Skip to main content

Part of the book series: Studies in Universal Logic ((SUL))

Abstract

In this paper we discuss Henkin’s question concerning a formula that has been described as expressing its own provability. We analyze Henkin’s formulation of the question and the early responses by Kreisel and Löb and sketch how this discussion led to the development of provability logic. We argue that, in addition to that, the question has philosophical aspects that are still interesting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One may compare this with the truth-teller sentence that states its own Σ 1-truth. The answer to the question whether this sentence is provable, refutable, or independent depends on assumptions on the coding, the diagonalization method, and so on [27]. So Henkin’s question for Σ 1-truth instead of provability only admits an answer that is far less robust than Löb’s answer to Henkin’s original question, which is extremely robust. Among the “Henkin-like” problems, the robustness of the answer to Henkin’s original problem may be more the exception than the rule.

  2. 2.

    In what follows, we somewhat neglect the problems involving the choice of the formal system Σ and a coding of syntax. See [27] for some additional remarks.

  3. 3.

    Feferman [17] introduced and used the term “numerate” for “weakly represent.”

  4. 4.

    See, for instance, [51] for a discussion.

  5. 5.

    Kreisel asked that the theory be Σ 1-sound, but that demand is superfluous.

  6. 6.

    See, for instance, [51] for a discussion.

  7. 7.

    Note also that the Kreisel–Henkin construction works in some very weak cases where it is not clear that we have Löb’s theorem.

  8. 8.

    It was first noted by Craig Smoryński in [42].

  9. 9.

    Actually, Löb mentions more conditions in his paper. However, upon analysis, we only need the ones given here.

  10. 10.

    It would be more appropriate to call this logic simply L. Unfortunately, L also suggests language, so the designation GL was preferred.

  11. 11.

    The substitution principle used here can be proved by induction of φ.

  12. 12.

    In her paper [36], Larisa Maksimova shows that, conversely, Beth’s theorem follows from the existence of explicit fixed points. See also [26].

References

  1. Artemov, S.N., Beklemishev, L.D.: Provability logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn. vol. 13, pp. 229–403. Springer, Dordrecht (2004)

    Google Scholar 

  2. Areces, C., de Jongh, D., Hoogland, E.: The interpolation theorem for IL and ILP. In: Proceedings of AiML98. Advances in Modal Logic, Uppsala, Sweden (1998)

    Google Scholar 

  3. Alberucci, L., Facchini, A.: On modal μ-calculus and Gödel–Löb logic. Stud. Log. 91(2), 145–169 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Artemov, S.: Logic of proofs. Ann. Pure Appl. Log. 67(1), 29–59 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beeson, M.: The nonderivability in intuitionistic formal systems of theorems on the continuity of effective operations. J. Symb. Log. 40, 321–346 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beklemishev, L.D.: Proof-theoretic analysis by iterated reflection. Archive 42, 515–552 (2003). doi:10.1007/s00153-002-0158-7

    MathSciNet  MATH  Google Scholar 

  7. Beklemishev, L.D.: Provability algebras and proof-theoretic ordinals. Ann. Pure Appl. Log. 128, 103–124 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beklemishev, L.D.: Reflection principles and provability algebras in formal arithmetic. Russ. Math. Surv. 60(2), 197–268 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beklemishev, L.D.: The Worm principle. Logic Colloquium’02. Lect. Notes Log. 27, 75–95 (2006)

    MathSciNet  Google Scholar 

  10. Bernardi, C.: The uniqueness of the fixed-point in every diagonalizable algebra. Stud. Log. 35(4), 335–343 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beklemishev, L.D., Joosten, J.J., Vervoort, M.: A finitary treatment of the closed fragment of Japaridze’s provability logic. J. Log. Comput. 15(4), 447–463 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Boolos, G.: The Logic of Provability. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  13. Boolos, G., Sambin, G.: Provability: the emergence of a mathematical modality. Stud. Log. 50, 1–23 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Beklemishev, L.D., Visser, A.: Problems in the logic of provability. In: Gabbay, D.M., Concharov, S.S., Zakharyashev, M. (eds.) Mathematical Problems from Applied Logic I. Logics for the XXIst Century. International Mathematical Series, vol. 4, pp. 77–136. Springer, New York (2006)

    Chapter  Google Scholar 

  15. Church, A.: A formulation of the logic of sense and denotation. In: Structure, Method, and Meaning, pp. 3–24 (1951)

    Google Scholar 

  16. de Jongh, D.H.J., Visser, A.: Explicit fixed points in interpretability logic. Stud. Log. 50, 39–50 (1991)

    Article  MATH  Google Scholar 

  17. Feferman, S.: Arithmetization of metamathematics in a general setting. Fundam. Math. 49, 35–92 (1960)

    MathSciNet  MATH  Google Scholar 

  18. Gleit, Z., Goldfarb, W.: Characters and fixed points in provability logic. Notre Dame J. Form. Log. 31, 26–36 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte Math. 38, 173–198 (1931)

    Article  Google Scholar 

  20. Gödel, K.: Ein Interpretation des intuitionistischen Aussagenkalküls. In: Ergebnisse eines mathematischen Kolloquiums, vol. 4, pp. 39–40 (1933). Reprinted as: An interpretation of the intuitionistic propositional calculus. In: Feferman, S. (ed.), Gödel Collected Works I, pp. 300–303, Oxford (1986)

    Google Scholar 

  21. Goryachev, S.: On interpretability of some extensions of arithmetic. Mat. Zametki 40, 561–572 (1986) (in Russian). English translation in Math. Notes 40

    MathSciNet  Google Scholar 

  22. Guaspari, D., Solovay, R.M.: Rosser sentences. Ann. Math. Log. 16, 81–99 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hilbert, D., Bernays, P.: Grundlagen der Mathematik II, Springer, Berlin (1939). 2nd edn. in (1970)

    MATH  Google Scholar 

  24. Henkin, L.: A problem concerning provability. J. Symb. Log. 17, 160 (1952)

    Article  Google Scholar 

  25. Henkin, L.: Review of G. Kreisel: On a problem of Henkin’s. J. Symb. Log. 19(3), 219–220 (1954)

    Article  MathSciNet  Google Scholar 

  26. Hoogland, E.: Definability and Interpolation: Model-Theoretic Investigations. Institute for Logic, Language and Computation, Amsterdam (2001)

    Google Scholar 

  27. Halbach, V., Visser, A.: Self-reference in Arithmetic. Logic Group Preprint Series, vol. 316. Faculty of Humanities, Philosophy, Utrecht (2013)

    Google Scholar 

  28. Iemhoff, R.: On the admissible rules of intuitionistic propositional logic. J. Symb. Log. 66(1), 281–294 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Japaridze, G.: The polymodal logic of provability. In: Intensional Logics and Logical Structure of Theories: Material from the Fourth Soviet–Finnish Symposium on Logic, Telavi, pp. 16–48 (1985)

    Google Scholar 

  30. Japaridze, G., de Jongh, D.: The logic of provability. In: Handbook of Proof Theory, pp. 475–546. North-Holland, Amsterdam (1998)

    Chapter  Google Scholar 

  31. Kreisel, G.: On a problem of Henkin’s. Indag. Math. 15, 405–406 (1953)

    MathSciNet  Google Scholar 

  32. Kreisel, G., Takeuti, G.: Formally self-referential propositions for cut free classical analysis and related systems. Diss. Math. 118, 1–50 (1974)

    MathSciNet  Google Scholar 

  33. Lenzi, G.: Recent results on the modal μ-calculus: a survey. Rend. Ist. Mat. Univ. Trieste 42, 235–255 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Lindström, P.: Provability logic—a short introduction. Theoria 62(1–2), 19–61 (1996)

    MathSciNet  MATH  Google Scholar 

  35. Löb, M.H.: Solution of a problem of Leon Henkin. J. Symb. Log. 20, 115–118 (1955)

    Article  MATH  Google Scholar 

  36. Maksimova, L.: Definability theorems in normal extensions of the probability logic. Stud. Log. 48(4), 495–507 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  37. Raatikainen, P.: Gödel’s incompleteness theorems. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2013). Available via http://plato.stanford.edu/archives/win2013/entries/goedel-incompleteness/

    Google Scholar 

  38. Reidhaar-Olson, L.: A new proof of the fixed-point theorem of provability logic. Notre Dame J. Form. Log. 31(1), 37–43 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sambin, G.: An effective fixed-point theorem in intuitionistic diagonalizable algebras. Stud. Log. 35, 345–361 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shavrukov, V.Yu.: A smart child of Peano’s. Notre Dame J. Form. Log. 35, 161–185 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  41. Smoryński, C.: Beth’s theorem and self-referential sentences. In: Macintyre, A., Pacholski, L., Paris, J. (eds.) Logic Colloquium ’77. Studies in Logic. North-Holland, Amsterdam (1978)

    Google Scholar 

  42. Smoryński, C.: Self-reference and Modal Logic. Springer, New York (1985)

    Book  MATH  Google Scholar 

  43. Smoryński, C.: Arithmetic analogues of McAloon’s unique Rosser sentences. Arch. Math. Log. 28, 1–21 (1989)

    Article  MATH  Google Scholar 

  44. Smoryński, C.: The development of self-reference: Löb’s theorem. In: Drucker, T. (ed.) Perspectives on the History of Mathematical Logic, pp. 110–133. Springer, Berlin (1991)

    Google Scholar 

  45. Solovay, R.M.: Provability interpretations of modal logic. Isr. J. Math. 25, 287–304 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sambin, G., Valentini, S.: The modal logic of provability. The sequential approach. J. Philos. Log. 11(3), 311–342 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  47. Švejdar, V.: On provability logic. Nord. J. Philos. Log. 4(2), 95–116 (2000)

    MATH  Google Scholar 

  48. Van Benthem, J.: Modal frame correspondences and fixed-points. Stud. Log. 83(1–3), 133–155 (2006)

    Article  MATH  Google Scholar 

  49. Visser, A.: On the completeness principle. Ann. Math. Log. 22, 263–295 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  50. Visser, A.: Peano’s smart children: a provability logical study of systems with built-in consistency. Notre Dame J. Form. Log. 30(2), 161–196 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  51. Visser, A.: Faith & Falsity: a study of faithful interpretations and false \({\Sigma}^{0}_{1}\)-sentences. Ann. Pure Appl. Log. 131(1–3), 103–131 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Visser, A.: Löb’s logic meets the μ-calculus. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles, Steps on the Road to Infinity. Essays Dedicated to Jan Willem Klop on the Occasion of His 60th Birthday. LNCS, vol. 3838, pp. 14–25. Springer, Berlin (2005)

    Chapter  Google Scholar 

  53. Wells, R.: Review of: A formulation of the logic of sense and denotation, by Alonzo Church. J. Symb. Log. 17(2), 133–134 (1952)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Volodya Shavrukov for his comments on the penultimate version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Visser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Halbach, V., Visser, A. (2014). The Henkin Sentence. In: Manzano, M., Sain, I., Alonso, E. (eds) The Life and Work of Leon Henkin. Studies in Universal Logic. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-09719-0_17

Download citation

Publish with us

Policies and ethics