Skip to main content

Recent Advancements in the Use of Entomopathogens and Nematophagous Mites for the Management of Plant Parasitic Nematodes

  • Chapter
  • First Online:
Sustainable Management of Nematodes in Agriculture, Vol.2: Role of Microbes-Assisted Strategies

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP,volume 19))

  • 112 Accesses

Abstract

Plant-parasitic nematodes (PPN) are one of the most damaging crop pests with broad host ranges and can cause billions of dollars of crop losses, worldwide. Different control measures, including soil organic amendments, green manure, resistant varieties, crop rotation, chemical nematicides, and biological control agents, have been evaluated for the management of PPN, all with low to moderate success. Concerns regarding the deleterious effects of synthetic nematicides on non-target soil organisms or the environment are increasing, leading to enhanced interest in alternative control strategies. In this chapter we review and discuss potential PPN biological control agents, including fungi, bacteria, nematodes, and nematophagous mites. Relevant case studies focused on the potential of these agents under laboratory, greenhouse, and/or field conditions are highlighted. We also emphasize the factors affecting their efficacy against PPN management, providing suggestions for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aatif, H. M., Javed, N., Khan, S. A., & Ahmed, S. (2012). Virulence of Xenorhabdus and Photorhabdus bacteria and their toxins against juvenile’s immobilization of Meloidogyne incognita. Pakistan Journal of Phytopathology, 24, 170–174.

    Google Scholar 

  • Aatif, H. M., Javed, N., Khan, S. A., Ahmed, S., & Raheel, M. (2015). Virulence of entomopathogenic nematodes against Meloidogyne incognita (Kofoid and White, 1919) Chitwood (1949) for invasion, development and reproduction at different application times in brinjal roots. International Journal of Agriculture and Biology, 17, 201.

    Article  Google Scholar 

  • Aatif, H. M., Javed, N., Ullah, M. I., Lali, S. P., Iqbal, Z., Salman, A., Mustafa, I., Ifitikhar, Y., & Afzal, M. (2016). Biological management of Meloidogyne incognita using entomopathogenic bacterial cell suspensions with other bioproducts in egg plant. Pakistan Journal of Zoology, 48, 887–890.

    CAS  Google Scholar 

  • Aballay, E., Prodan, S., Zamorano, A., & Castaneda-Alvarez, C. (2017). Nematicidal effect of rhizobacteria on plant-parasitic nematodes associated with vineyards. World Journal of Microbiology and Biotechnology, 33, 131.

    Article  CAS  PubMed  Google Scholar 

  • Aballay, E., Prodan, S., Correa, P., & Allende, J. (2020). Assessment of rhizobacterial consortia to manage plant parasitic nematodes of grapevine. Crop Protection, 131, 105103.

    Article  CAS  Google Scholar 

  • Abd-Elgawad, M. M. (2016). Biological control agents of plant-parasitic nematodes. Egyptian Journal of Biological Pest Control, 26, 423–429.

    Google Scholar 

  • Abd-Elgawad, M. M. M., & Askary, T. H. (2015). Impact of phytonematodes on agriculture economy. In T. H. Askary & P. R. P. Martinelli (Eds.), Biocontrol agents of phytonematodes (pp. 3–49). CABI.

    Chapter  Google Scholar 

  • Abd-El-Khair, H., El-Nagdi, W. M., Youssef, M. M., Abd-Elgawad, M. M., & Dawood, M. G. (2019). Protective effect of Bacillus subtilis, B. pumilus, and Pseudomonas fluorescens isolates against root knot nematode Meloidogyne incognita on cowpea. Bulletin of the National Research Centre, 43, 64.

    Article  Google Scholar 

  • Abdel-Salam, M. S., Ameen, H. H., Soliman, G. M., Elkelany, U. S., & Asar, A. M. (2018). Improving the nematicidal potential of Bacillus amyloliquefaciens and Lysinibacillus sphaericus against the root-knot nematode Meloidogyne incognita using protoplast fusion technique. Egyptian Journal Of Biological Pest Control, 28, 31.

    Article  Google Scholar 

  • Abou El-Atta, D. A. E. M., & Osman, M. A. (2016). Development and reproductive potential of Tyrophagus putrescentiae (Acari: Acaridae) on plant-parasitic nematodes and artificial diets. Experimental and Applied Acarology, 68, 477–483.

    Article  CAS  PubMed  Google Scholar 

  • Abou El-Atta, D. A. E. M., Ghazy, N. A., & Osman, M. A. (2014a). Effects of temperature on the life-history traits of Sancassania (Caloglyphus) berlesei (Acari: Astigmatina: Acaridae) feeding on root-knot nematodes, Meloidogyne spp. (Nematoda: Meloidogynidae). Experimental and Applied Acarology, 64, 299–307.

    Article  PubMed  Google Scholar 

  • Abou El-Atta, A., Atta, D., Genena, M., & Osman, M. (2014b). Temperature influence on development and life table parameters of the acarid mite, Caloglyphus manuri Eraky& Osman reared on the root-knot nematode, Meloidogyne sp. Acarines: Journal of the Egyptian Society of Acarology, 8, 3–7.

    Google Scholar 

  • Abou El-Atta, D. A. E. M., Habashy, M. G., Mesbah, A. E., & Tawfik, A. A. (2017). Life history of Caloglyphus manure, Sancassania (caloglyphus) berlesei and Tyrophagus putrescentiae (Acari: Acaridae) feeding on root-knot nematodes, Meloidogyne incognita. Journal of Plant Protection and Pathology, 8, 69–72.

    Article  Google Scholar 

  • Adam, M., Hallmann, J., & Heuer, H. (2014). Identification of msp1 gene variants in populations of Meloidogyne incognita using PCR-DGGE. Journal of Nematology, 46, 275–280.

    PubMed Central  PubMed  Google Scholar 

  • Ahrén, D., & Tunlid, A. (2003). Evolution of parasitism in nematode-trapping fungi. Journal of Nematology, 35, 194–197.

    PubMed Central  PubMed  Google Scholar 

  • Al Rehiayani, S. M., & Fouly, A. H. (2005). Cosmolaelaps simplex (Berlese), a polyphagous predatory mite feeding on root-knot nematode Meloidogyne javanica and citrus nematode Tylenchulus semipenetrans. Pakistan Journal of Biological Sciences, 8, 168–174.

    Google Scholar 

  • Al-Ani, L. K. T., Soares, F. E. D. F., Sharma, A., Santos-Villalobos, S. D. L., Valdivia-Padilla, A. V., & Aguilar-Marcelino, L. (2022). Strategy of nematophagous fungi in determining the activity of plant parasitic nematodes and their prospective role in sustainable agriculture. Frontiers in Fungal Biology, 3, 1–9.

    Article  Google Scholar 

  • Alban, R., Guerrero, R., & Toro, M. (2013). Interactions between a root knot nematode (Meloidogyne exigua) and arbuscular mycorrhizae in coffee plant development (Coffea arabica). American Journal of Plant Sciences, 4, 19–23.

    Article  Google Scholar 

  • Almaghrabi, O. A., Massoud, S. I., & Abdelmoneim, T. S. (2013). Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi Journal of Biological Sciences, 20, 57–61.

    Article  PubMed  Google Scholar 

  • Alvarado-Herrejón, M., Larsen, J., Gavito, M. E., Jaramillo-López, P. F., Vestberg, M., Martínez-Trujillo, M., & Carreón-Abud, Y. (2019). Relation between arbuscular mycorrhizal fungi, root-lesion nematodes and soil characteristics in maize agroecosystems. Applied Soil Ecology, 135, 1–8. https://doi.org/10.1016/j.apsoil.2018.10.019

    Article  Google Scholar 

  • Antil, S., Kumar, R., Pathak, D. V., & Kumari, A. (2023). Recent advances in utilizing bacteria as biocontrol agents against plant parasitic nematodes emphasizing Meloidogyne spp. Biological Control, 183, 105244. https://doi.org/10.1016/j.biocontrol.2023.105244

    Article  CAS  Google Scholar 

  • Antonello, A. M., Sartori, T., Silva, M. B., Prophiro, J. S., Pinge-Filho, P., Heermann, R., da Silva, O. S., & Romão, P. R. T. (2019). Anti-Trypanosoma activity of bioactive metabolites from Photorhabdus luminescens and Xenorhabdus nematophila. Experimental Parasitology, 204, 107724.

    Article  CAS  PubMed  Google Scholar 

  • Anwar-ul-Haq, M., Anwar, S. A., Shahid, M., Javed, N., Khan, S. A., & Mehamood, K. (2011). Management of root knot nematode Meloidogyne incognita by plant-growth promoting rhizobacteria on tomato. Pakistan Journal of Zoology, 43, 1027–1031.

    Google Scholar 

  • Ashoub, A. H., & Amara, M. T. (2010). Biocontrol activity of some bacterial genera against root-knot nematode, Meloidogyne incognita. Journal of American Science, 6, 321–328.

    Google Scholar 

  • Baidoo, R., Mengistu, T. M., Brito, J. A., McSorley, R., Stamps, R. H., & Crow, W. T. (2017). Vertical distribution of Pasteuria penetrans parasitizing Meloidogyne incognita on Pittosporum tobira in Florida. Journal of Nematology, 49, 311.

    Article  PubMed Central  PubMed  Google Scholar 

  • Beeman, A. Q., Njus, Z. L., Pandey, S., & Tylka, G. L. (2016). Chip technologies for screening chemical and biological agents against plant-parasitic nematodes. Phytopathology, 106, 1563–1571.

    Article  CAS  PubMed  Google Scholar 

  • Bhuiyan, S. A., Garlick, K., Anderson, J. M., Wickramasinghe, P., & Stirling, G. R. (2018). Biological control of root-knot nematode on sugarcane in soil naturally or artificially infested with Pasteuria penetrans. Australian Plant Pathology, 47, 45–52.

    Article  CAS  Google Scholar 

  • Bishop, A. H., Gowen, S. R., Pembroke, B., & Trotter, J. R. (2007). Morphological and molecular characteristics of a new species of Pasteuria parasitic on Meloidogyne ardenensis. Journal of Invertebrate Pathology, 96, 28–33.

    Article  CAS  PubMed  Google Scholar 

  • Bravo, A., Sarabia, S., Lopez, L., Ontiveros, H., Abarca, C., Ortiz, A., et al. (1998). Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Applied and Environmental Microbiology, 64, 4965–4972.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Briar, S. S., Wichman, D., & Reddy, G. V. P. (2016). Plant-parasitic nematode problems in organic agriculture. In D. Nandwani (Ed.), Organic farming for sustainable agriculture, sustainable development and biodiversity (pp. 107–122). Springer.

    Chapter  Google Scholar 

  • Brito, O. D. C., Hernandes, I., Ferreira, J. C. A., Cardoso, M. R., Alberton, O., & Dias-Arieira, C. R. (2018). Association between arbuscular mycorrhizal fungi and Pratylenchus brachyurus in maize crop. Chilean Journal of Agricultural Research, 78, 521–527.

    Article  Google Scholar 

  • Caccia, M., Lax, P., & Doucet, M. E. (2013). Effect of entomopathogenic nematodes on the plant-parasitic nematode, Nacobbus aberrans. Biology and Fertility of Soils, 49, 105–109.

    Article  CAS  Google Scholar 

  • Caccia, M., Marro, N., Dueñas, J. R., Doucet, M. E., & Lax, P. (2018). Effect of the entomopathogenic nematode-bacterial symbiont complex on Meloidogyne hapla and Nacobbus aberrans in short-term greenhouse trials. Crop Protection, 114, 162–166.

    Article  Google Scholar 

  • Cardozo, R. B., & Araújo, F. F. D. (2011). Multiplication of Bacillus subtilis in vinasse and viability to control root-knot in sugarcane. Revista Brasileira de Engenharia Agrícolae Ambiental, 15, 1283–1288.

    Article  Google Scholar 

  • Carrillo, D., De Moraes, G. J., & Peña, J. E. (Eds.). (2015). Prospects for biological control of plant feeding mites and other harmful organisms (Vol. 19). Springer.

    Google Scholar 

  • Castagnola, A., & Stock, S. P. (2014). Common virulence factors and tissue targets of entomopathogenic bacteria for biological control of lepidopteran pests. Insects, 5, 139–166.

    Article  PubMed Central  PubMed  Google Scholar 

  • CastanedaAlvarez, C., Prodan, S., Rosales, I. M., & Aballay, E. (2016). Exoenzymes and metabolites related to the nematicidal effect of rhizobacteria on Xiphinema index Thorne Allen. Journal of Applied Microbiology, 120, 413–424.

    Article  CAS  PubMed  Google Scholar 

  • Castillo, J. D., Lawrence, K. S., & Kloepper, J. W. (2013). Biocontrol of the reniform nematode by Bacillus firmus GB-126 and Paecilomyces lilacinus 251 on cotton. Plant Disease, 97, 967–976.

    Article  PubMed  Google Scholar 

  • Cawoy, H., Bettiol, W., Fickers, P., & Onge, M. (2011). Bacillus-based biological control of plant diseases. In M. Stoytcheva (Ed.), Pesticides in the modern world-pesticides use and management (pp. 273–302). InTech. https://doi.org/10.5772/17184

    Chapter  Google Scholar 

  • Cetintas, R., & Dickson, D. W. (2005). Distribution and downward movement of Pasteuria penetrans in field soil. Journal of Nematology, 37, 155.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Charles, L., Carbone, I., Davies, K. G., Bird, D., Burke, M., Kerry, B. R., & Opperman, C. H. (2005). Phylogenetic analysis of Pasteuria penetrans by use of multiple genetic loci. Journal of Bacteriology, 187, 5700–5708.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, S. Y., & Chen, F. J. (2003). Fungal parasitism of Heterodera glycines eggs as influenced by egg age and pre-colonization of cysts by other fungi. Journal of Nematology, 35, 271–277.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, S. Y., & Dickson, D. W. (2004). Biological control of nematodes by fungal antagonists. In Z. X. Chen, S. Y. Chen, & D. W. Dickson (Eds.), Nematology: Advances and perspectives (Nematode management and utilization) (Vol. II, pp. 343–403). Tsinghua University Press/CABI Publishing.

    Google Scholar 

  • Chen, Y. L., Xu, C. L., Xu, X. N., Xie, H., Zhang, B. X., Qin, H. G., et al. (2013). Evaluation of predation abilities of Blattisocius dolichus (Acari: Blattisociidae) on a plant-parasitic nematode, Radopholus similis (Tylenchida: Pratylenchidae). Experimental and Applied Acarology, 60, 289–298.

    Article  PubMed  Google Scholar 

  • Cheng, F., Wang, J., Song, Z., Cheng, J. E., Zhang, D., & Liu, Y. (2015). Complete genome sequence of Bacillus thuringiensis YC-10, a novel active strain against plant-parasitic nematodes. Journal of Biotechnology, 210, 17–18.

    Article  CAS  PubMed  Google Scholar 

  • Cho, M. R., Yiem, M. S., Jeon, H. Y., Han, H. R., Kim, H. H., Na, S. Y., & Lim, C. K. (2005). Occurrence of Pasteuria spp. associated with plant-parasitic nematodes in Korea. Journal of Asia-Pacific Entomology, 8, 193–197.

    Article  Google Scholar 

  • Ciancio, A., & Mukerji, K. G. (Eds.). (2007). Integrated management and biocontrol of vegetable and grain crops nematodes (Vol. 2). Springer. https://doi.org/10.1007/978-1-4020-6063-2

    Book  Google Scholar 

  • Ciancio, A., Roccuzzo, G., & Ornat Longaron, C. (2016). Regulation of the citrus nematode Tylenchulus semipenetrans by a Pasteuria sp. endoparasite in a naturally infested soil. BioControl, 61, 337–347.

    Article  Google Scholar 

  • Confort, P., & Inomoto, M. (2018). Pasteuria thornei, a novel biological seed treatment for Pratylenchus brachyurus control in soybean. Nematology, 20, 519–523. https://doi.org/10.1163/15685411-00003156

    Article  CAS  Google Scholar 

  • Contina, J. B., Dandurand, L. M., & Knudsen, G. R. (2017). Use of GFP-tagged Trichoderma harzianum as a tool to study the biological control of the potato cyst nematode Globodera pallida. Applied Soil Ecology, 115, 31–37.

    Article  Google Scholar 

  • Couillerot, O., Prigent-Combaret, C., Caballero-Mellado, J., & Moënne-Loccoz, Y. (2009). Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Letters in Applied Microbiology, 48, 505–512.

    Article  CAS  PubMed  Google Scholar 

  • Crow, W. T., Porazinska, D. L., Giblin-Davis, R. M., & Grewal, P. S. (2006). Entomopathogenic nematodes are not an alternative to fenamiphos for management of plant-parasitic nematodes on golf courses in Florida. Journal of Nematology, 38, 52–58.

    PubMed Central  PubMed  Google Scholar 

  • Crow, W. T., Luc, J. E., & Giblin-Davis, R. M. (2011). Evaluation of Econemâ„¢, a formulated Pasteuria sp. bionematicide, for management of Belonolaimus longicaudatus on golf course turf. Journal of Nematology, 43, 101–109.

    PubMed Central  PubMed  Google Scholar 

  • Davies, K. G. (2009). Understanding the interaction between an obligate hyperparasitic bacterium, Pasteuria penetrans and its obligate plant-parasitic nematode host, Meloidogyne spp. Advances in Parasitology, 68, 211–245.

    Article  PubMed  Google Scholar 

  • Davies, K., & Spiegel, Y. (Eds.). (2011). Biological control of plant-parasitic nematodes: Building coherence between microbial ecology and molecular mechanisms (Vol. 11). Springer.

    Google Scholar 

  • Davies, K. G., Flynn, C. A., Laird, V., & Kerry, B. R. (1990). The life-cycle, population dynamics and host specificity of a parasite of Heterodera avenae, similar to Pasteuria penetrans. Revue de Nématologie, 13, 303–309.

    Google Scholar 

  • Dawabah, A. A., Al-Yahya, F. A., & Lafi, H. A. (2019). Integrated management of plant-parasitic nematodes on guava and fig trees under tropical field conditions. Egyptian Journal of Biological Pest Control, 29, 29.

    Article  Google Scholar 

  • Del Valle, E. E., Lax, P., Dueñas, J. R., & Doucet, M. E. (2013). Effects of insect cadavers infected by Heterorhabditis bacteriophora and Steinernema diaprepesi on Meloidogyne incognita parasitism in pepper and summer squash plants. International Journal of Agriculture and Natural Resources, 40, 109–118.

    Google Scholar 

  • Devi, G., & Bora, L. C. (2018). Effect of some biocontrol agents against root-knot nematode (Meloidogyne incognita race2). International Journal of Environment, Agriculture and Biotechnology, 3, 1748–1755.

    Article  Google Scholar 

  • Dijksterhuis, J., Veenhuis, M., Harder, W., & Nordbring-Hertz, B. (1994). Nematophagous fungi: Physiological aspects and structure-function relationships. Advances in Microbial Physiology, 36, 111–143.

    Article  CAS  PubMed  Google Scholar 

  • Dong, L. Q., & Zhang, K. Q. (2006). Microbial control of plant-parasitic nematodes: A five-party interaction. Plant and Soil, 288, 31–45.

    Article  CAS  Google Scholar 

  • Dowling, A., & Waterfield, N. R. (2007). Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon, 49, 436–451.

    Article  PubMed  Google Scholar 

  • El Aimani, A., Houari, A., Laasli, S. E., Mentag, R., Iraqi, D., Diria, G., et al. (2022). Antagonistic potential of Moroccan entomopathogenic nematodes against root-knot nematodes, Meloidogyne javanica on tomato under greenhouse conditions. Scientific Reports, 12, 2915.

    Article  PubMed Central  PubMed  Google Scholar 

  • El-Hadad, M. E., Mustafa, M. I., Selim, S. M., El-Tayeb, T. S., Mahgoob, A. E. A., & Aziz, N. H. A. (2011). The nematicidal effect of some bacterial biofertilizers on Meloidogyne incognita in sandy soil. Brazilian Journal of Microbiology, 42, 105–113.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elkatheeb, W. A., Daba, G. M., & Soliman, G. M. (2021). The anti-nemic potential of mushroom against plant-parasitic nematodes. Journal of Microbiology and Biotechnology, 6, 1–6.

    Google Scholar 

  • Elling, A. A. (2013). Major emerging problems with minor Meloidogyne species. Phytopathology, 103, 1092–1102.

    Article  PubMed  Google Scholar 

  • El-Sayed, W. S., Akhkha, A., El-Naggar, M. Y., & Elbadry, M. (2014). In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Frontiers in Microbiology, 5, 651. https://doi.org/10.3389/fmicb.2014.00651

    Article  PubMed Central  PubMed  Google Scholar 

  • Ghahremani, Z., Escudero, N., Saus, E., Gabaldon, T., & Sorribas, F. J. (2019). Pochonia chlamydosporia induces plant-dependent systemic resistance to Meloidogyne incognita. Frontiers in Plant Science, 10, 1–8. https://doi.org/10.3389/fpls.2019.00945

    Article  Google Scholar 

  • Ghayedi, S., & Abdollahi, M. (2013). Biocontrol potential of Metarhizium anisopliae (Hypocreales: Clavicipitaceae), isolated from suppressive soils of the Boyer-Ahmad region, Iran, against J2s of Heterodera avenae. Journal of Plant Protection Research, 53, 165–171.

    Article  Google Scholar 

  • Giblin-Davis, R. M., Williams, D. S., Bekal, S., Dickson, D. W., Brito, J. A., Becker, J. O., & Preston, J. F. (2003). ‘Candidatus Pasteuria usgae’ sp. nov., an obligate endoparasite of the phytoparasitic nematode Belonolaimus longicaudatus. International Journal of Systematic and Evolutionary Microbiology, 53, 197–200.

    Article  CAS  PubMed  Google Scholar 

  • Giblin-Davis, R. M., Nong, G., Preston, J. F., Williams, D. S., Center, B. J., Brito, J. A., & Dickson, D. W. (2011). ‘Candidatus Pasteuria aldrichii’, an obligate endoparasite of the bacterivorous nematode Bursilla. International Journal of Systematic and Evolutionary Microbiology, 61, 2073–2080.

    Article  CAS  PubMed  Google Scholar 

  • Grewal, P. S., Martin, W. R., Miller, R. W., & Lewis, E. E. (1997). Suppression of plant-parasitic nematode populations in turfgrass by application of entomopathogenic nematodes. Biocontrol Science and Technology, 7, 393–400.

    Article  Google Scholar 

  • Grewal, P., Venkatachari, S., & Lewis, E. (1999). Allelopathy: A possible mechanism of suppression of plant-parasitic nematodes by entomopathogenic nematodes. Nematology, 1, 735–743.

    Article  Google Scholar 

  • Griffitts, J. S., Haslam, S. M., Yang, T., Garczynski, S. F., Mulloy, B., Morris, H., et al. (2005). Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science, 307(5711), 922–925.

    Article  CAS  PubMed  Google Scholar 

  • Hallman, J., Davies, K. G., & Sikora, R. (2009). Biological control using microbial pathogens, endophytes and antagonists. In R. N. Perry, M. Moens, & J. L. Starr (Eds.), Root-knot nematodes (pp. 380–411). CABI International.

    Chapter  Google Scholar 

  • Hallmann, J., Quadt-Hallmann, A., Rodrıguez-Kabana, R., & Kloepper, J. W. (1998). Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biology and Biochemistry, 30, 925–937.

    Article  CAS  Google Scholar 

  • Heikal, H. M. (2020). Parasitus fimetorum and Macrocheles muscaedomesticae (Acarina: Parasitidae, Macrochelidae) as natural predators of the root knot nematode, Meloidogyne javanica Treub. Egyptian Journal of Biological Pest Control, 30, 1–7.

    Article  Google Scholar 

  • Higaki, W. A., & Araujo, F. F. (2012). Bacillus subtilis and abamectin for nematode control and physiological changes in cotton grown in soil naturally infested. Nematropica, 42, 295–303.

    Google Scholar 

  • Houard, J., Aumelas, A., Noël, T., Pages, S., Givaudan, A., Fitton-Ouhabi, V., et al. (2013). Cabanillasin, a new antifungal metabolite, produced by entomopathogenic Xenorhabdus cabanillasii JM26. The Journal of Antibiotics, 66, 617–620.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., Tian, B., Niu, Q., Yang, J., Zhang, L., & Zhang, K. (2005). An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can see as a pathogenic factor in infection of nematodes. Research in Microbiology, 156, 719–727.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y., Xu, C., Ma, L., Zhang, K., Duan, C., & Mo, M. (2010). Characterisation of volatiles produced from Bacillus megaterium YFM3. 25 and their nematicidal activity against Meloidogyne incognita. European Journal of Plant Pathology, 126, 417–422.

    Article  CAS  Google Scholar 

  • Huang, T., Lin, Q., Qian, X., Zheng, Y., Yao, J., Wu, H., et al. (2018). Nematicidal activity of Cry1Ea11 from Bacillus thuringiensis BRC-XQ12 against the pine wood nematode (Bursaphelenchus xylophilus). Phytopathology, 108, 44–51.

    Article  CAS  PubMed  Google Scholar 

  • Iqbal, M., Dubey, M., McEwan, K., Menzel, U., Franko, M. A., Viketoft, M., & Karlsson, M. (2018). Evaluation of Clonostachys rosea for control of plant-parasitic nematodes in soil and in roots of carrot and wheat. Phytopathology, 108, 52–59.

    Article  CAS  PubMed  Google Scholar 

  • Jaffee, B. A., Ferris, H., & Scow, K. M. (1998). Nematode-trapping fungi in organic and conventional cropping systems. Phytopathology, 88, 344–350.

    Article  CAS  PubMed  Google Scholar 

  • Jagdale, G. B., & Grewal, P. S. (2008). Influence of the entomopathogenic nematode Steinernema carpocapsae infected host cadavers or their extracts on the foliar nematode Aphelenchoides fragariae on Hosta in the greenhouse and laboratory. Biological Control, 44, 13–23.

    Article  Google Scholar 

  • Jagdale, G. B., Kamoun, S., & Grewal, P. S. (2009). Entomopathogenic nematodes induce components of systemic resistance in plants: Biochemical and molecular evidence. Biological Control, 51, 102–109.

    Article  CAS  Google Scholar 

  • Jahanbazian, L., Abdollahi, M., & Rezaie, R. (2015). Combined effect of Metarhizium anisopliae and Pseudomonas fluorescens CHA0 on root-knot nematode, Meloidogyne incognita in tomato. Iranian Journal of Plant Pathology, 51, 339–355.

    Google Scholar 

  • Jansson, H. B., & Lopez-Llorca, L. V. (2001). Biology of nematophagous fungi. In J. K. Misra & B. W. Horn (Eds.), Trichomycetes and other fungal groups (pp. 145–172). Science Publishers.

    Google Scholar 

  • Kadam, V., & Khan, M. R. (2015). Biomanagement of root-knot nematode (Meloidogyne incognita) infecting okra in West Bengal, India. Indian Journal of Nematology, 45, 178–183.

    Google Scholar 

  • Kassam, R., Yadav, J., Jaiswal, N., Chatterjee, M., Hada, A., Chawla, G., et al. (2022). Identification and potential utility of Metarhizium anisopliae (ITCC9014) for the management of root-knot nematode, Meloidogyne incognita. Indian Phytopathology, 75, 875–881. https://doi.org/10.1007/s42360-022-00498-5

    Article  Google Scholar 

  • Kavitha, P. G., Jonathan, E. L., & Nakkeeran, S. (2012). Effects of crude antibiotic of Bacillus subtilis on hatching of eggs and mortality of juveniles of Meloidogyne incognita. Nematologia Mediterranea, 40, 203–206.

    Google Scholar 

  • Kepenekci, I., Hazir, S., & Lewis, E. E. (2016). Evaluation of entomopathogenic nematodes and the supernatants of the in vitro culture medium of their mutualistic bacteria for the control of the root-knot nematodes Meloidogyne incognita and M. arenaria. Pest Management Science, 72, 327–334.

    Article  CAS  PubMed  Google Scholar 

  • Kerry, B. R. (2000). Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annual Review of Phytopathology, 38, 423–441.

    Article  CAS  PubMed  Google Scholar 

  • Kerry, B. R., & Hirsch, P. R. (2011). Ecology of Pochoniachlamydosporia in the rhizosphere at the population, whole organism, and molecular scales. In K. Davies & Y. Spiegel (Eds.), Biological control of plant-parasitic nematodes: Building coherence between microbial ecology and molecular mechanisms (Progress in biological control) (pp. 171–182). Springer.

    Chapter  Google Scholar 

  • Khan, M. R., & Haque, Z. (2011). Soil application of Pseudomonas fluorescens and Trichoderma harzianum reduces root-knot nematode, Meloidogyne incognita, on tobacco. Phytopathologia Mediterranea, 50, 257–266.

    CAS  Google Scholar 

  • Khan, M. Q., Abbasi, M. W., Zaki, M. J., & Khan, S. A. (2010a). Evaluation of Bacillus thuringiensis isolates against root-knot nematodes following seed application in okra and mungbean. Pakistan Journal of Botany, 42, 2903–2910.

    Google Scholar 

  • Khan, M. R., Mehboob, A., & Khan, U. (2010b). Interaction of the entomopathogenic nematode Steinernema masoodi and the root-knot nematode Meloidogyne incognita on tomato. Nematologia Mediterranea, 38, 179–185.

    Google Scholar 

  • Khan, M. R., Khan, M. M., Anwer, M. A., & Haque, Z. (2012). Laboratory and field performance of some soil bacteria used as seed treatments on Meloidogyne incognita in chickpea. Nematologia Mediterranea, 40, 143–151.

    Google Scholar 

  • Khan, A., Saifullah, I. M., & Hussain, S. (2014). Organic control of phytonematodes with Pleurotus species. Pakistan Journal of Nematology, 32, 155–161.

    Google Scholar 

  • Khan, S. A., Javed, N., Kamran, M., Abbas, H., Safdar, A., & ul Haq, I. (2016a). Management of Meloidogyne incognita race 1 through the use of entomopathogenic nematodes in tomato. Pakistan Journal of Zoology, 48, 763.

    Google Scholar 

  • Khan, M. R., Mohidin, F. A., Khan, U., & Ahamad, F. (2016b). Native Pseudomonas spp. suppressed the root-knot nematode in in-vitro and in-vivo, and promoted the nodulation and grain yield in the field grown mungbean. Biological Control, 101, 159–168.

    Article  Google Scholar 

  • Khanna, K., Jamwal, V. L., Kohli, S. K., Gandhi, S. G., Ohri, P., Bhardwaj, R., et al. (2019). Role of plant growth promoting Bacteria (PGPRs) as biocontrol agents of Meloidogyne incognita through improved plant defense of Lycopersicon esculentum. Plant and Soil, 436, 325–345.

    Article  CAS  Google Scholar 

  • Khatamidoost, Z., Jamali, S., Moradi, M., & SaberiRiseh, R. (2015). Effect of Iranian strains of Pseudomonas spp. on the control of root-knot nematodes on Pistachios. Biocontrol Science and Technology, 25, 291–301.

    Article  Google Scholar 

  • Killani, A. S., Abaidoo, R. C., Akintokun, A. K., & Abiala, M. A. (2011). Antagonistic effect of indigenous Bacillus subtilis on root−/soil-borne fungal pathogens of cowpea. Research, 3, 3.

    Google Scholar 

  • Kokalis-Burelle, N. (2015). Pasteuria penetrans for control of Meloidogyne incognita on tomato and cucumber, and M. arenaria on snapdragon. Journal of Nematology, 47, 207.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kulkarni, S. M., & Dighe, S. (2000). Cultivation of Hohenbuehelia atrocaerulea (Fr.) Sing. (Agaricomycetideae): A mushroom with nematicidal potential. International Journal of Medicinal Mushrooms, 2, 161–163.

    Google Scholar 

  • Kusakabe, A., Wang, C., Xu, Y. M., Molnár, I., & Stock, S. P. (2022). Selective toxicity of secondary metabolites from the entomopathogenic bacterium Photorhabdus luminescens sonorensis against selected plant parasitic nematodes of the Tylenchina suborder. Microbiology Spectrum, 10, e02577–e02521.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • LaMondia, J. A., & Cowles, R. S. (2002). Effect of entomopathogenic nematodes and Trichoderma harzianum on the strawberry black root rot pathogens Pratylenchus penetrans and Rhizoctonia fragariae. Journal of Nematology, 34, 351.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larriba, E., Jaime, M. D. L. A., Nislow, C., Martín-Nieto, J., & Lopez-Llorca, L. V. (2015). Endophytic colonization of barley (Hordeum vulgare) roots by the nematophagous fungus Pochonia chlamydosporia reveals plant growth promotion and a general defense and stress transcriptomic response. Journal of Plant Research, 128, 665–678.

    Article  CAS  PubMed  Google Scholar 

  • Lax, P., Becerra, A. G., Soteras, F., Cabello, M., & Doucet, M. E. (2011). Effect of the arbuscular mycorrhizal fungus Glomus intraradices on the false root-knot nematode Nacobbus aberrans in tomato plants. Biology and Fertility of Soils, 47, 591–597.

    Article  Google Scholar 

  • Lax, P., Marro, N., Agaras, B., Valverde, C., Doucet, M. E., & Becerra, A. (2013). Biological control of the false root-knot nematode Nacobbus aberrans by Pseudomonas protegens under controlled conditions. Crop Protection, 52, 97–102.

    Article  Google Scholar 

  • Leng, P., Zhang, Z., Pan, G., & Zhao, M. (2011). Applications and development trends in biopesticides. African Journal of Biotechnology, 10, 19864–19873.

    CAS  Google Scholar 

  • Leontopoulos, S., Petrotos, K., Anatolioti, V., Skenderidis, P., Tsilfoglou, S., & Vagelas, I. (2017). Effects of cells and cells-free filtrates supernatant solution of Pseudomonas oryzihabitans on root-knot nematodes (Meloidogyne javanica). International Journal of Food and Biosystems Engineering, 6, 23–37.

    Google Scholar 

  • Li, X. Q., Tan, A., Voegtline, M., Bekele, S., Chen, C. S., & Aroian, R. V. (2008). Expression of Cry5B protein from Bacillus thuringiensis in plant roots confers resistance to root-knot nematode. Biological Control, 47, 97–102.

    Article  Google Scholar 

  • Li, J., Zou, C., Xu, J., Ji, X., Niu, X., Yang, J., et al. (2015). Molecular mechanisms of nematode-nematophagous microbe interactions: Basis for biological control of plant-parasitic nematodes. Annual Review of Phytopathology, 53, 67–95.

    Article  CAS  PubMed  Google Scholar 

  • Lone, J. A., PaGReen, G., & Khan, T. A. (2015). Comparison of concomitant and sequential inoculation of Steinernema sp. in the management of reniform (Rotylenchulus reniformis) nematode infecting eggplant. E-journal of Science & Technology, 2, 97–111.

    Google Scholar 

  • Lopes, E. A., Dallemole-Giaretta, R., dos Santos Neves, W., Parreira, D. F., & Ferreira, P. A. (2019). Eco-friendly approaches to the management of plant-parasitic nematodes. In A. R. Ali & M. Irshad (Eds.), Plant health under biotic stress (pp. 167–186). Springer.

    Chapter  Google Scholar 

  • Luc, J. E., Pang, W., Crow, W. T., & Giblin-Davis, R. M. (2010). Effects of formulation and host nematode density on the ability of in vitro-produced Pasteuria endospores to control its host Belonolaimus longicaudatus. Journal of Nematology, 42, 87–90.

    PubMed Central  PubMed  Google Scholar 

  • Manikandan, R., Saravanakumar, D., Rajendran, L., Raguchander, T., & Samiyappan, R. (2010). Standardization of liquid formulation of Pseudomonas fluorescens Pf1 for its efficacy against Fusarium wilt of tomato. Biological Control, 54, 83–89.

    Article  Google Scholar 

  • Manwaring, M., Nahrung, H. F., & Wallace, H. (2020). Attack rate and prey preference of Lasioseius subterraneous and Protogamasellus mica on four nematode species. Experimental and Applied Acarology, 80, 29–41.

    Article  CAS  PubMed  Google Scholar 

  • Manzanilla-Lopez, R. H., Esteves, I., & Devonshire, J. (2017). Biology and management of Pochonia chlamydosporia and plant-parasitic nematodes. In R. H. Manzanilla-Lopez & L. V. Lopez-Llorca (Eds.), Perspectives in sustainable nematode management through Pochonia chlamydosporia applications for root and rhizosphere health (pp. 47–76). Springer.

    Chapter  Google Scholar 

  • Marro, N., Caccia, M., Doucet, M. E., Cabello, M., Becerra, A., & Lax, P. (2018). Mycorrhizas reduce tomato root penetration by false root-knot nematode Nacobbus aberrans. Applied Soil Ecology, 124, 262–265.

    Article  Google Scholar 

  • Marroquin, L. D., Elyassnia, D., Griffitts, J. S., Feitelson, J. S., & Aroian, R. V. (2000). Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics, 155, 1693–1699.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maru, A. K., Siddiqui, A. U., Parihar, A., Sharma, S. K., & Srivastva, A. S. (2013). Effect of different formulations of entomopathogenic nematode Steinernema carpocapsae against root knot nematode Meloidogyne incognita on tomato. Indian Phytopathology, 66, 413–415.

    Google Scholar 

  • Mazzuchelli, R. D. C. L., Mazzuchelli, E. H. L., & de Araujo, F. F. (2020). Efficiency of Bacillus subtilis for root-knot and lesion nematodes management in sugarcane. Biological Control, 143, 104185.

    Article  Google Scholar 

  • Mhatre, P. H., Karthik, C., Kadirvelu, K., Divya, K. L., Venkatasalam, E. P., Srinivasan, S., Ramkumar, G., Saranya, C., & Shanmuganathan, R. (2019). Plant growth promoting rhizobacteria (PGPR): A potential alternative tool for nematodes bio-control. Biocatalysis and Agricultural Biotechnology, 17, 119–128.

    Article  Google Scholar 

  • Mhatre, P. H., Eapen, S. J., Chawla, G., Pervez, R., Agisha, V. N., Tadigiri, S., & Nagesh, M. (2020). Isolation and characterization of Pasteuria parasitizing root-knot nematode, Meloidogyne incognita, from black pepper fields in India. Egyptian Journal of Biological Pest Control, 30, 97. https://link.springer.com/article/10.1186/s41938-020-00296-z

    Article  Google Scholar 

  • Molina, J. P., Dolinski, C., Souza, R. M., & Lewis, E. E. (2007). Effect of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) on Meloidogyne mayaguensis Rammah and Hirschmann (Tylenchida: Meloidoginidae) infection in tomato plants. Journal of Nematology, 39, 338–342.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moosavi, M. R., Rasoul, Z., Hamid-Reza, Z., & Seddigheh, F. (2010). Pathogenicity of Pochonia species on eggs of Meloidogyne javanica. Journal of Invertebrate Pathology, 104, 125–133.

    Article  PubMed  Google Scholar 

  • Mostafa, D. M., Allah, S. F., & Awad-Allah, E. F. (2019). Potential of Pleurotus sajor-caju compost for controlling Meloidogyne incognita and improve nutritional status of tomato plants. Journal of Plant Science and Phytopathology, 3, 118–127.

    Article  Google Scholar 

  • Mota, M. S., Gomes, C. B., Souza Júnior, I. T., & Moura, A. B. (2017). Bacterial selection for biological control of plant disease: Criterion determination and validation. Brazilian Journal of Microbiology, 48, 62–70.

    Article  CAS  PubMed  Google Scholar 

  • Mukhtar, T., Arshad, H. M., & Zameer, K. M. (2013). Biocontrol potential of Pasteuria penetrans, Pochonia chlamydosporia, Paecilomyces lilacinus and Trichoderma harzianum against Meloidogyne incognita in okra. Phytopathologia Mediterranea, 52, 66–76.

    Google Scholar 

  • Munif, A., Hallmann, J., & Sikora, R. A. (2001). Induced systemic resistance of selected endophytic bacteria against Meloidogyne incognita on tomato. Mededelingen (Rijksuniversiteitte Gent. Fakulteit van de Landbouwkundigeen Toegepaste Biologische Wetenschappen), 66, 663–669.

    CAS  Google Scholar 

  • Munif, A., Hallmann, J., & Sikora, R. A. (2013). The influence of endophytic bacteria on Meloidogyne incognita infection and tomato plant growth. Journal of International Society for Southeast Asian Agricultural Sciences, 19, 68–74.

    Google Scholar 

  • Munif, A., Putri, D., & Mutaqin, K. H. (2020). Induced resistance and plant growth promotion by endophytic bacteria Bacillus sp. AA2 against Meloidogyne sp. on pepper. IOP Conference Series Earth and Environmental Science, 468, 012040.

    Article  Google Scholar 

  • Nicol, J. M., Turner, S. J., Coyne, D. L., Den Nijs, L., Hockland, S., & Maafi, Z. T. (2011). Current nematode threats to world agriculture. In J. Jones, G. Gheysen, & C. Fenoll (Eds.), Genomics and molecular genetics of plant-nematode interactions (pp. 21–43). Springer.

    Chapter  Google Scholar 

  • Nielsen-LeRoux, C., Gaudriault, S., Ramarao, N., Lereclus, D., & Givaudan, A. (2012). How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Current Opinion in Microbiology, 15, 220–231.

    Article  PubMed  Google Scholar 

  • Nikoo, F. S., Sahebani, N., Aminian, H., Mokhtarnejad, L., & Ghaderi, R. (2014). Induction of systemic resistance and defense-related enzymes in tomato plants using Pseudomonas fluorescens CHA0 and salicylic acid against root-knot nematode Meloidogyne javanica. Journal of Plant Protection Research, 54, 383–389.

    Article  CAS  Google Scholar 

  • Noel, G. R., Atibalentja, N., & Bauer, S. J. (2010). Suppression of Heterodera glycines in a soybean field artificially infested with Pasteuria nishizawae. Nematropica, 40, 41–52.

    Google Scholar 

  • Nollmann, F. I., Dowling, A., Kaiser, M., Deckmann, K., Grösch, S., & Bode, H. B. (2012). Synthesis of szentiamide, a depsipeptide from entomopathogenic Xenorhabdus szentirmaii with activity against Plasmodium falciparum. Beilstein Journal of Organic Chemistry, 8, 528–533.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Norabadi, M. T., Sahebani, N., & Etebarian, H. R. (2014). Biological control of root-knot nematode (Meloidogyne javanica) disease by Pseudomonas fluorescens (Chao). Archives of Phytopathology and Plant Protection, 47, 615–621.

    Article  CAS  Google Scholar 

  • Nyczepir, A. P., Shapiro-Ilan, D. I., Lewis, E. E., & Handoo, Z. A. (2004). Effect of entomopathogenic nematodes on Mesocriconema xenoplax populations in peach and pecan. Journal of Nematology, 36, 181–185.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oliveira, E. J., Rabinovitch, L., Monnerat, R. G., Passos, L. K. J., & Zahner, V. (2004). Molecular characterization of Brevibacillus laterosporus and its potential use in biological control. Applied and Environmental Microbiology, 70, 6657–6664.

    Article  PubMed Central  PubMed  Google Scholar 

  • Oliveira, D. F., Campos, V. P., Amaral, D. R., Nunes, A. S., Pantaleão, J. A., & Costa, D. A. (2007a). Selection of rhizobacteria able to produce metabolites active against Meloidogyne exigua. European Journal of Plant Pathology, 119, 477–479.

    Article  CAS  Google Scholar 

  • Oliveira, A. R., de Moraes, G. J., & Ferraz, L. C. (2007b). Consumption rate of phytonematodes by Pergalumna sp. (Acari: Oribatida: Galumnidae) under laboratory conditions determined by a new method. Experimental and Applied Acarology, 41, 183–189.

    Article  PubMed  Google Scholar 

  • Osman, H. A., El-Gindi, A. Y., Youssef, M. M., Ameen, H. H., Abd-Elbary, N. A., da Silva, J. A. T., & Lashein, A. M. (2011). Protection of Pseudomonas fluorescens against the root-knot nematode, Meloidogyne incognita; role of enzyme-induced resistance in eggplant. Pest Technology, 5, 44–47.

    Google Scholar 

  • Öztürk, L., Behmand, T., Avci, G. G., BozbuÄŸa, R., Mirik, M., & ElekcioÄŸlu, Ä°. H. (2020). Survey of Pasteuria, the parasitic bacterial group to plant parasitic nematodes in Turkey. Egyptian Journal of Biological Pest Control, 30, 1–7.

    Article  Google Scholar 

  • Pakyari, H., & Maghsoudlo, M. (2011). Development and life table of Tyrophagus putrescentiae (Astigmata: Acaridae) on mushroom and phytonematode. Academic Journal of Entomology, 4, 59–63.

    Google Scholar 

  • Peng, D., Chai, L., Wang, F., Zhang, F., Ruan, L., & Sun, M. (2011). Synergistic activity between Bacillus thuringiensis Cry6Aa and Cry55Aa toxins against Meloidogyne incognita. Microbial Biotechnology, 4, 794–798.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pentimone, I., Colagiero, M., Ferrara, M., Nigro, F., Rosso, L. C., & Ciancio, A. (2019). Time-dependent effects of Pochonia chlamydosporia endophytism on gene expression profiles of colonized tomato roots. Applied Microbiology and Biotechnology, 103, 8511–8527.

    Article  CAS  PubMed  Google Scholar 

  • Pérez, E. E., & Lewis, E. E. (2004). Suppression of Meloidogyne incognita and Meloidogyne hapla with entomopathogenic nematodes on greenhouse peanuts and tomatoes. Biological Control, 30, 336–341.

    Article  Google Scholar 

  • Pérez, E. E., & Lewis, E. E. (2006). Use of entomopathogenic nematodes and thyme oil to suppress plant-parasitic nematodes on English boxwood. Plant Disease, 90, 471–475.

    Article  PubMed  Google Scholar 

  • Pires, D., Vicente, C. S., Inácio, M. L., & Mota, M. (2022a). The potential of Esteya spp. for the biocontrol of the pinewood nematode, Bursaphelenchus xylophilus. Microorganisms, 10, 168.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pires, D., Vicente, C. S. L., Menéndez, E., Faria, J. M. S., Rusinque, L., Camacho, M. J., & Inácio, M. L. (2022b). The fight against plant-parasitic nematodes: Current status of bacterial and fungal biocontrol agents. Pathogens, 11, 1178.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poveda, J., Abril-Urias, P., & Escobar, C. (2020). Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Frontiers in Microbiology, 11, 992.

    Article  PubMed Central  PubMed  Google Scholar 

  • Preston, J. F., Dickson, D. W., Maruniak, J. E., Nong, G., Brito, J. A., Schmidt, L. M., & Giblin-Davis, R. M. (2003). Pasteuria spp.: Systematics and phylogeny of these bacterial parasites of phytopathogenic nematodes. Journal of Nematology, 35, 198–207.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Priya, M. S. (2015). Biomanagement of rice root knot nematode, Meloidogyne graminicola Golden and Brichfield in aerobic rice. International Journal in Management and Social Science, 3, 591–598.

    Google Scholar 

  • Radwan, M. A., Farrag, S. A. A., Abu-Elamayem, M. M., & Ahmed, N. S. (2012). Biological control of the root-knot nematode, Meloidogyne incognita on tomato using bioproducts of microbial origin. Applied Soil Ecology, 56, 58–62.

    Article  Google Scholar 

  • Rahanandeh, H., Khodakaramian, G., Hassanzadeh, N., Seraji, A., & Asghari, S. M. (2013). Evaluation of antagonistic Pseudomonas against root lesion nematode of tea. International Journal of Biosciences, 3, 32–40.

    Google Scholar 

  • Ramette, A., Frapolli, M., Fischer-Le Saux, M., Gruffaz, C., Meyer, J. M., Défago, G., et al. (2011). Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2, 4-diacetylphloroglucinol and pyoluteorin. Systematic and Applied Microbiology, 34, 180–188.

    Article  CAS  PubMed  Google Scholar 

  • Rao, M. S., Dwivedi, M. K., Kumar, R. M., Chaya, M. K., Rathnamma, K., Rajinikanth, R., et al. (2014). Evaluation of bio-efficacy of Bacillus subtilis (NBAIMCC-B-01211) against disease complex caused by Meloidogyne incognita and Fusarium oxysporum f. sp. vasinfectum in okra. Pest Management in Horticultural Ecosystems, 20, 217–221.

    Google Scholar 

  • Rao, M. S., Umamaheswari, R., Priti, K., Rajinikanth, R., Grace, G. N., Kamalnath, M., et al. (2016). Role of biopesticides in the management of nematodes and associated diseases in horticultural crops. In K. R. Hakeem, M. S. Akhtar, & S. N. A. Abdullah (Eds.), Plant, soil and microbes (pp. 117–148). Springer.

    Chapter  Google Scholar 

  • Rao, M. S., Kamalnath, M., Umamaheswari, R., Rajinikanth, R., Prabu, P., Priti, K., et al. (2017). Bacillus subtilis IIHR BS-2 enriched vermicompost controls root knot nematode and soft rot disease complex in carrot. Scientia Horticulturae, 218, 56–62.

    Article  Google Scholar 

  • Ravari, S. B., & Moghaddam, E. M. (2015). Efficacy of Bacillus thuringiensis Cry14 toxin against root knot nematode, Meloidogyne javanica. Plant Protection Science, 51, 46–51.

    Article  Google Scholar 

  • Raza, M. S., Imran, M., Yasmin, T., Azeem, M., Manzoor, H., & Awais, M. (2015). Screening of entomopathogenic nematodes for the management of Meloidogyne incognita in Brinjal. International Journal of Biosciences, 6, 19–31.

    Google Scholar 

  • Rizvi, R., Mahmood, I., Tiyagi, S. A., & Khan, Z. (2012). Conjoint effect of oil-seed cakes and Pseudomonas fluorescens on the growth of chickpea in relation to the management of plant-parasitic nematodes. Brazilian Archives of Biology and Technology, 55, 801–808.

    Article  CAS  Google Scholar 

  • Ryss, A. Y., McClure, M. A., Nischwitz, C., Dhiman, C., & Subbotin, S. A. (2013). Redescription of Robustodorus megadorus with molecular characterization and analysis of its phylogenetic position within the family Aphelenchoididae. Journal of Nematology, 45, 237–252.

    PubMed Central  PubMed  Google Scholar 

  • Saeedizadeh, A. (2016). Trichoderma viride and Pseudomonas fluorescens CHA0 against Meloidogyne javanica in the rhizosphere of tomato plants. Hellenic Plant Protection Journal, 9, 28–34.

    Article  Google Scholar 

  • Salehi, A., Ostovan, H., & Modarresi, M. (2014). Evaluation of the efficiency of Gaeolaelaps aculeifer in control of plant parasitic nematode Tylenchulus semipenetrans under greenhouse conditions. Journal of Entomology and Nematology, 6, 150–153.

    Google Scholar 

  • Sankari Meena, K., Jonathan, E. I., Devrajan, K., & Raguchander, T. (2012). Pseudomonas fluorescens induced systemic resistance in tomato against Meloidogyne incognita. Indian Journal of Nematology, 42, 5–10.

    Google Scholar 

  • Schmidt, L. M., Hewlett, T. E., Green, A., Simmons, L. J., Kelley, K., Doroh, M., & Stetina, S. R. (2010). Molecular and morphological characterization and biological control capabilities of a Pasteuria sp. parasitizing Rotylenchulus reniformis, the reniform nematode. Journal of Nematology, 42, 207–217.

    PubMed Central  PubMed  Google Scholar 

  • Schrimsher, D. (2013). The studies of plant host resistance to the reniform nematode in upland cotton and the effects of Bacillus firmus GB-126 on plant-parasitic nematodes. PhD thesis, Auburn University, Auburn.

    Google Scholar 

  • Seenivasan, N. (2011). Efficacy of Pseudomonas fluorescens and Paecilomyces lilacinus against Meloidogyne graminicola infecting rice under system of rice intensification. Archives of Phytopathology and Plant Protection, 44, 1467–1482.

    Article  Google Scholar 

  • Seenivasan, N. (2017). Combined application of Pseudomonas fluorescens and Purpureocillium lilacinum liquid formulations to manage Globodera spp on potato. Journal of Crop Protection, 6, 529–537.

    Google Scholar 

  • Seenivasan, N. (2020). Management of potato cyst nematodes using liquid bioformulations of Pseudomonas fluorescens, Purpureocillium lilacinum and Trichoderma viride. Potato Research, 63, 479–496.

    Article  Google Scholar 

  • Seenivasan, N., David, P. M. M., Vivekanandan, P., & Samiyappan, R. (2012). Biological control of rice root-knot nematode, Meloidogyne graminicola through mixture of Pseudomonas fluorescens strains. Biocontrol Science and Technology, 22, 611–632.

    Article  Google Scholar 

  • Sellitto, V. M., Curto, G., Dallavalle, E., Ciancio, A., Colagiero, M., Pietrantonio, L., Bireescu, G., Stoleru, V., & Storari, M. (2016). Effect of Pochonia chlamydosporia based formulates on the regulation of root-knot nematodes and plant growth response. Frontiers in Life Science, 9, 177–181.

    Article  CAS  Google Scholar 

  • Selvaraj, S., Ganeshamoorthi, P., Anand, T., Raguchander, T., Seenivasan, N., & Samiyappan, R. (2014). Evaluation of a liquid formulation of Pseudomonas fluorescens against Fusarium oxysporum f. sp. cubense and Helicotylenchus multicinctus in banana plantation. BioControl, 59, 345–355.

    Article  Google Scholar 

  • Shapiro-Ilan, D. I., Nyczepir, A. P., & Lewis, E. E. (2006). Entomopathogenic nematodes and bacteria applications for control of the pecan root-knot nematode, Meloidogyne partityla, in the greenhouse. Journal of Nematology, 38, 449–454.

    PubMed Central  PubMed  Google Scholar 

  • Siddiqui, Z. A., & Mahmood, I. (1996). Biological control of plant parasitic nematodes by fungi: A review. Bio/Technology, 58, 229–239.

    CAS  Google Scholar 

  • Siddiqui, I. A., & Shaukat, S. S. (2003). Plant species, host age and host genotype effects on Meloidogyne incognita biocontrol by Pseudomonas fluorescens strain CHA0 and its genetically-modified derivatives. Journal of Phytopathology, 151, 231–238.

    Article  Google Scholar 

  • Sidhu, H. S. (2018). Potential of plant growth-promoting rhizobacteria in the management of nematodes: A review. Journal of Entomology and Zoology Studies, 6, 1536–1545.

    Google Scholar 

  • Sikora, R. A., Schäfer, K., & Dababat, A. A. (2007). Modes of action associated with microbially induced in planta suppression of plant-parasitic nematodes. Australasian Plant Pathology, 36(2), 124–134.

    Article  Google Scholar 

  • Silva, D. M., de Souza, V. H. M., Moral, R. D. A., Delalibera, J. I., & Mascarin, G. M. (2022). Production of Purpureocillium lilacinum and Pochonia chlamydosporia by submerged liquid fermentation and bioactivity against Tetranychus urticae and Heteroderaglycines through seed inoculation. Journal of Fungi, 8, 511.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh, P., & Siddiqui, Z. A. (2010). Biocontrol of root-knot nematode Meloidogyne incognita by the isolates of Pseudomonas on tomato. Archives of Phytopathology and Plant Protection, 43, 1423–1434.

    Article  Google Scholar 

  • Singh, S., Singh, B., & Singh, A. P. (2015). Nematodes: A threat to sustainability of agriculture. Procedia Environmenal Sciences, 29, 215–216.

    Article  Google Scholar 

  • Sowmya, D. S., Rao, M. S., Kumar, R. M., Gavaskar, J., & Priti, K. (2012). Bio-management of Meloidogyne incognita and Erwinia carotovora in carrot (Daucus carota L.) using Pseudomonas putida and Paecilomyces lilacinus. Nematologia Mediterranea, 40, 189–1994.

    Google Scholar 

  • Stirling, G. R. (Ed.). (2014). Biological control of plant-parasitic nematodes: Soil ecosystem management in sustainable agriculture. CABI.

    Google Scholar 

  • Stirling, G. R., Wong, E., & Bhuiyan, S. (2017). Pasteuria, a bacterial parasite of plant-parasitic nematodes: Its occurrence in Australian sugarcane soils and its role as a biological control agent in naturally-infested soil. Australasian Plant Pathology, 46, 563–569.

    Article  CAS  Google Scholar 

  • Swarnakumari, Sindhu, Ä€., Thiribhuvanamala, G., & Rajaswaminathan, V. (2020). Evaluation of oil dispersion formulation of nematophagus fungus, Pochonia chlamydosporia against root-knot nematode, Meloidogyne incognita in cucumber. Journal of Asia-Pacific Entomology, 23, 1283–1287. https://doi.org/10.1016/j.aspen.2020.10.008

    Article  Google Scholar 

  • Tabatabaei, F. S., & Saeedizadeh, A. (2017). Rhizobacteria cooperative effect against Meloidogyne javanica in rhizosphere of legume seedlings. Hellenic Plant Protection Journal, 10, 25–34.

    Article  Google Scholar 

  • Taha, H. A., Al-Assiuty, A. I., Sharra, L. A. W., & Farid, H. M. (2014). The potential of two different Acari species (Mesostigmata and Oribatida) on suppression of root-knot nematode (Meloidogyne incognita) on tomato plants. Global Journal of Environmental Sciences and Toxicology, 1, 119–135.

    Google Scholar 

  • Thongkaewyuan, A., & Chairin, T. (2018). Biocontrol of Meloidogyne incognita by Metarhizium guizhouense and its protease. Biological Control, 126, 142–146.

    Article  CAS  Google Scholar 

  • Tian, B., Yang, J., & Zhang, K. Q. (2007). Bacteria used in the biological control of plant-parasitic nematodes: Populations, mechanisms of action, and future prospects. FEMS Microbiology Ecology, 61, 197–213.

    Article  CAS  PubMed  Google Scholar 

  • Timper, P., Liu, C., Davis, R. F., & Wu, T. (2016). Influence of crop production practices on Pasteuria penetrans and suppression of Meloidogyne incognita. Biological Control, 99, 64–71.

    Article  Google Scholar 

  • Tiwari, S., Pandey, S., Chauhan, P. S., & Pandey, R. (2017). Biocontrol agents in co-inoculation manages root knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] and enhances essential oil content in Ocimum basilicum L. Industrial Crops and Products, 97, 292–301.

    Article  Google Scholar 

  • Topalović, O., Elhady, A., Hallmann, J., Richert-Pöggeler, K. R., & Heuer, H. (2019). Bacteria isolated from the cuticle of plant-parasitic nematodes attached to and antagonized the root-knot nematode Meloidogyne hapla. Scientific Reports, 9, 1–13.

    Article  Google Scholar 

  • Topalović, O., Hussain, M., & Heuer, H. (2020). Plants and associated soil microbiota cooperatively suppress plant-parasitic nematodes. Frontiers in Microbiology, 11, 313.

    Article  PubMed Central  PubMed  Google Scholar 

  • Trifonova, Z., Tsvetkov, I., Bogatzevska, N., & Batchvarova, R. (2014). Efficiency of Pseudomonas spp. for biocontrol of the potato cyst nematode Globodera rostochiensis (Woll.). Bulgarian Journal of Agriculture Science, 20, 666–669.

    Google Scholar 

  • Turatto, M. F., Dourado, F. D. S., Zilli, J. E., & Botelho, G. R. (2018). Control potential of Meloidogyne javanica and Ditylenchus spp. using fluorescent Pseudomonas and Bacillus spp. Brazilian Journal of Microbiology, 49, 54–58.

    Article  CAS  PubMed  Google Scholar 

  • Uddin, M., Saifullah, A. M., Khan, W., & Khan, B. (2019). Evaluation of Pochonia chlamydosporia (Goddard) isolates for suppression of Meloidogyne incognita, root-knot nematode of tomato. Journal of Agricultural Science, 11, 70–81.

    Article  Google Scholar 

  • Vachon, V., Laprade, R., & Schwartz, J. L. (2012). Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review. Journal of Invertebrate Pathology, 111, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Van Frankenhuyzen, K. (2009). Insecticidal activity of Bacillus thuringiensis crystal proteins. Journal of Invertebrate Pathology, 101, 1–16.

    Article  PubMed  Google Scholar 

  • Vlamakis, H., Chai, Y., Beauregard, P., Losick, R., & Kolter, R. (2013). Sticking together: Building a biofilm the Bacillus subtilis way. Nature Reviews Microbiology, 11, 157–168.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vyas, R. V., Maghodia, A. B., Patel, B. A., & Patel, D. J. (2009). Field efficacy of entomopathogenic nematode, Steinernema riobrave and their toxins against root-knot nemtaode, Meloidogyne spp. on Okra. Indian Journal of Nematology, 39, 229–231.

    Google Scholar 

  • Wepuhkhulu, M., Kimenju, J., Anyango, B., Wachira, P., & Kyallo, G. (2011). Efecto de prácticas de manejo de la fertilidad del suelo y Bacillus subtilis sobre nematodos parásitos asociados al frijol común, Phaseolus vulgaris. Tropical and Subtropical Agroecosystems, 13, 27–34.

    Google Scholar 

  • Xiang, N., Lawrence, K. S., Kloepper, J. W., Donald, P. A., & McInroy, J. A. (2017). Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean. PLoS One, 12, e0181201.

    Article  PubMed Central  PubMed  Google Scholar 

  • Xiang, N., Lawrence, K. S., & Donald, P. A. (2018). Biological control potential of plant growth-promoting rhizobacteria suppression of Meloidogyne incognita on cotton and Heterodera glycines on soybean: A review. Journal of Phytopathology, 166, 449–458.

    Article  Google Scholar 

  • Xiao, T. J., Chen, F., Gao, C., Zhao, Q. Y., Shen, Q. R., & Ran, W. (2013). Bacillus cereus X5 enhanced bio-organic fertilizers effectively control root-knot nematodes (Meloidogyne sp.). Pedosphere, 23, 160–168.

    Article  CAS  Google Scholar 

  • Xu, C. L., Chen, Y. L., Xu, X. N., Wang, D. W., Xie, H., Wang, E. D., et al. (2014). Evaluation of Blattisocius dolichus (Acari: Blattisociidae) for biocontrol of root-knot nematode, Meloidogyne incognita (Tylenchida: Heteroderidae). BioControl, 59, 617–624.

    Article  CAS  Google Scholar 

  • Yang, G., Dowling, A. J., Gerike, U., & Waterfield, N. R. (2006). Photorhabdus virulence cassettes confer injectable insecticidal activity against the wax moth. Journal of Bacteriology, 188, 2254–2261.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang, J. I., Loffredo, A., Borneman, J., & Becker, J. O. (2012). Biocontrol efficacy among strains of Pochonia chlamydosporia obtained from a root-knot nematode suppressive soil. Journal of Nematology, 44, 67–71.

    PubMed Central  PubMed  Google Scholar 

  • Yang, S. H., Wang, D., Chen, C., Xu, C. L., & Xie, H. (2020a). Evaluation of Stratiolaelaps scimitus (Acari: Laelapidae) for controlling the root-knot nematode, Meloidogyne incognita (Tylenchida: Heteroderidae). Scientific Reports, 10, 1–8.

    Google Scholar 

  • Yang, S. H., Zhou, W. Q., Wang, D. W., Xu, C. L., & Xie, H. (2020b). Evaluation of Neoseiulus barkeri (Acari: Phytoseiidae) for the control of plant parasitic nematodes, Radopholus similis (Tylenchida: Pratylenchidae) and Meloidogyne incognita (Tylenchida: Heteroderidae). Biocontrol Science and Technology, 30, 201–211.

    Article  Google Scholar 

  • Yu, Z., Xiong, J., Zhou, Q., Luo, H., Hu, S., Xia, L., et al. (2015). The diverse nematicidal properties and biocontrol efficacy of Bacillus thuringiensis Cry6A against the root-knot nematode Meloidogyne hapla. Journal of Invertebrate Pathology, 125, 73–80.

    Article  CAS  PubMed  Google Scholar 

  • Zhai, Y., Shao, Z., Cai, M., Zheng, L., Li, G., Yu, Z., & Zhang, J. (2019). Cyclo (L-Pro–L-Leu) of Pseudomonas putida MCCC 1A00316 isolated from Antarctic soil: Identification and characterization of activity against Meloidogyne incognita. Molecules, 24, 768–783.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang, S., Gan, Y., Ji, W., Xu, B., Hou, B., & Liu, J. (2017). Mechanisms and characterization of Trichoderma longibrachiatum T6 in suppressing nematodes (Heterodera avenae) in wheat. Frontiers in Plant Science, 8, 1491.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhou, W. Q., Xu, C. L., Xu, X. N., Zhang, B. X., Qin, H. G., Wang, E. D., & Xie, H. (2012). The predatory mite Neoseiulusbarkeri (Acari: Phytoseiidae), a new biocontrol approach for plant-parasitic nematode, and associated development and reproduction. Chinese Journal of Biological Control, 4, 484–489.

    Google Scholar 

  • Zhou, L., Yuen, G., Wang, Y., Wei, L., & Ji, G. (2016). Evaluation of bacterial biological control agents for control of root-knot nematode disease on tomato. Crop Protection, 84, 8–13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sandhi, R.K., Briar, S.S., Reddy, G.V.P. (2024). Recent Advancements in the Use of Entomopathogens and Nematophagous Mites for the Management of Plant Parasitic Nematodes. In: Chaudhary, K.K., Meghvansi, M.K., Siddiqui, S. (eds) Sustainable Management of Nematodes in Agriculture, Vol.2: Role of Microbes-Assisted Strategies. Sustainability in Plant and Crop Protection, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-031-52557-5_6

Download citation

Publish with us

Policies and ethics