reaction of cytochrome P450BM3 and peroxynitrite yields a nitrosyl complex. J Am Chem Soc 129:5855–5859

    CAS  PubMed  Google Scholar 

  81. Newcomb M, Halgrimson JA, Horner JH, Wasinger EC, Chen LX, Sligar SG (2008) X-ray absorption spectroscopic characterization of a cytochrome P450 compound II derivative. Proc Natl Acad Sci U S A 105:8179–8184

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Rittle J, Younker JM, Green MT (2010) Cytochrome P450: the active oxidant and its spectrum. Inorg Chem 49:3610–3617

    CAS  PubMed  Google Scholar 

  83. Rittle J, Green MT (2010) Cytochrome P450 compound I: capture, characterization, and C–H bond activation kinetics. Science 330:933–937

    CAS  PubMed  Google Scholar 

  84. Kellner DG, Hung SC, Weiss KE, Sligar SG (2002) Kinetic characterization of Compound I formation in the thermostable cytochrome P450 CYP119. J Biol Chem 277:9641–9644

    CAS  PubMed  Google Scholar 

  85. Krest CM, Onderko EL, Yosca TH, Calixto JC, Karp RF, Livada J, Rittle J, Green MT (2013) Reactive intermediates in cytochrome P450 catalysis. J Biol Chem 288:17074–17081

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Davydov R, Makris TM, Kofman V, Werst DE, Sligar SG, Hoffman BM (2001) Hydroxylation of camphor by reduced oxy-cytochrome P450cam: mechanistic implications of EPR and ENDOR studies of catalytic intermediates in native and mutant enzymes. J Am Chem Soc 123:1403–1415

    CAS  PubMed  Google Scholar 

  87. Davydov R, Dawson JH, Perera RP, Hoffman BM (2013) Use of deuterated camphor as substrate in H ENDOR studies of hydroxylation by cryoreduced oxy P450cam provides new evidence for the involvement of compound I. Biochemistry 52:667–671

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Rettie AE, Rettenmeier AW, Howald WN, Baillie TA (1987) Cytochrome P-450-catalyzed formation of Δ4-VPA, a toxic metabolite of valproic acid. Science 235:890–893

    CAS  PubMed  Google Scholar 

  89. Rettie AE, Boberg M, Rettenmeier AW, Baillie TA (1988) Cytochrome P-450-catalyzed desaturation of valproic acid in vitro. Species differences, induction effects, and mechanistic studies. J Biol Chem 263:13733–13738

    CAS  PubMed  Google Scholar 

  90. Korzekwa KR, Trager WF, Nagata K, Parkinson A, Gillette JR (1990) Isotope effect studies on the mechanism of the cytochrome P-450IIA1-catalyzed formation of Δ6-testosterone from testosterone. Drug Metab Dispos 18:974–979

    CAS  PubMed  Google Scholar 

  91. Morikawa T, Mizutani M, Aoki N, Watanabe B, Saga H, Saito S, Oikawa A, Suzuki H, Sakurai N, Shibata D, Wadano A, Sakata K, Ohta D (2006) Cytochrome P450 CYP710A encodes the sterol C-22 desaturase in Arabidopsis and tomato. Plant Cell 18:1008–1022

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Kelly SL, Lamb DC, Baldwin BC, Corran AJ, Kelly DE (1997) Characterization of Saccharomyces cerevisiae CYP61, sterol Δ22-desaturase, and inhibition by azole antifungal agents. J Biol Chem 272:9986–9988

    CAS  PubMed  Google Scholar 

  93. Vyas KP, Kari PH, Prakash SR, Duggan DE (1990) Biotransformation of lovastatin. II. In vitro metabolism by rat and mouse liver microsomes and involvement of cytochrome P-450 in dehydrogenation of lovastatin. Drug Metab Dispos 18:218–222

    CAS  PubMed  Google Scholar 

  94. Obach RS (2001) Mechanism of cytochrome P4503A4- and 2D6-catalyzed dehydrogenation of ezlopitant as probed with isotope effects using five deuterated analogs. Drug Metab Dispos 29:1699–1607

    Google Scholar 

  95. Reilly CA, Yost GS (2005) Structural and enzymatic parameters that determine alkyl dehydrogenation/hydroxylation of capsaicinoids by cytochrome P450 enzymes. Drug Metab Dispos 33:530–536

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Granneman GR, Wang SI, Machinist JM, Kesterton JW (1984) Aspects of the metabolism of valproic acid. Xenobiotica 14:375–387

    CAS  PubMed  Google Scholar 

  97. Rettie AE, Boberg M, Rettenmeier AW, Baillie TA (1988) Cytochrome P450-catalyzed desaturation of valproic acid in vitro. Species differences, induction effects, and mechanistic studies. J Biol Chem 263:13733–13738

    CAS  PubMed  Google Scholar 

  98. Rettie AE, Sheffels PR, Korzekwa KR, Gonzalez FJ, Philpot RM, Baillie TA (1995) CYP4 isozyme specificity and the relationship between ω-hydroxylation and terminal desaturation of valproic acid. Biochemistry 34:7889–7895

    CAS  PubMed  Google Scholar 

  99. Newcomb M, Shen R, Choi SY, Toy PH, Hollenberg PF, Vaz ADN, Coon MJ (2000) Cytochrome P450-catalyzed hydroxylation of mechanistic probes that distinguish between radicals and cations. Evidence for cationic but not for radical intermediates. J Am Chem Soc 122:2677–2686

    CAS  Google Scholar 

  100. Cryle MJ, Ortiz de Montellano PR, De Voss JJ (2005) Cyclopropyl containing fatty acids as mechanistic probes for cytochromes P450. J Org Chem 70:2455–2649

    CAS  PubMed  Google Scholar 

  101. Hansch C, Mekapati SB, Kurup A, Verma RP (2004) QSAR of cytochrome P450. Drug Metab Rev 36:105–156

    CAS  PubMed  Google Scholar 

  102. Lewis DF, Lake BG, Ito Y, Anzenbacher P (2006) Quantitative structure-activity relationships (QSARs) within cytochromes P450 2B subfamily enzymes: the importance of lipophilicity for binding and metabolism. Drug Metab Drug Interact 21:213–231

    Google Scholar 

  103. Sridhar J, Liu J, Foroozesh M, Stevens CIK (2012) Insights on cytochrome P450 enzymes and inhibitors obtained through QSAR studies. Molecules 17:9283–9305

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Lewis DFV, Ioannides C, Park DV (1995) A quantitative structure-activity relationship study on a series of 10 para-substituted toluenes binding to cytochrome P-450 2B4 and their hydroxylation rates. Biochem Pharmacol 50:619–625

    CAS  PubMed  Google Scholar 

  105. Lewis DFV, Jacobs MN, Dickins M (2004) Compound lipophilicity for substrate binding to human P450s in drug metabolism. Drug Discov Today 9:530–537

    CAS  PubMed  Google Scholar 

  106. Blanksby SJ, Ellison GB (2003) Bond dissociation energies of organic molecules. Acc Chem Res 36:255–263

    CAS  PubMed  Google Scholar 

  107. Korth HG, Sickling W (1997) Prediction of methyl C–H bond dissociation energies by density functional theory calculations. J Chem Soc Perkin Trans 2:715–719

    Google Scholar 

  108. Frommer U, Ullrich V, Staudinger H (1970) Hydroxylation of aliphatic compounds by liver microsomes. I. The distribution pattern of isomeric alcohols. Hoppe Seylers Z Physiol Chem 351:903–912

    CAS  PubMed  Google Scholar 

  109. Korzekwa KR, Jones JP, Gillette JR (1990) Theoretical studies on cytochrome P-450 mediated hydroxylation: a predictive model for hydrogen atom abstractions. J Am Chem Soc 112:7042–7046

    CAS  Google Scholar 

  110. de Visser SP, Kumar D, Cohen S, Shacham R, Shaik S (2004) A predictive pattern of computed barriers for C–H hydroxylation by Compound I of cytochrome P450. J Am Chem Soc 126:8362–8363

    CAS  PubMed  Google Scholar 

  111. Olsen L, Rydberg P, Rod TH, Ryde U (2006) Prediction of activation energies for hydrogen abstraction by cytochrome P450. J Med Chem 49:6489–6499

    CAS  PubMed  Google Scholar 

  112. Afzelius L, Arnby CH, Broo A, Carlsson L, Isaksson C, Jurva U, Kjellander B, Kolmodin K, Nilsson K, Raubacher F, Weidolf L (2007) State-of-the-art tools for computational site of metabolism predictions: comparative analysis, mechanistical insights, and future applications. Drug Metab Rev 39:61–86

    CAS  PubMed  Google Scholar 

  113. Wang X, Peter S, Kinne M, Hofrichter M, Groves JT (2012) Detection and kinetic characterization of a highly reactive heme-thiolate peroxygenase compound I. J Am Chem Soc 134:12897–12900

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Wang Q, Sheng X, Horner JH, Newcomb M (2009) Quantitative production of Compound I from a cytochrome P450 enzyme at low temperatures. Kinetics, activation parameters, and kinetic isotope effects for oxidation of benzyl alcohol. J Am Chem Soc 131:10629–10636

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Miwa GT, Walsh JS, Lu AYH (1984) Kinetic isotope effects on cytochrome P-450-catalyzed oxidation reactions. The oxidative O-dealkylation of 7-ethoxycoumarin. J Biol Chem 259:3000–3004

    CAS  PubMed  Google Scholar 

  116. Guengerich FP, Yun CH, Macdonald TL (1996) Evidence for a 1-electron oxidation mechanism in N-dealkylation of N, N-dialkylanilines by cytochrome P450 2B1. Kinetic hydrogen isotope effects, linear free energy relationships, comparisons with horseradish peroxidase, and studies with oxygen surrogates. J Biol Chem 271:27321–27329

    CAS  PubMed  Google Scholar 

  117. Hinson JA, Nelson SD, Gillette JR (1979) Metabolism of [p-18O]-phenacetin: the mechanism of activation of phenacetin to reactive metabolites in hamsters. Mol Pharmacol 15:419–427

    CAS  PubMed  Google Scholar 

  118. Pohl LR, Nelson SD, Krishna G (1978) Investigation of the mechanism of the metabolic activation of chloramphenicol by rat liver microsomes. Identification of a new metabolite. Biochem Pharmacol 27:491–496

    CAS  PubMed  Google Scholar 

  119. Hall LR, Hanzlik RP (1990) Kinetic deuterium isotope effects on the N-demethylation of tertiary amides by cytochrome P-450. J Biol Chem 265:12349–12355

    CAS  PubMed  Google Scholar 

  120. Constantino L, Rosa E, Iley J (1992) The microsomal demethylation of N, N-dimethylbenzamides. Substituent and kinetic deuterium isotope effects. Biochem Pharmacol 44:651–658

    CAS  PubMed  Google Scholar 

  121. Hall LR, Iwamoto RT, Hanzlik RP (1989) Electrochemical models for cytochrome P-450. N-demethylation of tertiary amides by anodic oxidation. J Org Chem 54:2446–2451

    CAS  Google Scholar 

  122. Guengerich FP, Yun CH, Macdonald TL (1996) Evidence for a 1-electron oxidation mechanism in N-dealkylation of N, N-dialkylanilines by cytochrome P450 2B1. Kinetic hydrogen isotope effects, linear free energy relationships, comparisons with horseradish peroxidase, and studies with oxygen surrogates. J Biol Chem 271:27321–27329

    CAS  PubMed  Google Scholar 

  123. Baciocchi E, Lanzalunga O, Lapi A, Manduchi L (1998) Kinetic deuterium isotope effect profiles and substituent effects in the oxidative N-demethylation of N, N-dimethylanilines catalyzed by tetrakis(pentafluorophenyl)porphyrin iron(III) chloride. J Am Chem Soc 120:5783–5787

    CAS  Google Scholar 

  124. Galliani G, Nali M, Rindone B, Tollari S, Rocchetti M, Salmona M (1986) The rate of N-demethylation of N, N-dimethylanilines and N-methylanilines by rat-liver microsomes is related to their first ionization potential, their lipophilicity and to a steric bulk factor. Xenobiotica 16:511–517

    CAS  PubMed  Google Scholar 

  125. Burka LT, Willard RJ, Macdonald TL (1985) Mechanism of cytochrome P-450 catalysis. Mechanism of N-dealkylation and amine oxide deoxygenation. J Am Chem Soc 107:2549–2551

    CAS  Google Scholar 

  126. Ortiz de Montellano PR, Beilan HS, Kunze KL (1981) N-Alkylprotoporphyrin IX formation in 3,5-dicarbethoxy-1,4-dihydrocollidine-treated rats. Transfer of the alkyl group from the substrate to the porphyrin. J Biol Chem 256:6708–6713

    CAS  PubMed  Google Scholar 

  127. Augusto O, Beilan HS, Ortiz de Montellano PR (1982) The catalytic mechanism of cytochrome P-450. Spin-trapping evidence for one-electron substrate oxidation. J Biol Chem 257:11288–11295

    CAS  PubMed  Google Scholar 

  128. Kennedy CH, Mason RP (1990) A reexamination of the cytochrome P-450-catalyzed free radical production from a dihydropyridine. Evidence of trace transition metal catalysis. J Biol Chem 265:11425–11428

    CAS  PubMed  Google Scholar 

  129. Macdonald TL, Zirvi K, Burka LT, Peyman P, Guengerich FP (1982) Mechanism of cytochrome P-450 inhibition by cyclopropylamines. J Am Chem Soc 104:2050–2052

    CAS  Google Scholar 

  130. Hanzlik RP, Tullman RH (1982) Suicidal inactivation of cytochrome P-450 by cyclopropylamines. Evidence for cation-radical intermediates. J Am Chem Soc 104:2048–2050

    CAS  Google Scholar 

  131. Guengerich FP, Willard RJ, Shea JP, Richards LE, Macdonald TL (1984) Mechanism-based inactivation of cytochrome P-450 by heteroatom-substituted cyclopropanes and formation of ring-opened products. J Am Chem Soc 106:6446–6447

    CAS  Google Scholar 

  132. Li X, Grimm ML, Igarashi K, Castagnoli N Jr, Tanko JM (2007) The first calibration of an aminiumyl radical ion clock: why N-cyclopropylanilines may be poor mechanistic probes for single electron transfer. Chem Commun (Camb) 25:2648–2650

    Google Scholar 

  133. Shaffer CL, Morton MD, Hanzlik RP (2001) N-Dealkylation of an N-cyclopropylamine by horseradish peroxidase. Fate of the cyclopropyl group. J Am Chem Soc 123:8502–8508

    CAS  PubMed  Google Scholar 

  134. Shaffer CL, Harriman S, Koen YM, Hanzlik RP (2002) Formation of cyclopropanone during cytochrome P450-catalyzed N-dealkylation of a cyclopropylamine. J Am Chem Soc 124:8268–8274

    CAS  PubMed  Google Scholar 

  135. Roberts KM, Jones JP (2010) Anilinic N-oxides support cytochrome P450-mediated N-dealkylation through hydrogen-atom transfer. Chem Eur J 16:8096–8107

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Bhakta M, Hollenberg PF, Wimasalena K (2005) Evidence for a hydrogen abstraction mechanism in P450-catalyzed N-dealkylations. Chem Commun (Camb) 2:265–267

    Google Scholar 

  137. Jurva U, Bissel P, Isin EM, Igarashi K, Kuttab S, Castagnoli N Jr (2005) Model electrochemical-mass spectrometric studies of the cytochrome P450-catalyzed oxidations of cyclic tertiary allylamines. J Am Chem Soc 127:12368–12377

    CAS  PubMed  Google Scholar 

  138. Macdonald TL, Gutheim WG, Martin RB, Guengerich FP (1989) Oxidation of substituted N, N-dimethylanilines by cytochrome P-450: estimation of the effective oxidation-reduction potential of cytochrome P-450. Biochemistry 28:2071–2077

    CAS  PubMed  Google Scholar 

  139. Goto Y, Watanabe Y, Fukuzumi S, Jones JP, Dinnocenzo JP (1998) Mechanisms of N-demethylations catalyzed by high-valent species of heme enzymes: novel use of isotope effects and direct observation of intermediates. J Am Chem Soc 120:10762–10763

    CAS  Google Scholar 

  140. Okazaki O, Guengerich FP (1993) Evidence for specific base catalysis in N-dealkylation reactions catalyzed by cytochrome P450 and chloroperoxidase. Differences in rates of deprotonation of aminium radicals as an explanation for high kinetic hydrogen isotope effects observed with peroxidases. J Biol Chem 268:1546–1552

    CAS  PubMed  Google Scholar 

  141. Miwa GT, Walsh JS, Kedderis GL, Hollenberg PF (1983) The use of intramolecular isotope effects to distinguish between deprotonation and hydrogen atom abstraction mechanisms in cytochrome P-450- and peroxidase-catalyzed N-demethylation reactions. J Biol Chem 258:14445–14449

    CAS  PubMed  Google Scholar 

  142. Li C, Wu W, Kumar D, Shaik S (2006) Kinetic isotope effect is a sensitive probe of spin state reactivity in C–H hydroxylation of N, N-dimethylaniline by cytochrome P450. J Am Chem Soc 128:394–395

    CAS  PubMed  Google Scholar 

  143. Kwiecień RA, Molinié R, Paneth P, Silvestre V, Lebreton J, Robins RJ (2011) Elucidation of the mechanism of N-demethylation catalyzed by cytochrome P450 monooxygenase is facilitated by exploiting nitrogen-15 heavy isotope effect. Arch Biochem Biophys 510:35–41

    PubMed  Google Scholar 

  144. Nelsen SF, Ippoliti JT (1986) The deprotonation of trialkylamine cation radicals by amines. J Am Chem Soc 108:4879–4881

    CAS  Google Scholar 

  145. Ortiz de Montellano PR (1987) Control of the catalytic activity of prosthetic heme by the structure of hemoproteins. Acc Chem Res 20:289–294

    CAS  Google Scholar 

  146. Ortiz de Montellano PR (2010) Peroxidase catalytic mechanisms. In: Torres E, Ayala M (eds) Biocatalysis based on heme peroxidases. Springer, New York, pp 79–110

    Google Scholar 

  147. Lewis FD, Ho TI (1980) On the selectivity of tertiary amine oxidations. J Am Chem Soc 102:1751–1752

    CAS  Google Scholar 

  148. Tanko JM, Friedline R, Suleman NK, Castagnoli N (2001) tert-Butoxyl as a model for radicals in biological systems: caveat emptor. J Am Chem Soc 123:5808–5809

    CAS  PubMed  Google Scholar 

  149. Seto Y, Guengerich FP (1993) Partitioning between N-dealkylation and N-oxygenation in the oxidation of N, N-dialkylarylamines catalyzed by cytochrome P450 2B1. J Biol Chem 268:9986–9997

    CAS  PubMed  Google Scholar 

  150. Gorrod JW, Patterson LH (1983) The metabolism of 4-substituted-N-ethyl-N-methylanilines. Xenobiotica 13:513–520

    CAS  PubMed  Google Scholar 

  151. Iley J, Constantino L (1994) The microsomal dealkylation of N, N-dialkylbenzamides. Biochem Pharmacol 47:275–280

    CAS  PubMed  Google Scholar 

  152. La Du BN, Gaudette L, Trousof N, Brodie BB (1955) Enzymatic dealkylation of aminopyrine (pyramidon) and other alkylamines. J Biol Chem 214:741–752

    CAS  PubMed  Google Scholar 

  153. Hinson JA, Mitchell JR, Jollow DJ (1975) Microsomal N-hydroxylation of p-chloroacetanilide. Mol Pharmacol 11:462–469

    CAS  Google Scholar 

  154. Ripa L, Mee C, Sjö P, Shamovsky I (2014) Theoretical studies of the mechanism of N-hydroxylation of primary aromatic amines by cytochrome P450 1A2: radicaloid or anionic? Chem Res Toxicol 27:265–278

    CAS  PubMed  Google Scholar 

  155. Shamovsky I, Ripa L, Börjesson L, Mee C, Nordén B, Hansen P, Hasselgren C, O’Donovan M, Sjö P (2011) Explanation for main features of structure-genotoxicity relationships of aromatic amines by theoretical studies of their activation pathways in CYP1A2. J Am Chem Soc 133:16168–16185

    CAS  PubMed  Google Scholar 

  156. Ji L, Schüürmann G (2013) Model and mechanism: N-hydroxylation of primary aromatic amines by cytochrome P450. Angew Chem Int Ed Engl 52:744–748

    CAS  PubMed  Google Scholar 

  157. Ghassabian S, Rawling T, Zhou F, Doddareddy MR, Tattam BN, Hibbs DE, Edwards RJ, Cui PH, Murray M (2012) Role of CYP3A4 in the biotransformation of sorafenib to its major oxidized metabolites. Biochem Pharmacol 84:215–223

    CAS  PubMed  Google Scholar 

  158. Oguri K, Tanimoto Y, Yoshimura H (1989) Metabolite fate of strychnine in rats. Xenobiotica 19:171–178

    CAS  PubMed  Google Scholar 

  159. Labbé L, Abolfathi Z, Léssard É, Pakdel H, Beaune P, Turgeon J, Role of specific cytochrome P450 enzymes in the N-oxidation of the antiarrhythmic agent mexiletine. Xenobiotica 33:13–25

    Google Scholar 

  160. Watanabe Y, Iyanagi T, Oae S (1980) Kinetic study on enzymatic S-oxygenation promoted by a reconstituted system with purified cytochrome P450. Tetrahedron Lett 21:3685–3688

    CAS  Google Scholar 

  161. Watanabe Y, Iyanagi T, Oae S (1982) One electron transfer mechanism in the enzymatic oxygenation of sulfoxide to sulfone promoted by a reconstituted system with purified cytochrome P450. Tetrahedron Lett 23:533–536

    CAS  Google Scholar 

  162. Alvarez JC, Ortiz de Montellano PR (1992) Thianthrene 5-oxide as a probe of the electrophilicity of hemoprotein oxidizing species. Biochemistry 31:8315–8322

    CAS  PubMed  Google Scholar 

  163. Holland HL, Chernishenko MJ, Conn M, Munoz A, Manoharan TS, Zawadski MA (1990) Enzymic hydroxylation and sulfoxidation of cyclopropyl compounds by fungal biotransformation. Can J Chem 68:696–700

    CAS  Google Scholar 

  164. Sharma PK, De Visser SP, Shaik S (2003) Can a single oxidant with two spin states masquerade as two different oxidants? A study of the sulfoxidation mechanism by cytochrome P450. J Am Chem Soc 125:8698–8699

    CAS  PubMed  Google Scholar 

  165. Li C, Zhang L, Zhang C, Hirao H, Wu W, Shaik S (2007) Which oxidant is really responsible for sulfur oxidation by cytochrome P450? Angew Chem Int Ed Engl 46:8168–8170

    CAS  PubMed  Google Scholar 

  166. Cryle J, De Voss JJ (2006) Is the ferric hydroperoxy species responsible for sulfur oxidation in cytochrome P450s? Angew Chem Int Ed Engl 45:8221–8223

    CAS  PubMed  Google Scholar 

  167. He X, Cryle MJ, De Voss JJ, Ortiz de Montellano PR (2005) Calibration of the channel that determines the ω-hydroxylation regiospecificity of cytochrome P4504A1. J Biol Chem 280:22697–22705

    PubMed Central  CAS  PubMed  Google Scholar 

  168. Kim D, Cryle MJ, De Voss JJ, Ortiz de Montellano PR (2007) Functional expression and characterization of cytochrome P450 52A21 from Candida albicans. Arch Biochem Biophys 464:213–220

    PubMed Central  CAS  PubMed  Google Scholar 

  169. Guengerich FP (1989) Oxidation of halogenated compounds by cytochrome P-450, peroxidases, and model metalloporphyrins. J Biol Chem 264:17198–17205

    CAS  Google Scholar 

  170. Watabe T, Akamatsu K (1974) Microsomal epoxidation of cis-stilbene: decrease in epoxidase activity related to lipid peroxidation. Biochem Pharmacol 23:1079–1085

    CAS  PubMed  Google Scholar 

  171. Watabe T, Ueno Y, Imazumi J (1971) Conversion of oleic acid into threo-dihydroxystearic acid by rat liver microsomes. Biochem Pharmacol 20:912–913

    CAS  PubMed  Google Scholar 

  172. Ortiz de Montellano PR, Mangold BLK, Wheeler C, Kunze KL, Reich NO (1983) Stereochemistry of cytochrome P-450-catalyzed epoxidation and prosthetic heme alkylation. J Biol Chem 258:4208–4213

    CAS  PubMed  Google Scholar 

  173. Hanzlik RP, Shearer GO (1978) Secondary deuterium isotope effects on olefin epoxidation by cytochrome P450. Biochem Pharmacol 27:1441–1444

    CAS  PubMed  Google Scholar 

  174. Henschler D, Hoos WR, Fetz H, Dallmeier E, Metzler M (1979) Reactions of trichloroethylene epoxide in aqueous systems. Biochem Pharmacol 28:543–548

    CAS  PubMed  Google Scholar 

  175. Miller RE, Guengerich FP (1982) Oxidation of trichloroethylene by liver microsomal cytochrome P-450: evidence for chlorine migration in a transition state not involving trichloroethylene oxide. Biochemistry 21:1090–1097

    CAS  PubMed  Google Scholar 

  176. Liebler DC, Guengerich FP (1983) Olefin oxidation by cytochrome P-450: evidence for group migration in catalytic intermediates formed with vinylidene chloride and trans-1-phenyl-1-butene. Biochemistry 22:5482–5489

    CAS  PubMed  Google Scholar 

  177. Mansuy D, Leclaire J, Fontecave M, Momenteau M (1984) Oxidation of monosubstituted olefins by cytochromes P450 and heme models: evidence for the formation of aldehydes in addition to epoxides and allylic alcohols. Biochem Biophys Res Commun 119:319–325

    CAS  PubMed  Google Scholar 

  178. Shinkyo R, Xu L, Tallman KA, Cheng Q, Porter NA, Guengerich FP (2011) Conversion of 7-dehydrocholesterol to 7-ketocholesterol is catalyzed by human cytochrome P450 7A1 and occurs by direct oxidation without an epoxide intermediate. J Biol Chem 286:33021–33028

    PubMed Central  CAS  PubMed  Google Scholar 

  179. Miller VP, Fruetel JA, Ortiz de Montellano PR (1992) Cytochrome P450cam-catalyzed oxidation of a hypersensitive radical probe. Arch Biochem Biophys 298:697–702

    CAS  PubMed  Google Scholar 

  180. Ortiz de Montellano PR, Correia MA (2005) Inhibition of cytochrome P450 enzymes. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Kluwer Academic, New York, pp 247–322

    Google Scholar 

  181. Ortiz de Montellano PR, Stearns RA, Langry KC (1984) The allylisopropylacetamide and novonal prosthetic heme adducts. Mol Pharmacol 25:310–317

    CAS  PubMed  Google Scholar 

  182. Kunze KL, Mangold BLK, Wheeler C, Beilan HS., Ortiz de Montellano PR (1983) The cytochrome P-450 active site. Regiospecificity of the prosthetic heme alkylation by olefins and acetylenes. J Biol Chem 258:4202–4207

    CAS  PubMed  Google Scholar 

  183. Ortiz de Montellano PR, Mico BA (1980) Destruction of cytochrome P-450 by ethylene and other olefins. Mol Pharmacol 18:128–135

    CAS  PubMed  Google Scholar 

  184. Ortiz de Montellano PR, Stearns RA, Langry KC (1984) The allylisopropylacetamide and novonal prosthetic heme adducts. Mol Pharmacol 25:310–317

    CAS  PubMed  Google Scholar 

  185. de Visser SP, Ogliaro F, Harris N, Shaik S (2001) Multi-state epoxidation of ethene by cytochrome P450: a quantum chemical study. J Am Chem Soc 123:3037–3047

    CAS  PubMed  Google Scholar 

  186. Kumar D, Karamzadeh B, Sastry GN, de Visser SP (2010) What factors influence the rate constant of substrate epoxidation by Compound I of cytochrome P450 and analogous iron(IV)-oxo oxidants? J Am Chem Soc 132:7656–7667

    CAS  PubMed  Google Scholar 

  187. Kumar D, Latifi R, Kumar S, Rybak-Akimova EV, Sainna MA, de Visser SP (2013) Rationalization of the barrier height for p-Z-styrene epoxidation by iron(IV)-oxo porphyrin cation radical with variable axial ligands. Inorg Chem 52:7968–7979

    CAS  PubMed  Google Scholar 

  188. de Visser SP, Ogliaro F, Shaik S (2001) Stereospecific oxidation by compound I of cytochrome P450 does not proceed in a concerted synchronous manner. Chem Commun (Camb) 22:2322–2323

    Google Scholar 

  189. de Visser SP, Ogliaro F, Shaik S (2001) How does ethene inactivate cytochrome P450 en route to its epoxidation? A density functional study. Angew Chem Int Ed Engl 40:2871–2874

    CAS  PubMed  Google Scholar 

  190. de Visser SP, Kumar D, Shaik S (2004) How do aldehyde side products occur during alkene epoxidation by cytochrome P450? Theory reveals a state-specific multi-state scenario where the high-spin component leads to all side products. J Inorg Biochem 98:1183–1193

    CAS  PubMed  Google Scholar 

  191. Ortiz de Montellano PR, Kunze KL (1981) Shift of the acetylenic hydrogen during chemical and enzymatic oxidation of the biphenylacetylene triple bond. Arch Biochem Biophys 209:710–712

    CAS  PubMed  Google Scholar 

  192. McMahon RE, Turner JC, Whitaker GW, Sullivan HR (1981) Deuterium isotope effect in the biotransformation of 4-ethynylbiphenyls to 4-biphenylacetic acids by rat hepatic microsomes. Biochem Biophys Res Commun 99:662–667

    CAS  PubMed  Google Scholar 

  193. Ortiz de Montellano PR, Komives EA (1985) Branchpoint for heme alkylation and metabolite formation in the oxidation of aryl acetylenes by cytochrome P450. J Biol Chem 260:3330–3336

    CAS  PubMed  Google Scholar 

  194. Foroozesh M, Primrose G, Guo Z, Bell LC, Alworth WL., Guengerich FP (1997) Aryl acetylenes as mechanism-based inhibitors of cytochrome P450-dependent monooxygenase enzymes. Chem Res Toxicol 10:91–102

    CAS  PubMed  Google Scholar 

  195. Kanhai W, Koob M, Dekant W, Henschler D (1991) Metabolism of 14C-dichloroethyne in rats. Xenobiotica 21:905–916

    CAS  PubMed  Google Scholar 

  196. Gan LS, Acebo AL, Alworth WL (1984) 1-Ethynylpyrene, a suicide inhibitor of cytochrome P-450 dependent benzo[a]pyrene hydroxylase activity in liver microsomes. Biochemistry 23:3827–3836

    CAS  PubMed  Google Scholar 

  197. CaJacob CA, Chan W, Shephard E, Ortiz de Montellano PR (1988) The catalytic site of rat hepatic lauric acid omega-hydroxylase. Protein versus prosthetic heme alkylation in the omega-hydroxylation of acetylenic fatty acids. J Biol Chem 263:18640–18649

    CAS  PubMed  Google Scholar 

  198. Ortiz de Montellano PR, Kunze KL (1981) Cytochrome P-450 inactivation: structure of the prosthetic heme adduct with propyne. Biochemistry 20:7266–7271

    CAS  PubMed  Google Scholar 

  199. Davico GE, Bierbaum VM, DePuy CH, Ellison GB, Squires RR (1995) The C–H bond energy of benzene. J Am Chem Soc 117:2590–2599

    CAS  Google Scholar 

  200. Jerina DM, Daly JW (1974) Arene oxides: a new aspect of drug metabolism. Science 185:573–582

    CAS  PubMed  Google Scholar 

  201. Koerts J, Soffers AEMF, Vervoort J, De Jager A, Rietjens IMCM (1998) Occurrence of the NIH shift upon the cytochrome P450-catalyzed in vivo and in vitro aromatic ring hydroxylation of fluorobenzenes. Chem Res Toxicol 11:503–512

    CAS  PubMed  Google Scholar 

  202. Hanzlik RP, Ling KHJ (1993) Active site dynamics of xylene hydroxylation by cytochrome P-450 as revealed by kinetic deuterium isotope effects. J Am Chem Soc 115:9363–9370

    CAS  Google Scholar 

  203. Lovern MR, Turner MJ, Meyer M, Kedderis GL, Bechtold WE, Schlosser PM (1997) Identification of benzene oxide as a product of benzene metabolism by mouse, rat, and human liver microsomes. Carcinogenesis 18:1695–1700

    CAS  PubMed  Google Scholar 

  204. Jacob J, Soballa RG, Schmalix WA, Grimmer G, Greim H, Doehmer J, Seidel A (1996) Cytochrome P450-mediated activation of phenanthrene in genetically engineered V79 Chinese hamster cells. Environ Toxicol Pharmacol 15:1–11

    Google Scholar 

  205. Tomaszewski JE, Jerina DM, Daly JW (1975) Deuterium isotope effects during formation of phenols by hepatic monooxygenases: evidence for an alternative to the arene oxide pathway. Biochemistry 14:2024–2030

    CAS  PubMed  Google Scholar 

  206. Preston BD, Miller JA, Miller EC (1983) Non-arene oxide aromatic ring hydroxylation of 2,2’,5,5’-tetrachlorobiphenyl as the major metabolic pathway catalyzed by phenobarbital-induced rat liver microsomes. J Biol Chem 258:8304–8311

    CAS  PubMed  Google Scholar 

  207. Hanzlik RP, Hogberg K, Judson CM (1984) Microsomal hydroxylation of specifically deuterated monosubstituted benzenes: evidence for direct aromatic hydroxylation. Biochemistry 23:3048–3055

    CAS  PubMed  Google Scholar 

  208. Korzekwa KR, Swinney DC, Trager WF (1989) Isotopically labeled chlorobenzenes as probes for the mechanism of cytochrome P-450 catalyzed aromatic hydroxylation. Biochemistry 28:9019–9027

    CAS  PubMed  Google Scholar 

  209. Bathelt CM, Ridder L, Mulholland AJ, Harvey JN (2004) Mechanism and structure-reactivity relationships for aromatic hydroxylation by cytochrome P450. Org Biomol Chem 2:2998–3005

    CAS  PubMed  Google Scholar 

  210. Rietjens IMC, Vervoort J (1992) A new hypothesis for the mechanism for cytochrome P-450 dependent aerobic conversion of hexahalogenated benzenes to pentahalogenated phenols. Chem Res Toxicol 5:10–19

    CAS  PubMed  Google Scholar 

  211. Rietjens IMCM, Soffers AEMF, Veeger C, Vervoort J (1993) Regioselectivity of cytochrome P-450 catalyzed hydroxylation of fluorobenzenes predicted by calculated frontier orbital substrate characteristics. Biochemistry 32:4801–4812

    CAS  PubMed  Google Scholar 

  212. Zakharieva O, Grodzicki M, Trautwein AX, Veeger C, Rietjens IMCM (1996) Molecular orbital study of the hydroxylation of benzene and monofluorobenzene catalyzed by iron-oxo porphyrin π-cation radical complexes. J Biol Inorg Chem 1:192–204

    CAS  Google Scholar 

  213. Hackett JC, Sanan TT, Hada CM (2007) Oxidative dehalogenation of perhalogenated benzenes by cytochrome P450 compound I. Biochemistry 46:5924–5940

    CAS  PubMed  Google Scholar 

  214. Ohe T, Mashino T, Hirobe M (1994) Novel metabolic pathway of arylethers by cytochrome P450: cleavage of the oxygen-aromatic ring bond accompanying ipso-substitution by the oxygen atom of the active species in cytochrome P450 models and cytochrome P450. Arch Biochem Biophys 310:402–409

    CAS  PubMed  Google Scholar 

  215. Ohe T, Mashino T, Hirobe M (1997) Substituent elimination from p-substituted phenols by cytochrome P450. Ipso-substitution by the oxygen atom of the active species. Drug Metab Dispos 25:116–122

    CAS  PubMed  Google Scholar 

  216. Schyman P, Lai W, Chen H, Wang Y, Shaik S (2011) The directive of the protein: how does cytochrome P450 select the mechanism of dopamine formation? J Am Chem Soc 133:7977–7984

    CAS  PubMed  Google Scholar 

  217. Rizk PN, Hanzlik RP (1995) Oxidative and non-oxidative metabolism of 4-iodoanisole by rat liver microsomes. Xenobiotica 25:143–150

    CAS  PubMed  Google Scholar 

  218. Gerardy R, Zenk MH (1993) Formation of salutaridine from (R)-reticuline by a membrane-bound cytochrome P450 enzyme from Papaver somniferum. Phytochemistry 32:79–86

    Google Scholar 

  219. Gesell A, Rolf M, Ziegler J, Chávez MLD, Huang FC, Kutchan TM (2009) CYP719B1 is salutaridine synthase, the C–C phenol-coupling enzyme of morphine biosynthesis in opium poppy. J Biol Chem 284:24432–24442

    PubMed Central  CAS  PubMed  Google Scholar 

  220. Ikezawa N, Iwasa K, Sato F (2008) Molecular cloning and characterization of CYP80G2, a cytochrome P450 that catalyzes an intramolecular C–C phenol coupling of (S)-reticulene in magnoflorine biosynthesis, from cultured Coptis japonica cells. J Biol Chem 283:8810–8821

    CAS  PubMed  Google Scholar 

  221. Nasreen A, Rueffer M, Zenk MH (1996) Cytochrome P-450-dependent formation of isoandrocymbine from autumnaline in colchicine biosynthesis. Tetrahedron Lett 37:8161–8164

    CAS  Google Scholar 

  222. Bischoff D, Pelzer S, Bister B, Nicholson GJ, Stockert S, Schirle M, Wohlleben W, Jung G, Sussmuth RD (2001) The biosynthesis of vancomycin-type glycopeptide antibiotics—the order of the cyclization steps. Angew Chem Int Ed Engl 40:4688–4691

    CAS  PubMed  Google Scholar 

  223. Zerbe K, Pylypenko O, Vitali F, Zhang W, Rouset S, Heck, M, Vrijbloed JW, Bischoff D, Bister B, Sussmuth RD, Pelzer S, Wohlleben W, Robinson JA, Schlichting I (2002) Crystal structure of OxyB, a cytochrome P450 implicated in an oxidative phenol coupling reaction during vancomycin biosynthesis. J Biol Chem 27:47476–47485

    Google Scholar 

  224. Cacho RA, Chooi YH, Zhou H, Tang Y (2013) Complexity generation in fungal polyketide biosynthesis: a spirocycle-forming P450 in the concise pathway to the antifungal drug griseofulvin. ACS Chem Biol 8:2322–2330

    CAS  PubMed  Google Scholar 

  225. Präg A, Grüning BA, Häckh M, Lüdeke S, Wilde M, Luzhetskyy A, Richter M, Luzhetska M, Günther, S, Müller M (2014) Regio- and stereoselective intermolecular oxidative phenol coupling in Streptomyces. J Am Chem Soc 136:6195–6198

    PubMed  Google Scholar 

  226. Amann T, Zenk MH (1991) Formation of the morphine precursor salutaridine is catalyzed by a cytochrome P-450 enzyme in mammalian liver. Tetrahedron Lett 32:3675–3678

    CAS  Google Scholar 

  227. Grobe N, Zhang B, Fisinger U, Kutchan TM, Zenk MH, Guengerich FP (2009) Mammalian cytochrome P450 enzymes catalyze the phenol-coupling step in endogenous morphine biosynthesis. J Biol Chem 284:24425–24431

    PubMed Central  CAS  PubMed  Google Scholar 

  228. Davis JA, Greene RJ, Han S, Rock DA, Wienkers LC (2011) Formation of raloxifene homo-dimer in CYP3A4, evidence for multi-substrate binding in a single catalytically competent P450 active site. Arch Biochem Biophys 513:110–118

    CAS  PubMed  Google Scholar 

  229. Chen AY, Lee AJ, Jiang XR, Zhu BT (2007) Chemical synthesis of six novel 17β-estradiol and estrone dimers and study of their formation catalyzed by human cytochrome P450 enzymes. J Med Chem 50:5372–5381

    CAS  PubMed  Google Scholar 

  230. Makino M, Sugimoto H, Shiro Y, Asamizu S, Onaka H, Nagano S (2007) Crystal structures and catalytic mechanism of cytochrome P450 StaP that produces the indolocarbazole skeleton. Proc Natl Acad Sci U S A 104:11591–11596

    PubMed Central  CAS  PubMed  Google Scholar 

  231. Wang Y, Hirao H, Chen H, Onaka H, Nagano S, Shaik S (2008) Electron transfer activation of chromopyrrolic acid by cytochrome P450 en route to the formation of an antitumor indolocarbazole derivative: theory supports experiment. J Am Chem Soc 130:7170–7171

    CAS  PubMed  Google Scholar 

  232. Wang Y, Chen H, Makino M, Shiro Y, Nagano S, Asamizu S, Onaka H, Shaik S (2009) Theoretical and experimental studies of the conversion of chromopyrrolic acid to an antitumor derivative by cytochrome P450 StaP: the catalytic role of water molecules. J Am Chem Soc 131:6748–6762

    CAS  PubMed  Google Scholar 

  233. Saruwatai T, Yagishita F, Mino T, Noguchi H, Hotta K, Watanabe K (2014) Cytochrome P450 as dimerization catalyst in diketopiperazine alkaloid biosynthesis. Chembiochem 15:656–659

    Google Scholar 

  234. Alexander K, Akhtar M, Boar RB, McGhie JF, Barton DHR (1972) Removal of the 32-carbon atom as formic acid in cholesterol biosynthesis. J Chem Soc Chem Commun 383–385

    Google Scholar 

  235. Mitropoulos KA, Gibbons GF, Reeves BEA (1976) Lanosterol 14α-demethylase. Similarity of the enzyme system from yeast and rat liver. Steroids 27:821–829

    CAS  PubMed  Google Scholar 

  236. Aoyama Y, Yoshida Y, Sonoda Y, Sato Y (1987) Metabolism of 32-hydroxy-24,25-dihydrolanosterol by purified cytochrome P 45014DM from yeast. Evidence for contribution of the cytochrome to whole process of lanosterol 14α-demethylation. J Biol Chem 262:1239–1243

    CAS  PubMed  Google Scholar 

  237. Trzaskos JM, Fischer RT, Favata MF (1986) Mechanistic studies of lanosterol C-32 demethylation. Conditions which promote oxysterol intermediate accumulation during the demethylation process. J Biol Chem 261:16937–16936

    CAS  PubMed  Google Scholar 

  238. Trzaskos JM, Fischer RT, Favata MF (1986) Mechanistic studies of lanosterol C-32 demethylation. Conditions which promote oxysterol intermediate accumulation during the demethylation process. J Biol Chem 261:16937–16936

    CAS  PubMed  Google Scholar 

  239. Shyadehi AZ, Lamb DC, Kelly SL, Kelly DE, Schunck WH, Wright JN, Corina D, Akhtar M (1996) The mechanism of the acyl-carbon bond cleavage reaction catalyzed by recombinant sterol 14α-demethylase of Candida albicans (other names are: lanosterol 14α-demethylase, P-45014DM, and CYP51). J Biol Chem 271:12445–12450

    CAS  PubMed  Google Scholar 

  240. Fischer RT, Trzaskos JM, Magolda RL, Ko SS, Brosz CS, Larsen B (1991) Lanosterol 14α-methyl demethylase. Isolation and characterization of the third metabolically generated oxidative demethylation intermediate. J Biol Chem 266:6124–6132

    CAS  PubMed  Google Scholar 

  241. Ramm PJ, Caspi E (1969) Stereochemistry of tritium at carbon atoms 1, 7, and 15 in cholesterol derived from mevalonic-(3R,2R)-2–3H acid. J Biol Chem 244:6064–6073

    CAS  PubMed  Google Scholar 

  242. Akhtar M, Rahimtula AD, Watkinson IA, Wilton DC, Munday KA (1969) Status of C-6, C-7, C-15, and C-16 hydrogen atoms in cholesterol biosynthesis. Eur J Biochem 9:107–111

    CAS  PubMed  Google Scholar 

  243. Monk BC, Tomasiak TM, Keniya MV, Huschmann FU, Tyndall JDA, O’Connell III JD, Cannon RD, McDonald J, Rodriguez A, Finer-Moore J, Stroud RM (2014) Architecture of a single membrane spanning cytochrome P450 suggest constraints that orient the catalytic domain relative to a bilayer. Proc Natl Acad Sci U S A 111:3865–3870

    PubMed Central  CAS  PubMed  Google Scholar 

  244. Thompson EA Jr, Siiteri PK (1974) The involvement of human placental microsomal cytochrome P-450 in aromatization. J Biol Chem 249:5373–5378

    CAS  PubMed  Google Scholar 

  245. Kellis JT Jr, Vickery LE (1987) Purification and characterization of human placental aromatase cytochrome P-450. J Biol Chem 262:4413–4420

    CAS  PubMed  Google Scholar 

  246. Osawa Y, Shibata K, Rohrer D, Weeks C, Duax WL (1975) Reassignment of the absolute configuration of 19-substituted 19-hydroxysteroids and stereomechanism of estrogen biosynthesis. J Am Chem Soc 97:4400–4402

    CAS  PubMed  Google Scholar 

  247. Arigoni D, Battaglia R, Akhtar M, Smith T (1975) Stereospecificity of oxidation at C-19 in estrogen biosynthesis. J Chem Soc Chem Commun (Camb) 185–186

    Google Scholar 

  248. Akhtar M, Calder MR, Corina DL, Wright JN (1982) Mechanistic studies on C-19 demethylation in estrogen biosynthesis. Biochem J 201:569–580

    PubMed Central  CAS  PubMed  Google Scholar 

  249. Caspi E, Wicha J, Arunachalam T, Nelson P, Spiteller G (1984) Estrogen biosynthesis: concerning the obligatory intermediacy of 2β-hydroxy-10β-formyl androst-4-ene-3,17-dione. J Am Chem Soc 106:7282–7283

    CAS  Google Scholar 

  250. Sohl CD, Guengerich FP (2010) Kinetic analysis of the three-step steroid aromatase reaction of human cytochrome P450 19A1. J Biol Chem 285:17734–17743

    PubMed Central  CAS  PubMed  Google Scholar 

  251. Morand P, Williamson DG, Layne DS, Lompa-Krzymien L, Salvador J (1975) Conversion of an androgen epoxide into 17β-estradiol by human placental microsomes. Biochemistry 14:635–638

    CAS  PubMed  Google Scholar 

  252. Townsley JD, Brodie HJ (1968) Mechanism of estrogen biosynthesis. III. Stereochemistry of aromatization of C19 and C18 steroids. Biochemistry 7:33–40

    CAS  PubMed  Google Scholar 

  253. Hosoda H, Fishman J (1974) Unusually facile aromatization of 2β-hydroxy-19-oxo-4-androstene-3,17-dione to estrone. Implications in estrogen biosynthesis. J Am Chem Soc 96:7325–7329

    CAS  PubMed  Google Scholar 

  254. Goto J, Fishman J (1977) Participation of a nonenzymic transformation in the biosynthesis of estrogens from androgens. Science 195:80–81

    CAS  PubMed  Google Scholar 

  255. Covey DF, Hood WF (1982) A new hypothesis based on suicide substrate inhibitor studies for the mechanism of action of aromatase. Cancer Res 42:3327–3333

    CAS  Google Scholar 

  256. Akhtar M, Wright JN, Lee-Robichaud P (2011) A review of mechanistic studies on aromatase (CYP19) and 17α-hydroxylase-17,20-lyase (CYP17). J Steroid Biochem Mol Biol 125:2–12

    CAS  PubMed  Google Scholar 

  257. Di Nardo G, Gilardi G (2013) Human aromatase: perspective in biochemistry and biotechnology. Biotechnol Appl Biochem 60:92–101

    CAS  PubMed  Google Scholar 

  258. Cheng Q, Sohl CD, Yoshimoto FK, Guengerich FP (2012) Oxidation of dihydrotestosterone by human cytochromes P450 19A1 and 3A4. J Biol Chem 287:29554–29567

    PubMed Central  CAS  PubMed  Google Scholar 

  259. Ghosh D, Griswold J, Erman M, Pangborn W (2009) Structural basis for androgen specificity and oestrogen synthesis in human aromatase, Nature 457:219–223

    PubMed Central  CAS  PubMed  Google Scholar 

  260. Ghosh D, Griswold J, Erman M, Panghorn W (2010) X-ray structure of human aromatase reveals an androgen-specific active site. J Steroid Biochem Mol Biol 118:197–202

    PubMed Central  CAS  PubMed  Google Scholar 

  261. Lo J, Di Nardo G, Griswold J, Egbuta C, Jiang W, Gilardi G, Ghosh D (2013) Structural basis for the functional roles of critical residues in human cytochrome P450 aromatase. Biochemistry 52:5821–5829

    PubMed Central  CAS  PubMed  Google Scholar 

  262. Hackett JC, Brueggemeier RW, Hadad CM (2005) The final catalytic step of cytochrome P450 aromatase: a density functional theory study. J Am Chem Soc 127:5224–5237

    CAS  PubMed  Google Scholar 

  263. Sen K, Hackett JC (2012) Coupled electron transfer and proton hopping in the final step of CYP19-catalyzed androgen aromatization. Biochemistry 51:3039–3049

    PubMed Central  CAS  PubMed  Google Scholar 

  264. Mak PJ, Luthra A, Sligar SG, Kincaid JR (2014) Resonance Raman spectroscopy of the oxygenated intermediates of human CYP19A1 implicates a Compound I intermediate in the final lyase step. J Am Chem Soc 136:4825–4828

    CAS  PubMed  Google Scholar 

  265. Qiu Y, Tittiger C, Wicker-Thomas C, Le Goff G, Young S, Wahnberg E, Fricaux T, Taquet N, Blomquist GJ, Feyereisen R (2012) An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci U S A 109:14858–14863

    PubMed Central  CAS  PubMed  Google Scholar 

  266. Reed JR, Quilici DR, Blomquist GJ, Reitz RC (1995) Proposed mechanism for the cytochrome P450-catalyzed conversion of aldehydes to hydrocarbons in the house fly, Musca domestica. Biochemistry 34:16221–16227

    CAS  PubMed  Google Scholar 

  267. Belcher J, McLean KJ, Matthews S, Woodward LS, Fisher K, Rigby SEJ, Nelson DR, Potts D, Baynham MT, Parker DA, Leys D, Munro AW (2014) Structure and biochemical properties of the alkene producing cytochrome P450 OleTJE (CYP152L1) from the Jeotgalicoccus sp. 8456 bacterium. J Biol Chem 289:6535–6550

    PubMed Central  CAS  PubMed  Google Scholar 

  268. Ortiz de Montellano PR (2008) Mechanism and role of covalent heme binding in CYP4 family P450 enzymes and mammalian peroxidases. Drug Metab Rev 40:405–426

    CAS  PubMed  Google Scholar 

  269. Varfaj F, Zulkifli SNA, Park HG, Challinor VL, De Voss JJ, Ortiz de Montellano PR (2014) Carbon-carbon bond cleavage in activation of the prodrug nabumetone. Drug Metab Dispos 42:828–838

    PubMed  Google Scholar 

  270. Nobilis M, Mijusek J, Szotáková B, Jirásko R, Holcapek, M, Chamseddin C, Jira T, Kucera R, Kunes J, Pour M (2013) Analytical power of LLE-HPLC-PDA-MS/MS in drug metabolism studies: identification of nabumetone metabolites. J Pharm Biomed Anal 80:164–172

    CAS  PubMed  Google Scholar 

  271. Jones G, Prosser DE, Kaufmann M (2012) 25-Hydroxyvitamin D-24-hydroxylase (CYP24A1): its important role in the degradation of vitamin D. Arch Biochem Biophys 523:9–18

    CAS  PubMed  Google Scholar 

  272. Reddy GS, Tserng KY, Thomas BR, Dayal R, Norman AW (1987) Isolation and identification of 1,23-dihydroxy-24,25,26,27-tetranorvitamin D3, a new metabolite of 1,25-dihydroxyvitamin D3 produced in rat kidney. Biochemistry 26:324–331

    CAS  PubMed  Google Scholar 

  273. Makin G, Lohnes D, Byford V, Ray R, Jones G. (1989) Target cell metabolism of 1,25-dihydroxyvitamin D3 to calcitroic acid. Biochem J 262:173–180

    PubMed Central  CAS  PubMed  Google Scholar 

  274. Reddy GS, Tserng KY (1989) Calcitroic acid, end product of renal metabolism of 1,25-dihydroxyvitamin D3 through C-24 oxidation. Biochemistry 28:1763–1769

    CAS  PubMed  Google Scholar 

  275. Beckman MJ, Tadikonda P, Werner E, Prahl J, Yamada S, DeLuca HF (1996) Human 25-hydroxyvitamin D3-24-hydroxylase, a multicatalytic enzyme. Biochemistry 35:8645–8472

    Google Scholar 

  276. Davydov R, Gilep AA, Strushkevich NV, Usanov SA, Hoffman BM (2012) Compound I is the reactive intermediate in the first monooxygenation step during conversion of cholesterol to pregnenolone by cytochrome P450scc: EPR/ENDOR/cryoreduction studies. J Am Chem Soc 134:17149–17156

    PubMed Central  CAS  PubMed  Google Scholar 

  277. Byon CY, Gut M (1980) Steric considerations regarding the biodegradation of cholesterol to pregnenolone. Exclusion of (22S)-22-hydroxycholesterol and 22-ketocholesterol as intermediates. Biochem Biophys Res Commun 94:549–552

    CAS  PubMed  Google Scholar 

  278. Burstein S, Middleditch BS, Gut M (1975) Mass spectrometric study of the enzymic conversion of cholesterol to (22R)-22-hydroxycholesterol, (20R,22R)-20,22-dihydroxycholesterol, and pregnenolone, and of (22R)-22-hydroxycholesterol to the glycol and pregnenolone in bovine adrenocortical preparations. Mode of oxygen incorporation. J Biol Chem 250:9028–9037

    CAS  PubMed  Google Scholar 

  279. Strushkevich N, MacKenzie F, Cherkesova T, Grabovec I, Usanov S, Park HW (2011) Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system. Proc Natl Acad Sci U S A 108:10139–10143

    PubMed Central  CAS  PubMed  Google Scholar 

  280. Mast N, Annalora AJ, Lodowski DT, Palczewski K, Stout CD, Pikuleva IA (2011) Structural basis for three-step sequential catalysis by the cholesterol side chain cleavage enzyme CYP11A1. J Biol Chem 286:5607–5613

    PubMed Central  CAS  PubMed  Google Scholar 

  281. Stok JE, De Voss JJ (2000) Expression, purification, and characterization of bioI: a carbon–carbon bond cleaving cytochrome P450 involved in biotin biosynthesis in Bacillus subtilis. Arch Biochem Biophys 384:351–360

    CAS  PubMed  Google Scholar 

  282. Cryle MJ, Schlichting I (2008) Structural insights from a P450 carrier protein complex reveal how specificity is achieved in the P450Biol ACP complex. Proc Natl Acad Sci U S A 105:15696–15701

    PubMed Central  CAS  PubMed  Google Scholar 

  283. Cryle MJ, De Voss JJ (2004) Carbon-carbon bond cleavage by cytochrome P450BioI (CYP107H1). Chem Commun (Camb) 86–87

    Google Scholar 

  284. Lin H, Tsunematsu Y, Dhingra S, Xu W, Fukutomi M, Chooi YH, Cane DE, Calvo AM, Watanabe K, Tang Y (2014) Generation of complexity in fungal terpene biosynthesis: discovery of a multifunctional cytochrome P450 in the fumagillin pathway. J Am Chem Soc 136:4426–4436

    PubMed Central  CAS  PubMed  Google Scholar 

  285. Lee S, Badieyan S, Bevan DR, Herde M, Gatz C, Tholl D (2010) Herbivore-induced and floral homoterpene volatiles are biosynthesized by a single P450 enzyme (CYP82G1) in Arabidopsis. Proc Natl Acad Sci U S A 107:21205–21210

    PubMed Central  CAS  PubMed  Google Scholar 

  286. Stanjek V, Miksch M, Lueer P, Matern U, Boland W (1999) Biosynthesis of psoralen: mechanism of a cytochrome P450 catalyzed oxidative bond cleavage. Angew Chem Int Ed Engl 38:400–402

    CAS  Google Scholar 

  287. Larbat R, Kellner S, Specker S, Hehn A, Gontier E, Hans J, Bourgaud F, Matern U (2007) Molecular cloning and functional characterization of psoralen synthase, the first committed monooxygenase of furanocoumarin biosynthesis. J Biol Chem 282:542–554

    CAS  PubMed  Google Scholar 

  288. Larbat R, Hehn A, Hans J, Schneider S, Judgé H, Schneider B, Matern U, Bourgaud F (2009) Isolation and functional characterization of CYP71AJ4 encoding for the first P450 monooxygenase of angular furanocoumarin biosynthesis. J Biol Chem 284:4776–4785

    CAS  PubMed  Google Scholar 

  289. Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ (2001) The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci U S A 98:2065–2070

    PubMed Central  CAS  PubMed  Google Scholar 

  290. Rojas MC, Hedden P, Gaskin P, Tudzynki B (2001) The P450–1 gene of Gibberella fujikuroi encodes a multifunctional enzyme in gibberellin biosynthesis. Proc Natl Acad Sci U S A 98:5838–5843

    PubMed Central  CAS  PubMed  Google Scholar 

  291. Zhu D, Seo MJ, Ikeda H, Cane DE (2011) Genome mining in Streptomyces. Discovery of an unprecedented P450-catalyzed oxidative rearrangement that is the final step in the biosynthesis of pentalenolactone. J Am Chem Soc 133:2128–2131

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work from the author’s laboratory was supported by National Institutes of Health Grants GM25515 and AI074824.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Ortiz de Montellano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ortiz de Montellano, P. (2015). Substrate Oxidation by Cytochrome P450 Enzymes. In: Ortiz de Montellano, P. (eds) Cytochrome P450. Springer, Cham. https://doi.org/10.1007/978-3-319-12108-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12108-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12107-9

  • Online ISBN: 978-3-319-12108-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics