Skip to main content

A Brief Survey of the Mathematics of Probability Theory

  • Chapter
Stochastic Processes

Abstract

In this chapter the mathematical foundations of statistics and stochastic processes are presented. Probability spaces, probability measures and densities as well as random variables are defined and examples for these mathematical structures in physics are given. The maximum entropy principle is presented as the basis to obtain a priori probabilities for a given problem. The central limit theorem is discussed and the theory of extreme value distributions is presented. For the theory of stochastic processes we focus on Markov processes and Martingales as these classes of processes underlie all applications discussed in later chapters. The master equation, the Fokker-Planck equation and Itô stochastic differential equations are discussed as the equations of motion for these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actually when information (or lack thereof) is measured in bits, the logarithm to basis 2 instead of the natural logarithm needs to be used, but this just leads to a constant shift in (2.20).

  2. 2.

    Generally, ‘iff’ is taken to mean ‘if and only if’, a necessary and sufficient condition.

  3. 3.

    A non-degenerate distribution is the opposite of a degenerate distribution. A distribution of a random variable is called degenerate, if it is a delta function, i.e., it is 1 for one value of the random variable and 0 otherwise. The corresponding cumulative distribution is the Heaviside step function.

References

  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970)

    Google Scholar 

  2. L. Arnold, Stochastic Differential Equations: Theory and Applications (Wiley, New York, 1974)

    MATH  Google Scholar 

  3. N.H. Bingham, R. Kiesel, Risk-Neutral Valuation (Springer, London, 1998)

    Book  MATH  Google Scholar 

  4. L. de Haan, A. Ferreira, Extreme Value Theory: An Introduction (Springer, Berlin, 2006)

    Google Scholar 

  5. E.B. Dynkin, Markov Processes, vol. 1 (Springer, Berlin, 1965)

    MATH  Google Scholar 

  6. E.B. Dynkin, Markov Processes, vol. 2 (Springer, Berlin, 1965)

    MATH  Google Scholar 

  7. P. Embrechts, C. Klüppelberg, T. Mikosch, Modelling Extremal Events for Insurance and Finance (Springer, Berlin, 2008)

    Google Scholar 

  8. W. Feller, An Introduction to Probability Theory and its Applications, vol. 1 (Wiley, New York, 1966)

    MATH  Google Scholar 

  9. W. Feller, An Introduction to Probability Theory and its Applications, vol. 2 (Wiley, New York, 1966)

    MATH  Google Scholar 

  10. R. Frigg, C. Werndl, Entropy—a guide for the perplexed, in Probabilities in Physics, ed. by C. Beisbart, S. Hartmann (Oxford University Press, Oxford, 2011)

    Google Scholar 

  11. C.W. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences (Springer, Berlin, 2009)

    Google Scholar 

  12. B.W. Gnedenko, A.N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables (Addison-Wesley, Reading, 1954)

    MATH  Google Scholar 

  13. P. Gregory, Bayesian logical data analysis for the physical sciences: a comparative approach with mathematica support (Cambridge University Press, Cambridge, 2005)

    Book  Google Scholar 

  14. P. Hänggi, H. Thomas, Stochastic processes: time evolution, symmetries and linear response. Phys. Rep. 88, 207 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  15. J. Honerkamp, Statistical Physics (Springer, Berlin, 1998)

    Book  MATH  Google Scholar 

  16. N. Ikeda, S. Watanabe, M. Fukushima, H. Kunita, Itô’s Stochastic Calculus and Probability Theory (Springer, Tokyo, 1996)

    Book  MATH  Google Scholar 

  17. K. Itô, H.P. McKean Jr., Diffusion Processes and Their Sample Paths (Springer, Berlin, 1996)

    MATH  Google Scholar 

  18. E.T. Jaynes, Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. E.T. Jaynes, Information theory and statistical mechanics. II. Phys. Rev. 108, 171 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  20. E.T. Jaynes, Probability Theory: The Logic of Science (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

  21. N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1985)

    Google Scholar 

  22. I. Karatzas, S.E. Shreve, Brownian motion and stochastic calculus (Springer, Berlin, 1999)

    Google Scholar 

  23. A. Khintchine, Korrelationstheorie der stationären stochastischen Prozesse. Math. Ann. 109, 604 (1934)

    Article  MathSciNet  Google Scholar 

  24. P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, Berlin, 1995)

    Google Scholar 

  25. A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung. Ergebnisse der Math., vol. 2 (Springer, Berlin, 1933)

    Book  Google Scholar 

  26. H.C. Öttinger, Stochastic Processes in Polymeric Fluids (Springer, Berlin, 1996)

    Book  MATH  Google Scholar 

  27. I. Oppenheim, K. Shuler, G.H. Weiss, The Master Equation (MIT Press, Cambridge, 1977)

    Google Scholar 

  28. L.E. Reichl, A Modern Course in Statistical Physics (VCH, Weinheim, 2009)

    Google Scholar 

  29. H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications (Springer, Berlin, 1996)

    MATH  Google Scholar 

  30. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379 (1948). See also Bell Syst. Tech. J. 27, 623 (1948)

    MathSciNet  MATH  Google Scholar 

  31. A. Wehrl, General properties of entropy. Rev. Mod. Phys. 50, 221 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  32. D. Williams, Probability with Martingales (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paul, W., Baschnagel, J. (2013). A Brief Survey of the Mathematics of Probability Theory. In: Stochastic Processes. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00327-6_2

Download citation

Publish with us

Policies and ethics