Skip to main content

Behavioural and physiological effects of electrical stimulation in the nucleus accumbens: a review

  • Chapter
Operative Neuromodulation

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 97/2))

Abstract

Electrical stimulation (ES) in the brain is becoming a new treatment option in patients with treatment-resistant obsessive-compulsive disorder (OCD). A possible brain target might be the nucleus accumbens (NACC). This review aims to summarise the behavioural and physiological effects of ES in the NACC in humans and in animals and to discuss these findings with regard to neuroanatomical, electrophysiological and behavioural insights. The results clearly demonstrate that ES in the NACC has an effect on reward, activity, fight-or-flight, exploratory behaviour and food intake, with evidence for only moderate physiological effects. Seizures were rarely observed. Finally, the results of ES studies in patients with treatment-resistant OCD and in animal models for OCD are promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott A (2002) Brain implants show promise against obsessive disorder. Nature 419: 658

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Aulsebrook LH, Holland RC (1969) Central regulation of oxytocin release with and without vasopressin release. Am J Physiol 216: 818ā€“829

    PubMedĀ  CASĀ  Google ScholarĀ 

  3. Baskin DS, Mehler WR, Hosobuchi Y, Richardson DE, Adams JE, Flitter MA (1986) Autopsy analysis of the safety, efficacy and cartography of electrical stimulation of the central gray in humans. Brain Res 371: 231ā€“236

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Belleau ML, Warren RA (2000) Postnatal development of electrophysiological properties of nucleus accumbens neurons. J Neurophysiol 84: 2204ā€“2216

    PubMedĀ  CASĀ  Google ScholarĀ 

  5. Benjamin D, Grant ER, Pohorecky LA (1993) Naltrexone reverses ethanol-induced dopamine release in the nucleus accumbens in awake, freely moving rats. Brain Res 621: 137ā€“140

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Berendse HW, Groenewegen HJ (1990) Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum. J Comp Neurol 299: 187ā€“228

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Bland ST, Twining C, Watkins LR, Maier SF (2003) Stressor controllability modulates stress-induced serotonin but not dopamine efflux in the nucleus accumbens shell. Synapse 49: 206ā€“208

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Bowers WJ, Zacharko RM, Anisman H (1987) Evaluation of stressor effects on intracranial self-stimulation from the nucleus accumbens and the substantia nigra in a current intensity paradigm. Behav Brain Res 23: 85ā€“93

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. Brog JS, Salyapongse A, Deutch AY, Zahm DS (1993) The patterns of afferent innervation of the core and shell in the ā€œaccumbensā€ part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338: 255ā€“278

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Brun P, Steinberg R, Le Fur G, Soubrie P (1995) Blockade of neurotensin receptor by SR 48692 potentiates the facilitatory effect of haloperidol on the evoked in vivo dopamine release in the rat nucleus accumbens. J Neurochem 64: 2073ā€“2079

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Buchanan SL, Thompson RH, Maxwell BL, Powell DA (1994) Efferent connections of the medial prefrontal cortex in the rabbit. Exp Brain Res 100: 469ā€“483

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Chang HT, Kitai ST (1985) Projection neurons of the nucleus accumbens: an intracellular labeling study. Brain Res 347: 112ā€“116

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Chiba T, Kayahara T, Nakano K (2001) Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Res 888: 83ā€“101

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Churchill L, Kalivas PW (1994) A topographically organized gamma-aminobutyric acid projection from the ventral pallidum to the nucleus accumbens in the rat. J Comp Neurol 345: 579ā€“595

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Clark D, Chiodo LA (1988) Electrophysiological and pharmacological characterization of identified nigrostriatal and mesoaccumbens dopamine neurons in the rat. Synapse 2: 474ā€“485

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. De Deurwaerdere P, Moison D, Navailles S, Porras G, Spampinato U (2005) Regionally and functionally distinct serotonin receptors control in vivo dopamine outflow in the rat nucleus accumbens. J Neurochem 94: 140ā€“149

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. DeFrance JF, Marchand JF, Sikes RW, Chronister RB, Hubbard JI (1985) Characterization of fimbria input to nucleus accumbens. J Neurophysiol 54: 1553ā€“1567

    PubMedĀ  CASĀ  Google ScholarĀ 

  18. DeFrance JF, Marchand JE, Stanley JC, Sikes RW, Chronister RB (1980) Convergence of excitatory amygdaloid and hippocampal input in the nucleus accumbens septi. Brain Res 185: 183ā€“186

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Deutch AY, Bourdelais AJ, Zahm DS (1993) The nucleus accumbens core and shell: accumbal compartments and their functional attributes. In: Kalivas PW, Barnes CD (eds) Limbic motor circuits and neuropsychiatry. CRC Press, pp 45ā€“88

    Google ScholarĀ 

  20. Dray A, Oakley NR (1978) Projections from nucleus accumbens to globus pallidus and substantia nigra in the rat. Experientia 34: 68ā€“70

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  21. Eichler AJ, Antelman SM (1979) Sensitization to amphetamine and stress may involve nucleus accumbens and medial frontal cortex. Brain Res 176: 412ā€“416

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Fallon JH, Moore RY (1978) Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J Comp Neurol 180: 545ā€“580

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Ferry AT, Ongur D, An X, Price JL (2000) Prefrontal cortical projections to the striatum in macaque monkeys: evidence for an organization related to prefrontal networks. J Comp Neurol 425: 447ā€“470

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  24. Finch DM, Gigg J, Tan AM, Kosoyan OP (1995) Neurophysiology and neuropharmacology of projections from entorhinal cortex to striatum in the rat. Brain Res 670: 233ā€“247

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  25. Frankel RJ, Jenkins JS, Wright JJ, Khan MU (1976) Effect of brain stimulation on aldosterone secretion in the rhesus monkey (Macaca Mulatta). J Endocrinol 71: 383ā€“391

    PubMedĀ  CASĀ  Google ScholarĀ 

  26. Frankel RJ, Jenkins JS, Wright JJ (1978) Pituitary-adrenal response to stimulation of the limbic system and lateral hypothalamus in the rhesus monkey (Macacca mulatta). Acta Endocrinol (Copenh) 88: 209ā€“216

    PubMedĀ  CASĀ  Google ScholarĀ 

  27. Gabriƫls L (2004) Electrical brain stimulation in treatment refractory obsessive-compulsive disorder, University of Antwerpen

    Google ScholarĀ 

  28. Gao G, Wang X, He S, Li W, Wang Q, Liang Q, Zhao Y, Hou F, Chen L, Li A (2003) Clinical study for alleviating opiate drug psychological dependence by a method of ablating the nucleus accumbens with stereotactic surgery. Stereotact Funct Neurosurg 81: 96ā€“104

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  29. Gariano RF, Tepper JM, Sawyer SF, Young SJ, Groves PM (1989) Mesocortical dopaminergic neurons. 1. Electrophysiological properties and evidence for soma-dendritic autoreceptors. Brain Res Bull 22: 511ā€“516

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. Geyer MA, Markou A (1995) Animal models of psychiatric disorders. In: Bloom FE, Kupfer D (eds) Psychopharmacology: fourth generation of progress. Raven, New York, pp 787ā€“798

    Google ScholarĀ 

  31. Gnanalingham KK, Smith LA, Hunter AJ, Jenner P, Marsden CD (1993) Alterations in striatal and extrastriatal D-1 and D-2 dopamine receptors in the MPTP-treated common marmoset: an autoradiographic study. Synapse 14: 184ā€“194

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. Goldstein JM, Siegel J (1980) Suppression of attack behavior in cats by stimulation of ventral tegmental area and nucleus accumbens. Brain Res 183: 181ā€“192

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. Goldstein JM, Siegel J (1981) Stimulation of ventral tegmental area and nucleus accumbens reduce receptive fields for hypothalamic biting reflex in cats. Exp Neurol 72: 239ā€“246

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  34. Gorelova N, Yang CR (1997) The course of neural projection from the prefrontal cortex to the nucleus accumbens in the rat. Neuroscience 76: 689ā€“706

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  35. Goto Y, Oā€™Donnell P (2001) Network synchrony in the nucleus accumbens in vivo. J Neurosci 21: 4498ā€“4504

    PubMedĀ  CASĀ  Google ScholarĀ 

  36. Greenberg BD, Price LH, Rauch SL, Friehs G, Noren G, Malone D, Carpenter LL, Rezai AR, Rasmussen SA (2003) Neurosurgery for intractable obsessive-compulsive disorder and depression: critical issues. Neurosurg Clin N Am 14: 199ā€“212

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  37. Groenewegen HJ, Wright CI, Beijer AV, Voorn P (1999) Convergence and segregation of ventral striatal inputs and outputs. Ann N Y Acad Sci 877: 49ā€“63

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. Haber SN, Lynd-Balta E, Mitchell SJ (1993) The organization of the descending ventral pallidal projections in the monkey. J Comp Neurol 329: 111ā€“128

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. Haber SN, McFarland NR (1999) The concept of the ventral striatum in nonhuman primates. Ann N Y Acad Sci 877: 33ā€“48

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  40. Hano J, Przewlocki R, Smialowska M, Chlapowska M, Rokosz-Pelc A (1978) The effect of electric stimulation of caudate nucleus and nucleus accumbens septi on serotonergic neurons in the rat brain. Pol J Pharmacol Pharm 30: 475ā€“481

    PubMedĀ  CASĀ  Google ScholarĀ 

  41. Heimer L, Zahm DS, Churchill L, Kalivas PW, Wohltmann C (1991) Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience 41: 89ā€“125

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  42. Henderson JM, Oā€™Sullivan DJ, Pell M, Fung VS, Hely MA, Morris JG, Halliday GM (2001) Lesion of thalamic centromedian ā€” parafascicular complex after chronic deep brain stimulation. Neurology 56: 1576ā€“1579

    PubMedĀ  CASĀ  Google ScholarĀ 

  43. Holsheimer J, Demeulemeester H, Nuttin B, de Sutter P (2000) Identification of the target neuronal elements in electrical deep brain stimulation. Eur J Neurosci 12: 4573ā€“4577

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  44. Hunt GE, McGregor IS (2002) Contrasting effects of dopamine antagonists and frequency reduction on Fos expression induced by lateral hypothalamic stimulation. Behav Brain Res 132: 187ā€“201

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  45. Ichikawa J, Chung YC, Li Z, Dai J, Meltzer HY (2002) Cholinergic modulation of basal and amphetamine-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Brain Res 958: 176ā€“184

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  46. Jenike MA (1998) Neurosurgical treatment of obsessive-compulsive disorder. Br J Psychiatry Suppl 35: 79ā€“90

    PubMedĀ  Google ScholarĀ 

  47. Jenkins OF, Atrens DM, Jackson DM (1983) Self-stimulation of the nucleus accumbens and some comparisons with hypothalamic self-stimulation. Pharmacol Biochem Behav 18: 585ā€“591

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  48. Jones SR, Garris PA, Kilts CD, Wightman RM (1995) Comparison of dopamine uptake in the basolateral amygdaloid nucleus, caudate-putamen, and nucleus accumbens of the rat. J Neurochem 64: 2581ā€“2589

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  49. Jones DL, Mogenson GJ (1980) Nucleus accumbens to globus pallidus GABA projection: electrophysiological and iontophoretic investigations. Brain Res 188: 93ā€“105

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  50. Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162: 1403ā€“1413

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  51. Kameyama T, Ukai M, Noma S, Hiramatsu M (1982) Differential effects of alpha-, beta-and gamma-endorphins on dopamine metabolism in the mouse brain. Brain Res 244: 305ā€“309

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  52. Kankaanpaa A, Meririnne E, Lillsunde P, Seppala T (1998) The acute effects of amphetamine derivatives on extracellular serotonin and dopamine levels in rat nucleus accumbens. Pharmacol Biochem Behav 59: 1003ā€“1009

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  53. Kao CQ, Wang S (1985) Effect of stimulation of nucleus accumbens and naloxone microinjection on nociceptive unit discharges in the lateral habenular nucleus. Sheng Li Xue Bao 37: 24ā€“30

    PubMedĀ  CASĀ  Google ScholarĀ 

  54. Kelley AE (1999) Functional specificity of ventral striatal compartments in appetitive behaviors. Ann N YAcad Sci 877: 71ā€“90

    ArticleĀ  CASĀ  Google ScholarĀ 

  55. Koikegami H, Hirata Y, Oguma J (1967) Studies on the paralimbic brain structures. Folio Psych Neurol Jpn 21: 151ā€“180

    CASĀ  Google ScholarĀ 

  56. Kokkinidis L, Kirkby RD, McCarter BD, Borowski TB (1989) Alterations in amphetamine-induced locomotor activity and stereotypy after electrical stimulation of the nucleus accumbens and neostriatum. Life Sci 44: 633ā€“641

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  57. Lavin A, Grace AA (1996) Physiological properties of rat ventral pallidal neurons recorded intracellularly in vivo. J Neurophysiol 75: 1432ā€“1443

    PubMedĀ  CASĀ  Google ScholarĀ 

  58. Liegeois JF, Ichikawa J, Meltzer HY (2002) 5-HT(2A) receptor antagonism potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and inhibits that in the nucleus accumbens in a dose-dependent manner. Brain Res 947: 157ā€“165

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  59. Lin HQ, Jackson DM, Atrens DM, Christie MJ, McGregor IS (1997) Serotonergic modulation of 3,4-methylenedioxymethamphetamine (MDMA)-elicited reduction of response rate but not rewarding threshold in accumbal self-stimulation. Brain Res 744: 351ā€“357

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  60. Lippitz BE, Mindus P, Meyerson BA, Kihlstrom L, Lindquist C (1999) Lesion topography and outcome after thermocapsulotomy or gamma knife capsulotomy for obsessive-compulsive disorder: relevance of the right hemisphere. Neurosurgery 44: 452ā€“458

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  61. Lopes da Silva FH, Arnolds DE, Neijt HC (1984) A functional link between the limbic cortex and ventral striatum: physiology of the subiculum accumbens pathway. Exp Brain Res 55: 205ā€“214

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  62. Maeda H, Mogenson GJ (1980) An electrophysiological study of inputs to neurons of the ventral tegmental area from the nucleus accumbens and medial preoptic-anterior hypothalamic areas. Brain Res 197: 365ā€“377

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  63. Mai J, Assheuer J, Paxinos G (2004) Atlas of the human brain, 2nd edn. Elsevier Academic Press, London

    Google ScholarĀ 

  64. Maurice N, Deniau JM, Menetrey A, Glowinski J, Thierry AM (1997) Position of the ventral pallidum in the rat prefrontal cortexbasal ganglia circuit. Neuroscience 80: 523ā€“534

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  65. McCreery DB, Agnew WF, Yuen TG, Bullara L (1990) Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans Biomed Eng 37: 996ā€“1001

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  66. Mello LE, Tan AM, Finch DM (1992) Convergence of projections from the rat hippocampal formation, medial geniculate and basal forebrain onto single amygdaloid neurons: an in vivo extra-and intracellular electrophysiological study. Brain Res 587: 24ā€“40

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  67. Meyerson BA (1998) Neurosurgical treatment of mental disorders: introduction and indications. In: Gildenberg PL, Tasker RR (eds) Textbook of stereotactic and functional neurosurgery. McGraw Hill, New York, pp 1953ā€“1963

    Google ScholarĀ 

  68. Misslin R (2003) The defense system of fear: behavior and neurocircuitry. Neurophysiol Clin 33: 55ā€“66

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  69. Mogenson GJ, Takigawa M, Robertson A, Wu M (1979) Selfstimulation of the nucleus accumbens and ventral tegmented area of Tsai attenuated by microinjections of spiroperidol into the nucleus accumbens. Brain Res 171: 247ā€“259

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  70. Montaron MF, Buser P (1988) Relationships between nucleus medialis dorsalis, pericruciate cortex, ventral tegmental area and nucleus accumbens in cat: an electrophysiological study. Exp Brain Res 69: 559ā€“566

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  71. Montaron MF, Deniau JM, Menetrey A, Glowinski J, Thierry AM (1996) Prefrontal cortex inputs of the nucleus accumbens-nigrothalamic circuit. Neuroscience 71: 371ā€“382

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  72. Morino P, Mascagni F, McDonald A, Hokfelt T (1994) Cholecystokinin corticostriatal pathway in the rat: evidence for bilateral origin from medial prefrontal cortical areas. Neuroscience 59: 939ā€“952

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  73. Moro E, Esselink RJ, Xie J, Hommel M, Benabid AL, Pollak P (2002) The impact on Parkinsonā€™s disease of electrical parameter settings in STN stimulation. Neurology 59: 706ā€“713

    PubMedĀ  CASĀ  Google ScholarĀ 

  74. Mortimer JT, Shealy CN, Wheeler C (1970) Experimental nondestructive electrical stimulation of the brain and spinal cord. J Neurosurg 32: 553ā€“559

    PubMedĀ  CASĀ  Google ScholarĀ 

  75. Murer MG, Pazo JH (1993) Behavioral responses induced by electrical stimulation of the caudate nucleus in freely moving cats. Behav Brain Res 57: 9ā€“19

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  76. Murzi E, Herberg LJ (1982) Anticholinergic treatment reverses haloperidol-induced blockade of self-stimulation of nucleus accumbens no less than of hypothalamus. Q J Exp Psychol B 34 (Pt 1): 49ā€“54

    PubMedĀ  Google ScholarĀ 

  77. Nuttin B, Cosyns P, Demeulemeester H, Gybels J, Meyerson B (1999) Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet 354: 1526

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  78. Nuttin BJ, Gabriels LA, Cosyns PR, Meyerson BA, Andreewitch S, Sunaert SG, Maes AF, Dupont PJ, Gybels JM, Gielen F, Demeulemeester HG (2003) Long-term electrical capsular stimulation in patients with obsessive-compulsive disorder. Neurosurgery 52: 1263ā€“1272

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  79. Oā€™Donnell P, Grace AA (1993) Physiological and morphological properties of accumbens core and shell neurons recorded in vitro. Synapse 13: 135ā€“160

    ArticleĀ  CASĀ  Google ScholarĀ 

  80. Oā€™Donnell P, Grace AA (1995) Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. J Neurosci 15(5 Pt 1): 3622ā€“3639

    CASĀ  Google ScholarĀ 

  81. Oā€™Donnell P, Greene J, Pabello N, Lewis BL, Grace AA (1999) Modulation of cell firing in the nucleus accumbens. Ann N YAcad Sci 877: 157ā€“175

    ArticleĀ  CASĀ  Google ScholarĀ 

  82. Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47: 419ā€“427

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  83. Pallis E, Thermos K, Spyraki C (2001) Chronic desipramine treatment selectively potentiates somatostatin-induced dopamine release in the nucleus accumbens. Eur J Neurosci 14: 763ā€“767

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  84. Phillips AG, Fibiger HC (1978) The role of dopamine in maintaining intracranial self-stimulation in the ventral tegmentum, nucleus accumbens, and medial prefrontal cortex. Can J Psychol 32: 58ā€“66

    PubMedĀ  CASĀ  Google ScholarĀ 

  85. Phillipson OT, Griffiths AC (1985) The topographic order of inputs to nucleus accumbens in the rat. Neuroscience 16: 275ā€“296

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  86. Pitman RK (1989) Animal models of compulsive behavior. Biol Psychiatry 26: 189ā€“198

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  87. Pontieri FE, Tanda G, Di Chiara G (1995) Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the ā€œshellā€ as compared with the ā€œcoreā€ of the rat nucleus accumbens. Proc Natl Acad Sci USA 92: 12304ā€“12308

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  88. Porras G, Di Matteo V, Fracasso C, Lucas G, De Deurwaerdere P, Caccia S, Esposito E, Spampinato U (2002) 5-HT2A and 5-HT2C/2B receptor subtypes modulate dopamine release induced in vivo by amphetamine and morphine in both the rat nucleus accumbens and striatum. Neuropsychopharmacology 26: 311ā€“324

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  89. Prado-Alcala R, Wise RA (1984) Brain stimulation reward and dopamine terminal fields. I. Caudate-putamen, nucleus accumbens and amygdala. Brain Res 297: 265ā€“273

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  90. Predy PA, Kokkindis L (1984) Sensitization to the effects of repeated amphetamine administration on intracranial self-stimulation: evidence for changes in reward processes. Behav Brain Res 13: 251ā€“259

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  91. Rizzone M, Lanotte M, Bergamasco B, Tavella A, Torre E, Faccani G, Melcarne A, Lopiano L (2001) Deep brain stimulation of the subthalamic nucleus in Parkinsonā€™s disease: effects of variation in stimulation parameters. J Neurol Neurosurg Psychiatry 71: 215ā€“219

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  92. Robinson TG, Beart PM (1988) Excitant amino acid projections from rat amygdala and thalamus to nucleus accumbens. Brain Res Bull 20: 467ā€“471

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  93. Rolls ET (1971) Contrasting effects of hypothalamic and nucleus accumbens septi self-stimulation on brain stem single unit activity and cortical arousal. Brain Res 31: 275ā€“285

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  94. Rolls ET (1972) Activation of amygdaloid neurones in reward, eating and drinking elicited by electrical stimulation of the brain. Brain Res 45: 365ā€“381

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  95. Rolls ET, Burton MJ, Mora F (1980) Neurophysiological analysis of brain-stimulation reward in the monkey. Brain Res 194: 339ā€“357

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  96. Ross AR, Malmo RB (1979) Cardiovascular responses to rewarding brain stimulation. Physiol Behav 22: 1005ā€“1013

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  97. Rowland V, MacIntyre WJ, Bidder TG (1960) The production of brain lesions with electrical current. II. Bidirectional currents. J Neurosurg 17: 55ā€“69

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  98. Saphier DJ (1985) Nucleus accumbens and preoptic area stimulation: tuberoinfundibular single unit responses, modulation of electrical activity and gonadotrophin secretion. Exp Brain Res 57: 400ā€“403

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  99. Sasaki K, Ono T, Muramoto K, Nishino H, Fukuda M (1984) The effects of feeding and rewarding brain stimulation on lateral hypothalamic unit activity in freely moving rats. Brain Res 322: 201ā€“211

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  100. Saxena S, Rauch SL (2000) Functional neuroimaging and the neuroanatomy of obsessive-compulsive disorder. Psychiatr Clin North Am 23: 563ā€“586

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  101. Scarnati E, Campana E, Pacitti C (1983) The functional role of the nucleus accumbens in the control of the substantia nigra: electrophysiological investigations in intact and striatum-globus pallidus lesioned rats. Brain Res 265: 249ā€“257

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  102. Schoemaker H, Nickolson VJ (1980) Effects of des-Tyr-gamma-endorphin on dopamine release from various rat brain regions in vitro. Life Sci 27: 1371ā€“1376

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  103. Schuurman PR, Bosch DA, Bossuyt PM, Bonsel GJ, van Someren EJ, de Bie RM, Merkus MP, Speelman JD (2000) A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. N Engl J Med 342: 461ā€“468

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  104. Seeger TF, Gardner EL (1979) Enhancement of self-stimulation behavior in rats and monkeys after chronic neuroleptic treatment: evidence for mesolimbic supersensitivity. Brain Res 175: 49ā€“57

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  105. Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290: 213ā€“242

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  106. Sesack SR, Pickel VM (1990) In the rat medial nucleus accumbens, hippocampal and catecholaminergic terminals converge on spiny neurons and are in apposition to each other. Brain Res 527: 266ā€“279

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  107. Shibuki K (1984) Supraoptic neurosecretory cells: synaptic inputs from the nucleus accumbens in the rat. Exp Brain Res 53: 341ā€“348

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  108. Silberstein SD (1998) Methysergide. Cephalalgia 18: 421ā€“435

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  109. Simon H, Stinus L, Tassin JP, Tassin JP, Lavielle S, Blanc G, Thierry AM, Glowinski J, Le Moal M (1979) Is the dopaminergic mesocorticolimbic system necessary for intracranial self-stimulation? Biochemical and behavioral studies from A10 cell bodies and terminals. Behav Neural Biol 27: 125ā€“145

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  110. Sturm V, Lenartz D, Koulousakis A, Treuer H, Herholz K, Klein JC, Klosterkotter J (2003) The nucleus accumbens: a target for deep brain stimulation in obsessive-compulsive-and anxiety-disorders. J Chem Neuroanat 26: 293ā€“299

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  111. Szechtman H, Eckert MJ, Tse WS, Boersma JT, Bonura CA, McClelland JZ, Culver KE, Eilam D (2001) Compulsive checking behavior of quinpirole-sensitized rats as an animal model of Obsessive-Compulsive Disorder (OCD): form and control. BMC Neurosci 2: 4

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  112. Taber MT, Zernig G, Fibiger HC (1998) Opioid receptor modulation of feeding-evoked dopamine release in the rat nucleus accumbens. Brain Res 785: 24ā€“30

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  113. Takagishi M, Chiba T (1991) Efferent projections of the infra-limbic (area 25) region of the medial prefrontal cortex in the rat: an anterograde tracer PHA-L study. Brain Res 566: 26ā€“39

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  114. Tarr RS (1982) Species typical display behavior following stimulation of the reptilian striatum. Physiol Behav 29: 615ā€“620

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  115. Tass PA, Klosterkotter J, Schneider F, Lenartz D, Koulousakis A, Sturm V (2003) Obsessive-compulsive disorder: development of demand-controlled deep brain stimulation with methods from stochastic phase resetting. Neuropsychopharmacology 28Suppl 1: S27ā€“S34

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  116. Uhl GR, Hall FS, Sora I (2002) Cocaine, reward, movement and monoamine transporters. Mol Psychiatry 7: 21ā€“26

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  117. van Kuyck K, Demeulemeester H, Feys H, De Weerdt W, Dewil M, Tousseyn T, De Sutter P, Gybels J, Bogaerts K, Dom R, Nuttin B (2003) Effects of electrical stimulation or lesion in nucleus accumbens on the behaviour of rats in a T-maze after administration of 8-OH-DPAT or vehicle. Behav Brain Res 140: 165ā€“173

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  118. Van Ree JM, Otte AP (1980) Effects of (Des-Tyr1)-gamma-endorphin and alpha-endorphin as compared to haloperidol and amphetamine on nucleus accumbens self-stimulation. Neuropharmacology 19: 429ā€“434

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  119. Velley L, Cardo B (1979) Long-term improvement of learning after early electrical stimulation of some central nervous structures: is the effect structure and age-dependent? Brain Res Bull 4: 459ā€“466

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  120. Verhoef JC, Scholtens H, Vergeer EG, Witter A (1985) Des-Tyr1-gamma-endorphin (DT gamma E) and des-enkephalin-gamma-endorphin (DE gamma E): plasma profile and brain uptake after systemic administration in the rat. Peptides 6: 467ā€“474

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  121. Walaas I, Fonnum F (1979) The distribution and origin of glutamate decarboxylase and choline acetyltransferase in ventral pallidum and other basal forebrain regions. Brain Res 177: 325ā€“336

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  122. Way WL, Fields HL, Schumacher MA (2001) Opioid analgesics and antagonists. In: Katzung BG (ed) Basic & Clinical Pharmacology. Lange Medical Books/McGraw-Hill, pp 512ā€“529

    Google ScholarĀ 

  123. West TE, Wise RA (1988) Effects of naltrexone on nucleus accumbens, lateral hypothalamic and ventral tegmental self-stimulation rate-frequency functions. Brain Res 462: 126ā€“133

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  124. White FJ, Wang RY (1986) Electrophysiological evidence for the existence of both D-1 and D-2 dopamine receptors in the rat nucleus accumbens. J Neurosci 6: 274ā€“280

    PubMedĀ  CASĀ  Google ScholarĀ 

  125. Wieczorek W, Kruk ZL (1995) Influences of neuronal uptake and D2 autoreceptors on regulation of extracellular dopamine in the core, shell and rostral pole of the rat nucleus accumbens. Brain Res 699: 171ā€“182

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  126. Willner P (1984) The validity of animal models of depression. Psychopharmacology (Berl) 83: 1ā€“16

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  127. Willner P (1986) Validation criteria for animal models of human mental disorders: learned helplessness as a paradigm case. Prog Neuropsychopharmacol Biol Psychiatry 10: 677ā€“690

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  128. Wilson WJ (1983) Nucleus accumbens inhibits specific motor but not nonspecific classically conditioned responses. Brain Res Bull 10: 505ā€“515

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  129. Winter C, Jalali R, Hosmann K, Kupsch A, Morgenstern R, Juckel G (2004) High frequency stimulation of the accumbens, the subthalamic nucleus, and the amygdala differentially affects quinpirole induced compulsive checking behavior in rats. Society for Neuroscience, Washington, DC, p 118

    Google ScholarĀ 

  130. Wood PB (2004) Stress and dopamine: implications for the pathophysiology of chronic widespread pain. Med Hypotheses 62: 420ā€“424

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  131. Woodruff GN, McCarthy PS, Walker RJ (1976) Studies on the pharmacology of neurones in the nucleus accumbens of the rat. Brain Res 115: 233ā€“242

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  132. Woods A, Smith C, Szewczak M, Dunn RW, Cornfeldt M, Corbett R (1993) Selective serotonin re-uptake inhibitors decrease schedule-induced polydipsia in rats: a potential model for obsessive compulsive disorder. Psychopharmacology (Berl) 112: 195ā€“198

    ArticleĀ  CASĀ  Google ScholarĀ 

  133. Wright J, Kelly D, Mitchell-Heggs N, Frankel R (1977) Respiratory changes induced by intracranial stimulation: anatomical localizing value and related functional effects in rhesus monkeys. In: Sweet WH, Obrador S, Martin-Rodriguez JG (eds) Neurosurgical treatment in psychiatry, pain, and epilepsy. University Park Press, Baltimore, pp 751ā€“756

    Google ScholarĀ 

  134. Yadin E, Friedman E, Bridger WH (1991) Spontaneous alternation behavior: an animal model for obsessive-compulsive disorder? Pharmacol Biochem Behav 40: 311ā€“315

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  135. Yang CR, Mogenson GJ (1984) Electrophysiological responses of neurones in the nucleus accumbens to hippocampal stimulation and the attenuation of the excitatory responses by the mesolimbic dopaminergic system. Brain Res 324: 69ā€“84

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  136. Yang CR, Mogenson GJ (1986) Dopamine enhances terminal excitability of hippocampal-accumbens neurons via D2 receptor: role of dopamine in presynaptic inhibition. J Neurosci 6: 2470ā€“2478

    PubMedĀ  CASĀ  Google ScholarĀ 

  137. Yang CR, Mogenson GJ (1989) Ventral pallidal neuronal responses to dopamine receptor stimulation in the nucleus accumbens. Brain Res 489: 237ā€“246

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  138. Yim CY, Mogenson GJ (1980) Electrophysiological studies of neurons in the ventral tegmental area of Tsai. Brain Res 181: 301ā€“313

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  139. Yim CY, Mogenson GJ (1980) Effect of picrotoxin and nipecotic acid on inhibitory response of dopaminergic neurons in the ventral tegmental area to stimulation of the nucleus accumbens. Brain Res 199: 466ā€“473

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  140. Yim CY, Mogenson GJ (1982) Response of nucleus accumbens neurons to amygdala stimulation and its modification by dopamine. Brain Res 239: 401ā€“415

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  141. Yim CY, Mogenson GJ (1988) Neuromodulatory action of dopamine in the nucleus accumbens: an in vivo intracellular study. Neuroscience 26: 403ā€“415

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  142. Zaborszky L, Alheid GF, Beinfeld MC, Eiden LE, Heimer L, Palkovits M (1985) Cholecystokinin innervation of the ventral striatum: a morphological and radioimmunological study. Neuroscience 14: 427ā€“453

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  143. Zaborszky L, Cullinan WE (1992) Projections from the nucleus accumbens to cholinergic neurons of the ventral pallidum: a correlated light and electron microscopic double-immunolabeling study in rat. Brain Res 570: 92ā€“101

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  144. Zacharko RM, Bowers WJ, Kokkinidis L, Anisman H (1983) Region-specific reductions of intracranial self-stimulation after uncontrollable stress: possible effects on reward processes. Behav Brain Res 9: 129ā€“141

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  145. Zacharko RM, Bowers WJ, Anisman H (1984) Responding for brain stimulation: stress and desmethylimipramine. Prog Neuropsychopharmacol Biol Psychiatry 8: 601ā€“606

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  146. Zacharko RM, Bowers WJ, Kelley MS, Anisman H (1984) Prevention of stressor-induced disturbances of self-stimulation by desmethylimipramine. Brain Res 321: 175ā€“179

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  147. Zacharko RM, Kasian M, Irwin J, Zalcman S, LaLonde G, MacNeil G, Anisman H (1990) Behavioral characterization of intracranial self-stimulation from mesolimbic, mesocortical, nigrostriatal, hypothalamic and extra-hypothalamic sites in the non-inbred CD-1 mouse strain. Behav Brain Res 36: 251ā€“281

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  148. Zacharko RM, Lalonde GT, Kasian M, Anisman H (1987) Strain-specific effects of inescapable shock on intracranial self-stimulation from the nucleus accumbens. Brain Res 426: 164ā€“168

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  149. Zacharko RM, Zalcman S, Macneil G, Andrews M, Mendella PD, Anisman H (1997) Differential effects of immunologic challenge on self-stimulation from the nucleus accumbens and the substantia nigra. Pharmacol Biochem Behav 58: 881ā€“886

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  150. Zaczek R, Hedreen JC, Coyle JT (1979) Evidence for a hippocampal-septal glutamatergic pathway in the rat. Exp Neurol 65: 145ā€“156

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  151. Zahm DS (2000) An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neurosci Biobehav Rev 24: 85ā€“105

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  152. Zahm DS, Heimer L (1993) Specificity in the efferent projections of the nucleus accumbens in the rat: comparison of the rostral pole projection patterns with those of the core and shell. J Comp Neurol 327: 220ā€“232

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart Nuttin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2007 Springer-Verlag

About this chapter

Cite this chapter

van Kuyck, K. et al. (2007). Behavioural and physiological effects of electrical stimulation in the nucleus accumbens: a review. In: Sakas, D.E., Simpson, B.A. (eds) Operative Neuromodulation. Acta Neurochirurgica Supplements, vol 97/2. Springer, Vienna. https://doi.org/10.1007/978-3-211-33081-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-33081-4_43

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-33080-7

  • Online ISBN: 978-3-211-33081-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics