Skip to main content

Discovering New Natural Products Using Metabolomics-Based Approaches

  • Chapter
  • First Online:
Microbial Natural Products Chemistry

Abstract

The incessant search for new natural molecules with biological activities has forced researchers in the field of chemistry of natural products to seek different approaches for their prospection studies. In particular, researchers around the world are turning to approaches in metabolomics to avoid high rates of re-isolation of certain compounds, something recurrent in this branch of science. Thanks to the development of new technologies in the analytical instrumentation of spectroscopic and spectrometric techniques, as well as the advance in the computational processing modes of the results, metabolomics has been gaining more and more space in studies that involve the prospection of natural products. Thus, this chapter summarizes the precepts and good practices in the metabolomics of microbial natural products using mass spectrometry and nuclear magnetic resonance spectroscopy, and also summarizes several examples where this approach has been applied in the discovery of bioactive molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kjærbølling I, Mortensen UH, Vesth T, Andersen MR (2019) Strategies to establish the link between biosynthetic gene clusters and secondary metabolites. Fungal Genet Biol 130:107–121. https://doi.org/10.1016/j.fgb.2019.06.001

    Article  CAS  PubMed  Google Scholar 

  2. Ramírez-Rendon D, Passari AK, Ruiz-Villafán B et al (2022) Impact of novel microbial secondary metabolites on the pharma industry. Appl Microbiol Biotechnol 106:1855–1878. https://doi.org/10.1007/s00253-022-11821-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gruber-Dorninger C, Novak B, Nagl V, Berthiller F (2017) Emerging mycotoxins: beyond traditionally determined food contaminants. J Agric Food Chem 65:7052–7070. https://doi.org/10.1021/acs.jafc.6b03413

    Article  CAS  PubMed  Google Scholar 

  4. Caesar LK, Kellogg JJ, Kvalheim OM, Cech NB (2019) Opportunities and limitations for untargeted mass spectrometry metabolomics to identify biologically active constituents in complex natural product mixtures. J Nat Prod 82:469–484. https://doi.org/10.1021/acs.jnatprod.9b00176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wolfender J-L, Nuzillard J-M, van der Hooft JJJ et al (2019) Accelerating metabolite identification in natural product research: toward an ideal combination of liquid chromatography–high-resolution tandem mass spectrometry and NMR profiling, in silico databases, and chemometrics. Anal Chem 91:704–742. https://doi.org/10.1021/acs.analchem.8b05112

    Article  CAS  PubMed  Google Scholar 

  6. Sun Y, Liu W-C, Shi X et al (2021) Inducing secondary metabolite production of Aspergillus sydowii through microbial co-culture with Bacillus subtilis. Microb Cell Factories 20:42. https://doi.org/10.1186/s12934-021-01527-0

    Article  CAS  Google Scholar 

  7. Wakefield J, Hassan HM, Jaspars M et al (2017) Dual induction of new microbial secondary metabolites by fungal bacterial co-cultivation. Front Microbiol 8:1284. https://doi.org/10.3389/fmicb.2017.01284

    Article  PubMed  PubMed Central  Google Scholar 

  8. Thornburg CC, Britt JR, Evans JR et al (2018) NCI program for natural product discovery: a publicly-accessible library of natural product fractions for high-throughput screening. ACS Chem Biol 13:2484–2497. https://doi.org/10.1021/acschembio.8b00389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reher R, Kim HW, Zhang C et al (2020) A convolutional neural network-based approach for the rapid annotation of molecularly diverse natural products. J Am Chem Soc 142:4114–4120. https://doi.org/10.1021/jacs.9b13786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Misra BB, van der Hooft JJJ (2016) Updates in metabolomics tools and resources: 2014–2015. Electrophoresis 37:86–110. https://doi.org/10.1002/elps.201500417

    Article  CAS  PubMed  Google Scholar 

  11. Allard P-M, Genta-Jouve G, Wolfender J-L (2017) Deep metabolome annotation in natural products research: towards a virtuous cycle in metabolite identification. Curr Opin Chem Biol 36:40–49. https://doi.org/10.1016/j.cbpa.2016.12.022

    Article  CAS  PubMed  Google Scholar 

  12. Caesar LK, Cech NB (2019) Synergy and antagonism in natural product extracts: when 1 + 1 does not equal 2. Nat Prod Rep 36:869–888. https://doi.org/10.1039/C9NP00011A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Palaniappan K, Chen I-MA, Chu K et al (2020) IMG-ABC v.5.0: an update to the IMG/Atlas of Biosynthetic Gene Clusters Knowledgebase. Nucleic Acids Res 48:D422–D430. https://doi.org/10.1093/nar/gkz932

    Article  CAS  PubMed  Google Scholar 

  14. Hautbergue T, Jamin EL, Debrauwer L et al (2018) From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites. Nat Prod Rep 35:147–173. https://doi.org/10.1039/C7NP00032D

    Article  CAS  PubMed  Google Scholar 

  15. Gross H (2007) Strategies to unravel the function of orphan biosynthesis pathways: recent examples and future prospects. Appl Microbiol Biotechnol 75:267–277. https://doi.org/10.1007/s00253-007-0900-5

    Article  CAS  PubMed  Google Scholar 

  16. Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem 3:619–627. https://doi.org/10.1002/1439-7633(20020703)3:7<619::AID-CBIC619>3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  17. Zhang X, Hindra EMA (2019) Unlocking the trove of metabolic treasures: activating silent biosynthetic gene clusters in bacteria and fungi. Curr Opin Microbiol 51:9–15. https://doi.org/10.1016/j.mib.2019.03.003

    Article  CAS  PubMed  Google Scholar 

  18. Luo Y, Cobb RE, Zhao H (2014) Recent advances in natural product discovery. Curr Opin Biotechnol 30:230–237. https://doi.org/10.1016/j.copbio.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  19. Pfannenstiel BT, Keller NP (2019) On top of biosynthetic gene clusters: how epigenetic machinery influences secondary metabolism in fungi. Biotechnol Adv 37:107345. https://doi.org/10.1016/j.biotechadv.2019.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baral B, Akhgari A, Metsä-Ketelä M (2018) Activation of microbial secondary metabolic pathways: avenues and challenges. Synth Syst Biotechnol 3:163–178. https://doi.org/10.1016/j.synbio.2018.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mattern DJ, Valiante V, Unkles SE, Brakhage AA (2015) Synthetic biology of fungal natural products. Front Microbiol 6:775. https://doi.org/10.3389/fmicb.2015.00775

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ziemert N, Alanjary M, Weber T (2016) The evolution of genome mining in microbes – a review. Nat Prod Rep 33:988–1005. https://doi.org/10.1039/C6NP00025H

    Article  CAS  PubMed  Google Scholar 

  23. Scherlach K, Hertweck C (2021) Mining and unearthing hidden biosynthetic potential. Nat Commun 12:3864. https://doi.org/10.1038/s41467-021-24133-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Locey KJ, Lennon JT (2016) Scaling laws predict global microbial diversity. Proc Natl Acad Sci 113:5970–5975. https://doi.org/10.1073/pnas.1521291113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. In: Heitman J, Howlett BJ, Crous PW et al (eds) The fungal kingdom. ASM Press, Washington, DC, pp 79–95

    Chapter  Google Scholar 

  26. Patti GJ, Yanes O, Siuzdak G (2012) Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13:263–269. https://doi.org/10.1038/nrm3314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brunetti AE, Carnevale Neto F, Vera MC et al (2018) An integrative omics perspective for the analysis of chemical signals in ecological interactions. Chem Soc Rev 47:1574–1591. https://doi.org/10.1039/C7CS00368D

    Article  CAS  PubMed  Google Scholar 

  28. Covington BC, McLean JA, Bachmann BO (2017) Comparative mass spectrometry-based metabolomics strategies for the investigation of microbial secondary metabolites. Nat Prod Rep 34:6–24. https://doi.org/10.1039/C6NP00048G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Blaženović I, Kind T, Ji J, Fiehn O (2018) Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites 8:31. https://doi.org/10.3390/metabo8020031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tawfike AF, Viegelmann C, Edrada-Ebel R (2013) Metabolomics and dereplication strategies in natural products. In: Roessner U, Dias DA (eds) Metabolomics tools for natural product discovery, Methods in molecular biology, vol 1055. Humana, Totowa, pp 227–244

    Chapter  Google Scholar 

  31. Wolfender J-L, Rudaz S, Hae Choi Y, Kyong Kim H (2013) Plant metabolomics: from holistic data to relevant biomarkers. Curr Med Chem 20:1056–1090. https://doi.org/10.2174/092986713805288932

    Article  CAS  PubMed  Google Scholar 

  32. Genilloud O (2019) Natural products discovery and potential for new antibiotics. Curr Opin Microbiol 51:81–87. https://doi.org/10.1016/j.mib.2019.10.012

    Article  CAS  PubMed  Google Scholar 

  33. Krug D, Müller R (2014) Secondary metabolomics: the impact of mass spectrometry-based approaches on the discovery and characterization of microbial natural products. Nat Prod Rep 31:768–783. https://doi.org/10.1039/c3np70127a

    Article  CAS  PubMed  Google Scholar 

  34. Barkal LJ, Theberge AB, Guo C-J et al (2016) Microbial metabolomics in open microscale platforms. Nat Commun 7:10610. https://doi.org/10.1038/ncomms10610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fenaille F, Barbier Saint-Hilaire P, Rousseau K, Junot C (2017) Data acquisition workflows in liquid chromatography coupled to high resolution mass spectrometry-based metabolomics: where do we stand? J Chromatogr A 1526:1–12. https://doi.org/10.1016/j.chroma.2017.10.043

    Article  CAS  PubMed  Google Scholar 

  36. Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT (2021) Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 20:200–216. https://doi.org/10.1038/s41573-020-00114-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mapelli V, Olsson L, Nielsen J (2008) Metabolic footprinting in microbiology: methods and applications in functional genomics and biotechnology. Trends Biotechnol 26:490–497. https://doi.org/10.1016/j.tibtech.2008.05.008

    Article  CAS  PubMed  Google Scholar 

  38. Hubert J, Nuzillard J-M, Renault J-H (2017) Dereplication strategies in natural product research: how many tools and methodologies behind the same concept? Phytochem Rev 16:55–95. https://doi.org/10.1007/s11101-015-9448-7

    Article  CAS  Google Scholar 

  39. Alves S, Rathahao-Paris E, Tabet JC (2013) Potential of Fourier transform mass spectrometry for high-throughput metabolomics analysis. In: Rolin D (ed) Metabolomics coming of age with its technological diversity, Advances in botanical research, vol vol 67. Academic, Amsterdam, pp 219–302

    Chapter  Google Scholar 

  40. Ghosh R, Bu G, Nannenga BL, Sumner LW (2021) Recent developments toward integrated metabolomics technologies (UHPLC-MS-SPE-NMR and MicroED) for higher-throughput confident metabolite identifications. Front Mol Biosci 8:720955. https://doi.org/10.3389/fmolb.2021.720955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Henke MT, Kelleher NL (2016) Modern mass spectrometry for synthetic biology and structure-based discovery of natural products. Nat Prod Rep 33:942–950. https://doi.org/10.1039/C6NP00024J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu C, Choi YH, van Wezel GP (2016) Metabolic profiling as a tool for prioritizing antimicrobial compounds. J Ind Microbiol Biotechnol 43:299–312. https://doi.org/10.1007/s10295-015-1666-x

    Article  CAS  PubMed  Google Scholar 

  43. Caesar LK, Montaser R, Keller NP, Kelleher NL (2021) Metabolomics and genomics in natural products research: complementary tools for targeting new chemical entities. Nat Prod Rep 38:2041–2065. https://doi.org/10.1039/D1NP00036E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bertrand S, Schumpp O, Bohni N et al (2013) De novo production of metabolites by fungal co-culture of Trichophyton rubrum and Bionectria ochroleuca. J Nat Prod 76:1157–1165. https://doi.org/10.1021/np400258f

    Article  CAS  PubMed  Google Scholar 

  45. De Vijlder T, Valkenborg D, Lemière F et al (2017) A tutorial in small molecule identification via electrospray ionization-mass spectrometry: the practical art of structural elucidation. Mass Spectrom Rev 37:607–629. https://doi.org/10.1002/mas.21551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stricker T, Bonner R, Lisacek F, Hopfgartner G (2021) Adduct annotation in liquid chromatography/high-resolution mass spectrometry to enhance compound identification. Anal Bioanal Chem 413:503–517. https://doi.org/10.1007/s00216-020-03019-3

    Article  CAS  PubMed  Google Scholar 

  47. Machushynets NV, Elsayed SS, Du C et al (2022) Discovery of actinomycin L, a new member of the actinomycin family of antibiotics. Sci Rep 12:2813. https://doi.org/10.1038/s41598-022-06736-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nielsen KF, Månsson M, Rank C et al (2011) Dereplication of microbial natural products by LC-DAD-TOFMS. J Nat Prod 74:2338–2348. https://doi.org/10.1021/np200254t

    Article  CAS  PubMed  Google Scholar 

  49. Schmid R, Petras D, Nothias L-F et al (2021) Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment. Nat Commun 12:3832. https://doi.org/10.1038/s41467-021-23953-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cajka T, Fiehn O (2016) Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal Chem 88:524–545. https://doi.org/10.1021/acs.analchem.5b04491

    Article  CAS  PubMed  Google Scholar 

  51. Percival B, Gibson M, Leenders J et al (2020) Univariate and multivariate statistical approaches to the analysis and interpretation of NMR-based metabolomics datasets of increasing complexity. In: Wilson PB, Grootveld M (eds) Computational techniques for analytical chemistry and bioanalysis. The Royal Society of Chemistry, London, pp 1–40

    Google Scholar 

  52. Mohimani H, Gurevich A, Shlemov A et al (2018) Dereplication of microbial metabolites through database search of mass spectra. Nat Commun 9:4035. https://doi.org/10.1038/s41467-018-06082-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Langlykke A (1980) Foreword to CRC handbook of antibiotic compounds. CRC, Boca Raton

    Google Scholar 

  54. Van Middlesworth F, Cannell RJP (1998) Dereplication and partial identification of natural products. In: Cannell RJP (ed) Natural products isolation, Methods in biotechnology, vol 4. Humana, Totowa, pp 279–327

    Chapter  Google Scholar 

  55. Beutler JA, Alvarado AB, Schaufelberger DE et al (1990) Dereplication of phorbol bioactives: Lyngbya majuscula and Croton cuneatus. J Nat Prod 53:867–874. https://doi.org/10.1021/np50070a014

    Article  CAS  PubMed  Google Scholar 

  56. Phelan VV (2020) Feature-based molecular networking for metabolite annotation. In: Li S (ed) Computational methods and data analysis for metabolomics, Methods in molecular biology, vol 2104. Humana, New York, pp 227–243

    Chapter  Google Scholar 

  57. Aron AT, Gentry EC, McPhail KL et al (2020) Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat Protoc 15:1954–1991. https://doi.org/10.1038/s41596-020-0317-5

    Article  CAS  PubMed  Google Scholar 

  58. Gaudêncio SP, Pereira F (2015) Dereplication: racing to speed up the natural products discovery process. Nat Prod Rep 32:779–810. https://doi.org/10.1039/C4NP00134F

    Article  PubMed  Google Scholar 

  59. Přichystal J, Schug KA, Lemr K et al (2016) Structural analysis of natural products. Anal Chem 88:10338–10346. https://doi.org/10.1021/acs.analchem.6b02386

    Article  CAS  PubMed  Google Scholar 

  60. Kluger B, Lehner S, Schuhmacher R (2015) Metabolomics and secondary metabolite profiling of filamentous fungi. In: Zeilinger S, Martín J-F, García-Estrada C (eds) Fungal biology: biosynthesis and molecular genetics of fungal secondary metabolites, vol Vol 2. Springer, New York, pp 81–101

    Chapter  Google Scholar 

  61. Sumner LW, Amberg A, Barrett D et al (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3:211–221. https://doi.org/10.1007/s11306-007-0082-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schymanski EL, Jeon J, Gulde R et al (2014) Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol 48:2097–2098. https://doi.org/10.1021/es5002105

    Article  CAS  PubMed  Google Scholar 

  63. Rochat B (2017) Proposed confidence scale and ID score in the identification of known-unknown compounds using high resolution MS data. J Am Soc Mass Spectrom 28:709–723. https://doi.org/10.1007/s13361-016-1556-0

    Article  CAS  PubMed  Google Scholar 

  64. Wolfender J-L, Litaudon M, Touboul D, Queiroz EF (2019) Innovative omics-based approaches for prioritisation and targeted isolation of natural products – new strategies for drug discovery. Nat Prod Rep 36:855–868. https://doi.org/10.1039/C9NP00004F

    Article  CAS  PubMed  Google Scholar 

  65. van Santen JA, Kautsar SA, Medema MH, Linington RG (2021) Microbial natural product databases: moving forward in the multi-omics era. Nat Prod Rep 38:264–278. https://doi.org/10.1039/D0NP00053A

    Article  PubMed  Google Scholar 

  66. Johnson SR, Lange BM (2015) Open-Access metabolomics databases for natural product research: present capabilities and future potential. Front Bioeng Biotechnol 3:22. https://doi.org/10.3389/fbioe.2015.00022

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sorokina M, Steinbeck C (2020) Review on natural products databases: where to find data in 2020. J Cheminform 12:20. https://doi.org/10.1186/s13321-020-00424-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Laatsch H (2014) AntiBase 2014: the natural compound identifier. Wiley-VHC, Weinheim

    Google Scholar 

  69. van Santen JA, Jacob G, Singh AL et al (2019) The natural products Atlas: an open access knowledge base for microbial natural products discovery. ACS Cent Sci 5:1824–1833. https://doi.org/10.1021/acscentsci.9b00806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Klementz D, Döring K, Lucas X et al (2016) StreptomeDB 2.0—an extended resource of natural products produced by streptomycetes. Nucleic Acids Res 44:D509–D514. https://doi.org/10.1093/nar/gkv1319

    Article  CAS  PubMed  Google Scholar 

  71. Sorokina M, Merseburger P, Rajan K et al (2021) COCONUT online: Collection of Open Natural Products database. J Cheminform 13:2. https://doi.org/10.1186/s13321-020-00478-9

    Article  PubMed  PubMed Central  Google Scholar 

  72. Petrova ON, Lamarre I, Fasani F et al (2020) Soluble guanylate cyclase inhibitors discovered among natural compounds. J Nat Prod 83:3642–3651. https://doi.org/10.1021/acs.jnatprod.0c00854

    Article  CAS  PubMed  Google Scholar 

  73. King ZA, Lu J, Dräger A et al (2016) BiGG models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res 44:D515–D522. https://doi.org/10.1093/nar/gkv1049

    Article  CAS  PubMed  Google Scholar 

  74. Gilson MK, Liu T, Baitaluk M et al (2016) BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res 44:D1045–D1053. https://doi.org/10.1093/nar/gkv1072

    Article  CAS  PubMed  Google Scholar 

  75. Pilón-Jiménez B, Saldívar-González F, Díaz-Eufracio B, Medina-Franco J (2019) BIOFACQUIM: a Mexican compound database of natural products. Biomolecules 9:31. https://doi.org/10.3390/biom9010031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pence HE, Williams A (2010) ChemSpider: an online chemical information resource. J Chem Educ 87:1123–1124. https://doi.org/10.1021/ed100697w

    Article  CAS  Google Scholar 

  77. Shen J, Xu X, Cheng F et al (2003) Virtual screening on natural products for discovering active compounds and target information. Curr Med Chem 10:2327–2342. https://doi.org/10.2174/0929867033456729

    Article  CAS  PubMed  Google Scholar 

  78. Kong D-X, Jiang Y-Y, Zhang H-Y (2010) Marine natural products as sources of novel scaffolds: achievement and concern. Drug Discov Today 15:884–886. https://doi.org/10.1016/j.drudis.2010.09.002

    Article  PubMed  Google Scholar 

  79. Wishart DS, Feunang YD, Guo AC et al (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082. https://doi.org/10.1093/nar/gkx1037

    Article  CAS  PubMed  Google Scholar 

  80. Wang M, Carver JJ, Phelan VV et al (2016) Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol 34:828–837. https://doi.org/10.1038/nbt.3597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wishart DS, Feunang YD, Marcu A et al (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46:D608–D617. https://doi.org/10.1093/nar/gkx1089

    Article  CAS  PubMed  Google Scholar 

  82. Chen Y, de Bruyn KC, Kirchmair J (2017) Data resources for the computer-guided discovery of bioactive natural products. J Chem Inf Model 57:2099–2111. https://doi.org/10.1021/acs.jcim.7b00341

    Article  CAS  PubMed  Google Scholar 

  83. Zhang R, Lin J, Zou Y et al (2019) Chemical space and biological target network of anti-inflammatory natural products. J Chem Inf Model 59:66–73. https://doi.org/10.1021/acs.jcim.8b00560

    Article  CAS  PubMed  Google Scholar 

  84. Singh P, Bast F (2015) Screening of multi-targeted natural compounds for receptor tyrosine kinases inhibitors and biological evaluation on cancer cell lines, in silico and in vitro. Med Oncol 32:233. https://doi.org/10.1007/s12032-015-0678-8

    Article  CAS  PubMed  Google Scholar 

  85. Kanehisa M, Furumichi M, Tanabe M et al (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361. https://doi.org/10.1093/nar/gkw1092

    Article  CAS  PubMed  Google Scholar 

  86. Lei J, Zhou J (2002) A marine natural product database. J Chem Inf Comput Sci 42:742–748. https://doi.org/10.1021/ci010111x

    Article  CAS  PubMed  Google Scholar 

  87. Blunt JW, Carroll AR, Copp BR et al (2018) Marine natural products. Nat Prod Rep 35:8–53. https://doi.org/10.1039/C7NP00052A

    Article  CAS  PubMed  Google Scholar 

  88. Horai H, Arita M, Kanaya S et al (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703–714. https://doi.org/10.1002/jms.1777

    Article  CAS  PubMed  Google Scholar 

  89. Haug K, Cochrane K, Nainala VC et al (2019) MetaboLights: a resource evolving in response to the needs of its scientific community. Nucleic Acids Res 48:D440–D444. https://doi.org/10.1093/nar/gkz1019

    Article  CAS  PubMed Central  Google Scholar 

  90. Wajiki M, Yamamoto T, Maruki-Uchida H et al (2022) Effect of sucrose on amino acid absorption of whey: a randomized crossover trial. Metabolites 12:282. https://doi.org/10.3390/metabo12040282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Caspi R, Billington R, Fulcher CA et al (2018) The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res 46:D633–D639. https://doi.org/10.1093/nar/gkx935

    Article  CAS  PubMed  Google Scholar 

  92. Guijas C, Montenegro-Burke JR, Domingo-Almenara X et al (2018) METLIN: a technology platform for identifying knowns and unknowns. Anal Chem 90:3156–3164. https://doi.org/10.1021/acs.analchem.7b04424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li Y, Kind T, Folz J et al (2021) Spectral entropy outperforms MS/MS dot product similarity for small-molecule compound identification. Nat Methods 18:1524–1531. https://doi.org/10.1038/s41592-021-01331-z

    Article  CAS  PubMed  Google Scholar 

  94. Verstraete A, Hyde E (2020) Une méthode de dépistage des NPS utilisant les plateformes collaboratives HighresNPS et Mzcloud. Toxicol Anal Clin 32:S47–S48. https://doi.org/10.1016/j.toxac.2020.09.017

    Article  Google Scholar 

  95. Monga M, Sausville E (2002) Developmental Therapeutics Program at the NCI: molecular target and drug discovery process. Leukemia 16:520–526. https://doi.org/10.1038/sj.leu.2402464

    Article  CAS  PubMed  Google Scholar 

  96. Linstrom P (2017) NIST chemistry WebBook – SRD 69. National Institute of Standards and Technology. https://doi.org/10.18434/T4D303. Accessed 26 May 2023

  97. Kuhn S, Schlörer NE (2015) Facilitating quality control for spectra assignments of small organic molecules: nmrshiftdb2 – a free in-house NMR database with integrated LIMS for academic service laboratories. Magn Reson Chem 53:582–589. https://doi.org/10.1002/mrc.4263

    Article  CAS  PubMed  Google Scholar 

  98. Zeng X, Zhang P, He W et al (2018) NPASS: natural product activity and species source database for natural product research, discovery and tool development. Nucleic Acids Res 46:D1217–D1222. https://doi.org/10.1093/nar/gkx1026

    Article  CAS  PubMed  Google Scholar 

  99. Capecchi A, Reymond J-L (2020) Assigning the origin of microbial natural products by chemical space map and machine learning. Biomolecules 10:1385. https://doi.org/10.3390/biom10101385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tomiki T, Saito T, Ueki M et al (2006) RIKEN Natural Products Encyclopedia (RIKEN NPEdia), a Chemical Database of RIKEN Natural Products Depository (RIKEN NPDepo). J Comput Aided Chem 7:157–162. https://doi.org/10.2751/jcac.7.157

    Article  Google Scholar 

  101. Williamson AE, Ylioja PM, Robertson MN et al (2016) Open source drug discovery: highly potent antimalarial compounds derived from the tres cantos arylpyrroles. ACS Cent Sci 2:687–701. https://doi.org/10.1021/acscentsci.6b00086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Huang W, Brewer LK, Jones JW et al (2018) PAMDB: a comprehensive Pseudomonas aeruginosa metabolome database. Nucleic Acids Res 46:D575–D580. https://doi.org/10.1093/nar/gkx1061

    Article  CAS  PubMed  Google Scholar 

  103. Kim S, Thiessen PA, Bolton EE et al (2016) PubChem substance and compound databases. Nucleic Acids Res 44:D1202–D1213. https://doi.org/10.1093/nar/gkv951

    Article  CAS  PubMed  Google Scholar 

  104. Banerjee P, Erehman J, Gohlke B-O et al (2015) Super Natural II—a database of natural products. Nucleic Acids Res 43:D935–D939. https://doi.org/10.1093/nar/gku886

    Article  CAS  PubMed  Google Scholar 

  105. Ibrahim MAA, Abdeljawaad KAA, Abdelrahman AHM, Hegazy M-EF (2021) Natural-like products as potential SARS-CoV-2 M pro inhibitors: in-silico drug discovery. J Biomol Struct Dyn 39:5722–5734. https://doi.org/10.1080/07391102.2020.1790037

    Article  CAS  PubMed  Google Scholar 

  106. Gu J, Gui Y, Chen L et al (2013) Use of natural products as chemical library for drug discovery and network pharmacology. PLoS ONE 8:e62839. https://doi.org/10.1371/journal.pone.0062839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ramirez-Gaona M, Marcu A, Pon A et al (2017) YMDB 2.0: a significantly expanded version of the yeast metabolome database. Nucleic Acids Res 45:D440–D445. https://doi.org/10.1093/nar/gkw1058

    Article  CAS  PubMed  Google Scholar 

  108. Sterling T, Irwin JJ (2015) ZINC 15 – ligand discovery for everyone. J Chem Inf Model 55:2324–2337. https://doi.org/10.1021/acs.jcim.5b00559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ulrich EL, Akutsu H, Doreleijers JF et al (2007) BioMagResBank. Nucleic Acids Res 36:D402–D408. https://doi.org/10.1093/nar/gkm957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. López-Pérez JL, Therón R, del Olmo E, Díaz D (2007) NAPROC-13: a database for the dereplication of natural product mixtures in bioassay-guided protocols. Bioinformatics 23:3256–3257. https://doi.org/10.1093/bioinformatics/btm516

    Article  CAS  PubMed  Google Scholar 

  111. Steinbeck C, Krause S, Kuhn S (2003) NMRShiftDBConstructing a free chemical information system with open-source components. J Chem Inf Comput Sci 43:1733–1739. https://doi.org/10.1021/ci0341363

    Article  CAS  PubMed  Google Scholar 

  112. Steinbeck C, Kuhn S (2004) NMRShiftDB – compound identification and structure elucidation support through a free community-built web database. Phytochemistry 65:2711–2717. https://doi.org/10.1016/j.phytochem.2004.08.027

    Article  CAS  PubMed  Google Scholar 

  113. Yamamoto O, Someno K, Wasada N et al (1988) An integrated spectral data base system including IR, MS, 1H-NMR, 13C-NMR, ESR and Raman spectra. Anal Sci 4:233–239. https://doi.org/10.2116/analsci.4.233

    Article  CAS  Google Scholar 

  114. Zani CL, Carroll AR (2017) Database for rapid dereplication of known natural products using data from MS and fast NMR experiments. J Nat Prod 80:1758–1766. https://doi.org/10.1021/acs.jnatprod.6b01093

    Article  CAS  PubMed  Google Scholar 

  115. Wishart DS, Sayeeda Z, Budinski Z et al (2022) NP-MRD: the natural products magnetic resonance database. Nucleic Acids Res 50:D665–D677. https://doi.org/10.1093/nar/gkab1052

    Article  CAS  PubMed  Google Scholar 

  116. Asakura K (2015) A NMR spectral database of natural products “CH-NMR-NP”. J Synth Org Chem Japan 73:1247–1252. https://doi.org/10.5059/yukigoseikyokaishi.73.1247

    Article  CAS  Google Scholar 

  117. de Medeiros LS, Abreu LM, Nielsen A et al (2015) Dereplication-guided isolation of depsides thielavins S–T and lecanorins D–F from the endophytic fungus Setophoma sp. Phytochemistry 111:154–162. https://doi.org/10.1016/j.phytochem.2014.12.020

    Article  CAS  PubMed  Google Scholar 

  118. de Medeiros L, da Silva J, Abreu L et al (2015) Dichlorinated and Brominated Rugulovasines, Ergot Alkaloids produced by Talaromyces wortmannii. Molecules 20:17627–17644. https://doi.org/10.3390/molecules200917627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Marner M, Patras MA, Kurz M et al (2020) Molecular networking-guided discovery and characterization of Stechlisins, a group of cyclic lipopeptides from a Pseudomonas sp. J Nat Prod 83:2607–2617. https://doi.org/10.1021/acs.jnatprod.0c00263

    Article  CAS  PubMed  Google Scholar 

  120. Harinantenaina Rakotondraibe L, Rasolomampianina R, Park H-Y et al (2015) Antiproliferative and antiplasmodial compounds from selected Streptomyces species. Bioorg Med Chem Lett 25:5646–5649. https://doi.org/10.1016/j.bmcl.2015.07.103

    Article  CAS  PubMed  Google Scholar 

  121. Tawfike AF, Romli M, Clements C et al (2019) Isolation of anticancer and anti-trypanosome secondary metabolites from the endophytic fungus Aspergillus flocculus via bioactivity guided isolation and MS based metabolomics. J Chromatogr B 1106–1107:71–83. https://doi.org/10.1016/j.jchromb.2018.12.032

    Article  CAS  Google Scholar 

  122. van Santen JA, Poynton EF, Iskakova D et al (2022) The Natural Products Atlas 2.0: a database of microbially-derived natural products. Nucleic Acids Res 50:D1317–D1323. https://doi.org/10.1093/nar/gkab941

    Article  CAS  PubMed  Google Scholar 

  123. Jones MR, Pinto E, Torres MA et al (2021) CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. Water Res 196:117017. https://doi.org/10.1016/j.watres.2021.117017

    Article  CAS  PubMed  Google Scholar 

  124. Davis LJ, Maldonado AC, Khin M et al (2022) Aulosirazoles B and C from the Cyanobacterium Nostoc sp. UIC 10771: analogues of an isothiazolonaphthoquinone scaffold that activate nuclear transcription Factor FOXO3a in ovarian cancer cells. J Nat Prod 85:540–546. https://doi.org/10.1021/acs.jnatprod.1c01030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Iwasaki A, Kurisawa N, Wang T et al (2021) Lingaoamide, a cyclic heptapeptide from a Chinese freshwater cyanobacterium Oscillatoria sp. Tetrahedron Lett 75:153214. https://doi.org/10.1016/j.tetlet.2021.153214

    Article  CAS  Google Scholar 

  126. Montenegro-Burke JR, Guijas C, Siuzdak G (2020) METLIN: a tandem mass spectral library of standards. In: Li S (ed) Computational methods and data analysis for metabolomics, Methods in molecular biology, vol 2104. Humana, New York, pp 149–163

    Chapter  Google Scholar 

  127. Fox Ramos AE, Evanno L, Poupon E et al (2019) Natural products targeting strategies involving molecular networking: different manners, one goal. Nat Prod Rep 36:960–980. https://doi.org/10.1039/C9NP00006B

    Article  CAS  PubMed  Google Scholar 

  128. Qin G-F, Zhang X, Zhu F et al (2022) MS/MS-based molecular networking: an efficient approach for natural products dereplication. Molecules 28:157. https://doi.org/10.3390/molecules28010157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Leao TF, Clark CM, Bauermeister A et al (2021) Quick-start infrastructure for untargeted metabolomics analysis in GNPS. Nat Metab 3:880–882. https://doi.org/10.1038/s42255-021-00429-0

    Article  PubMed  PubMed Central  Google Scholar 

  130. Yang JY, Sanchez LM, Rath CM et al (2013) Molecular networking as a dereplication strategy. J Nat Prod 76:1686–1699. https://doi.org/10.1021/np400413s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Watrous J, Roach P, Alexandrov T et al (2012) Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci 109:E1743–E1752. https://doi.org/10.1073/pnas.1203689109

    Article  PubMed  PubMed Central  Google Scholar 

  132. Perez De Souza L, Alseekh S, Brotman Y, Fernie AR (2020) Network-based strategies in metabolomics data analysis and interpretation: from molecular networking to biological interpretation. Expert Rev Proteomics 17:243–255. https://doi.org/10.1080/14789450.2020.1766975

    Article  CAS  PubMed  Google Scholar 

  133. Beniddir MA, Bin KK, Genta-Jouve G et al (2021) Advances in decomposing complex metabolite mixtures using substructure- and network-based computational metabolomics approaches. Nat Prod Rep 38:1967–1993. https://doi.org/10.1039/D1NP00023C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Olivon F, Elie N, Grelier G et al (2018) MetGem software for the generation of molecular networks based on the t-SNE algorithm. Anal Chem 90:13900–13908. https://doi.org/10.1021/acs.analchem.8b03099

    Article  CAS  PubMed  Google Scholar 

  135. Hoang TPT, Roullier C, Evanno L et al (2023) Nature-inspired chemistry of complex alkaloids: combining targeted molecular networking approach and semisynthetic strategy to access rare communesins in a marine-derived Penicillium expansum. Chem Eur J:e202300103. https://doi.org/10.1002/chem.202300103

  136. Bauermeister A, Mannochio-Russo H, Costa-Lotufo LV et al (2022) Mass spectrometry-based metabolomics in microbiome investigations. Nat Rev Microbiol 20:143–160. https://doi.org/10.1038/s41579-021-00621-9

    Article  CAS  PubMed  Google Scholar 

  137. Domingo-Almenara X, Siuzdak G (2020) Metabolomics data processing using XCMS. In: Li S (ed) Computational methods and data analysis for metabolomics, Methods in molecular biology, vol 2104. Humana, New York, pp 11–24

    Chapter  Google Scholar 

  138. Du X, Smirnov A, Pluskal T et al (2020) Metabolomics data preprocessing using ADAP and MZmine 2. In: Li S (ed) Computational methods and data analysis for metabolomics, Methods in molecular biology, vol 2104. Humana, New York, pp 25–48

    Chapter  Google Scholar 

  139. Pathmasiri W, Kay K, McRitchie S, Sumner S (2020) Analysis of NMR metabolomics data. In: Li S (ed) Computational methods and data analysis for metabolomics, Methods in molecular biology, vol 2104. Humana, New York, pp 61–97

    Chapter  Google Scholar 

  140. Kumar K, Schweiggert R, Patz C-D (2020) Introducing a novel procedure for peak alignment in one-dimensional 1 H-NMR spectroscopy: a prerequisite for chemometric analyses of wine samples. Anal Methods 12:3626–3636. https://doi.org/10.1039/D0AY01011A

    Article  CAS  PubMed  Google Scholar 

  141. Perez de Souza L, Naake T, Tohge T, Fernie AR (2017) From chromatogram to analyte to metabolite. How to pick horses for courses from the massive web resources for mass spectral plant metabolomics. Gigascience 6:gix037. https://doi.org/10.1093/gigascience/gix037

    Article  CAS  Google Scholar 

  142. Jacob D, Deborde C, Lefebvre M et al (2017) NMRProcFlow: a graphical and interactive tool dedicated to 1D spectra processing for NMR-based metabolomics. Metabolomics 13:36. https://doi.org/10.1007/s11306-017-1178-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Röst HL, Sachsenberg T, Aiche S et al (2016) OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat Methods 13:741–748. https://doi.org/10.1038/nmeth.3959

    Article  CAS  PubMed  Google Scholar 

  144. Huan T, Forsberg EM, Rinehart D et al (2017) Systems biology guided by XCMS Online metabolomics. Nat Methods 14:461–462. https://doi.org/10.1038/nmeth.4260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Katajamaa M, Miettinen J, Orešič M (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22:634–636. https://doi.org/10.1093/bioinformatics/btk039

    Article  CAS  PubMed  Google Scholar 

  146. Ye D, Li X, Shen J, Xia X (2022) Microbial metabolomics: from novel technologies to diversified applications. TrAC Trends Anal Chem 148:116540. https://doi.org/10.1016/j.trac.2022.116540

    Article  CAS  Google Scholar 

  147. Johnson CH, Ivanisevic J, Benton HP, Siuzdak G (2015) Bioinformatics: the next frontier of metabolomics. Anal Chem 87:147–156. https://doi.org/10.1021/ac5040693

    Article  CAS  PubMed  Google Scholar 

  148. Naake T, Gaquerel E, Fernie AR (2020) Annotation of specialized metabolites from high-throughput and high-resolution mass spectrometry metabolomics. In: Li S (ed) Computational methods and data analysis for metabolomics, Methods in molecular biology, vol 2104. Humana, New York, pp 209–225

    Chapter  Google Scholar 

  149. Rasche F, Svatoš A, Maddula RK et al (2011) Computing fragmentation trees from tandem mass spectrometry data. Anal Chem 83:1243–1251. https://doi.org/10.1021/ac101825k

    Article  CAS  PubMed  Google Scholar 

  150. da Silva RR, Wang M, Nothias L-F et al (2018) Propagating annotations of molecular networks using in silico fragmentation. PLoS Comput Biol 14:e1006089. https://doi.org/10.1371/journal.pcbi.1006089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Scheubert K, Hufsky F, Böcker S (2013) Computational mass spectrometry for small molecules. J Cheminform 5:12. https://doi.org/10.1186/1758-2946-5-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tsugawa H, Kind T, Nakabayashi R et al (2016) Hydrogen rearrangement rules: computational MS/MS fragmentation and structure elucidation using MS-FINDER software. Anal Chem 88:7946–7958. https://doi.org/10.1021/acs.analchem.6b00770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Triastuti A, Haddad M, Barakat F et al (2021) Dynamics of chemical diversity during co-cultures: an integrative time-scale metabolomics study of fungal Endophytes Cophinforma mamane and Fusarium solani. Chem Biodivers 18:e2000672. https://doi.org/10.1002/cbdv.202000672

    Article  CAS  PubMed  Google Scholar 

  154. Verdegem D, Lambrechts D, Carmeliet P, Ghesquière B (2016) Improved metabolite identification with MIDAS and MAGMa through MS/MS spectral dataset-driven parameter optimization. Metabolomics 12:98. https://doi.org/10.1007/s11306-016-1036-3

    Article  CAS  Google Scholar 

  155. Wolf S, Schmidt S, Müller-Hannemann M, Neumann S (2010) In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics 11:148. https://doi.org/10.1186/1471-2105-11-148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Longnecker K, Kujawinski EB (2017) Mining mass spectrometry data: using new computational tools to find novel organic compounds in complex environmental mixtures. Org Geochem 110:92–99. https://doi.org/10.1016/j.orggeochem.2017.05.008

    Article  CAS  Google Scholar 

  157. Ruttkies C, Schymanski EL, Wolf S et al (2016) MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminform 8:3. https://doi.org/10.1186/s13321-016-0115-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Fahy E, Sud M, Cotter D, Subramaniam S (2007) LIPID MAPS online tools for lipid research. Nucleic Acids Res 35:W606–W612. https://doi.org/10.1093/nar/gkm324

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ludwig M, Fleischauer M, Dührkop K et al (2020) De novo molecular formula annotation and structure elucidation using SIRIUS 4. In: Li S (ed) Computational methods and data analysis for metabolomics, Methods in molecular biology, vol 2104. Humana, New York, pp 185–207

    Chapter  Google Scholar 

  160. Peres E, Souza M, Sousa T et al (2023) Dereplication of sclerotiorin-like azaphilones produced by Penicillium meliponae using LC-MS/MS analysis and molecular networking. J Braz Chem Soc 00:1–15. https://doi.org/10.21577/0103-5053.20230027

    Article  CAS  Google Scholar 

  161. Dührkop K, Fleischauer M, Ludwig M et al (2019) SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods 16:299–302. https://doi.org/10.1038/s41592-019-0344-8

    Article  CAS  PubMed  Google Scholar 

  162. Cohen LJ, Esterhazy D, Kim S-H et al (2017) Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 549:48–53. https://doi.org/10.1038/nature23874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hoffmann MA, Nothias L-F, Ludwig M et al (2022) High-confidence structural annotation of metabolites absent from spectral libraries. Nat Biotechnol 40:411–421. https://doi.org/10.1038/s41587-021-01045-9

    Article  CAS  PubMed  Google Scholar 

  164. Dührkop K, Nothias L-F, Fleischauer M et al (2021) Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat Biotechnol 39:462–471. https://doi.org/10.1038/s41587-020-0740-8

    Article  CAS  PubMed  Google Scholar 

  165. Klamrak A, Nabnueangsap J, Puthongking P, Nualkaew N (2021) Synthesis of ferulenol by engineered Escherichia coli: structural elucidation by using the in silico tools. Molecules 26:6264. https://doi.org/10.3390/molecules26206264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Atencio LA, Boya P CA, Martin HC et al (2020) Genome mining, microbial interactions, and molecular networking reveals new dibromoalterochromides from strains of Pseudoalteromonas of Coiba National Park-Panama. Mar Drugs 18:456. https://doi.org/10.3390/md18090456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sequeira P, Rothkegel M, Domingos P et al (2022) Untargeted metabolomics sheds light on the secondary metabolism of fungi triggered by choline-based ionic liquids. Front Microbiol 13:946286. https://doi.org/10.3389/fmicb.2022.946286

    Article  PubMed  PubMed Central  Google Scholar 

  168. van der Hooft JJJ, Wandy J, Barrett MP et al (2016) Topic modeling for untargeted substructure exploration in metabolomics. Proc Natl Acad Sci 113:13738–13743. https://doi.org/10.1073/pnas.1608041113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Maimone NM, de Oliveira LFP, Santos SN, de Lira SP (2021) Elicitation of Streptomyces lunalinharesii secondary metabolism through co-cultivation with Rhizoctonia solani. Microbiol Res 251:126836. https://doi.org/10.1016/j.micres.2021.126836

    Article  CAS  PubMed  Google Scholar 

  170. Pham HT, Lee KH, Jeong E et al (2021) Species prioritization based on spectral dissimilarity: a case study of polyporoid fungal species. J Nat Prod 84:298–309. https://doi.org/10.1021/acs.jnatprod.0c00977

    Article  CAS  PubMed  Google Scholar 

  171. Rogers S, Ong CW, Wandy J et al (2019) Deciphering complex metabolite mixtures by unsupervised and supervised substructure discovery and semi-automated annotation from MS/MS spectra. Faraday Discuss 218:284–302. https://doi.org/10.1039/C8FD00235E

    Article  CAS  PubMed  Google Scholar 

  172. Liu Y, Ding L, Shi Y et al (2022) Molecular networking-driven discovery of antibacterial perinadines, new tetracyclic alkaloids from the marine sponge-derived Fungus Aspergillus sp. ACS Omega 7:9909–9916. https://doi.org/10.1021/acsomega.2c00402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Andersen AJC, Hansen PJ, Jørgensen K, Nielsen KF (2016) Dynamic cluster analysis: an unbiased method for identifying A + 2 element containing compounds in liquid chromatographic high-resolution time-of-flight mass spectrometric data. Anal Chem 88:12461–12469. https://doi.org/10.1021/acs.analchem.6b03902

    Article  CAS  PubMed  Google Scholar 

  174. Roullier C, Guitton Y, Valery M et al (2016) Automated detection of natural halogenated compounds from LC-MS profiles–application to the isolation of bioactive chlorinated compounds from marine-derived fungi. Anal Chem 88:9143–9150. https://doi.org/10.1021/acs.analchem.6b02128

    Article  CAS  PubMed  Google Scholar 

  175. Flores-Bocanegra L, Al Subeh ZY, Egan JM et al (2022) Dereplication of fungal metabolites by NMR-based compound networking using MADByTE. J Nat Prod 85:614–624. https://doi.org/10.1021/acs.jnatprod.1c00841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zhang C, Idelbayev Y, Roberts N et al (2017) Small Molecule Accurate Recognition Technology (SMART) to enhance natural products research. Sci Rep 7:14243. https://doi.org/10.1038/s41598-017-13923-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Hu J-Q, Wang J-J, Li Y-L et al (2021) Combining NMR-based metabolic profiling and genome mining for the accelerated discovery of Archangiumide, an Allenic Macrolide from the Myxobacterium Archangium violaceum SDU8. Org Lett 23:2114–2119. https://doi.org/10.1021/acs.orglett.1c00265

    Article  CAS  PubMed  Google Scholar 

  178. Emwas A-H et al (2019) NMR spectroscopy for metabolomics research. Metabolites 9(7):123. https://doi.org/10.3390/metabo9070123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hao J et al (2012) BATMAN – an R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model. Bioinformatics 15:2088–20901. https://doi.org/10.1093/bioinformatics/bts308

    Article  CAS  Google Scholar 

  180. Ravanbakhsh S et al (2015) Accurate, fully-automated NMR spectral profiling for metabolomics. PLoS ONE 5:e0124219. https://doi.org/10.1371/journal.pone.0124219

    Article  CAS  Google Scholar 

  181. Röhnisch HE et al (2018) AQuA: an automated quantification algorithm for high-throughput NMR-based metabolomics and its application in human plasma. Anal Chem 3:2095–2102. https://doi.org/10.1021/acs.analchem.7b04324

    Article  CAS  Google Scholar 

  182. Tardivel PJC et al (2017) ASICS: an automatic method for identification and quantification of metabolites in complex 1D 1H NMR spectra. Metabolomics 10:109. https://doi.org/10.1007/s11306-017-1244-5

    Article  CAS  Google Scholar 

  183. Bingol K et al (2016) Comprehensive metabolite identification strategy using multiple two-dimensional NMR spectra of a complex mixture implemented in the COLMARm web server. Anal Chem 24:12411–12418. https://doi.org/10.1021/acs.analchem.6b03724

    Article  CAS  Google Scholar 

  184. Egan JM et al (2021) Development of an NMR-based platform for the direct structural annotation of complex natural products mixtures. J Nat Prod 4:1044–1055. 10.1021/acs.jnatprod.0c01076

    Article  Google Scholar 

  185. Xia J et al (2008) MetaboMiner – semi-automated identification of metabolites from 2D NMR spectra of complex biofluids. BMC Bioinformatics 1:507008. https://doi.org/10.1186/1471-2105-9-507

    Article  CAS  Google Scholar 

  186. Bruguière A et al (2020) MixONat, a software for the dereplication of mixtures based on 13 C NMR spectroscopy. Anal Chem 13:8793–8801. https://doi.org/10.1021/acs.analchem.0c00193

    Article  CAS  Google Scholar 

  187. Zhang C et al (2017) Small Molecule Accurate Recognition Technology (SMART) to enhance natural products research. Sci Rep 1:14243. https://doi.org/10.1038/s41598-017-13923-x

    Article  CAS  Google Scholar 

  188. Bujak R, Struck-Lewicka W, Markuszewski MJ, Kaliszan R (2015) Metabolomics for laboratory diagnostics. J Pharm Biomed Anal 113:108–120. https://doi.org/10.1016/j.jpba.2014.12.017

    Article  CAS  PubMed  Google Scholar 

  189. Chong J, Xia J (2020) Using MetaboAnalyst 4.0 for metabolomics data analysis, interpretation, and integration with other omics data. In: Li S (ed) Computational methods and data analysis for metabolomics, Methods in molecular biology, vol vol 2104. Humana, New York, pp 337–360

    Chapter  Google Scholar 

  190. Ghosh T, Zhang W, Ghosh D, Kechris K (2020) Predictive modeling for metabolomics data. In: Li S (ed) Computational methods and data analysis for metabolomics, Methods in molecular biology, vol 2104. Humana, New York, pp 313–336

    Chapter  Google Scholar 

  191. Sinha R, Sharma B, Dangi AK, Shukla P (2019) Recent metabolomics and gene editing approaches for synthesis of microbial secondary metabolites for drug discovery and development. World J Microbiol Biotechnol 35:166. https://doi.org/10.1007/s11274-019-2746-2

    Article  CAS  PubMed  Google Scholar 

  192. Debik J, Sangermani M, Wang F et al (2022) Multivariate analysis of NMR-based metabolomic data. NMR Biomed 35:e4638. https://doi.org/10.1002/nbm.4638

    Article  CAS  PubMed  Google Scholar 

  193. Abdelmohsen U, Cheng C, Viegelmann C et al (2014) Dereplication strategies for targeted isolation of new antitrypanosomal actinosporins A and B from a marine sponge associated-Actinokineospora sp. EG49. Mar Drugs 12:1220–1244. https://doi.org/10.3390/md12031220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Huang S-M, Toh W, Benke PI et al (2014) MetaboNexus: an interactive platform for integrated metabolomics analysis. Metabolomics 10:1084–1093. https://doi.org/10.1007/s11306-014-0648-8

    Article  CAS  Google Scholar 

  195. Pang Z, Chong J, Zhou G et al (2021) MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res 49:W388–W396. https://doi.org/10.1093/nar/gkab382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Takaki M, Williams DE, Freire VF et al (2022) Metabolomics reveals a 26-membered macrolactone produced by Endophytic Colletotrichum spp. from Alcatrazes Island, Brazil. Org Lett 24:9381–9385. https://doi.org/10.1021/acs.orglett.2c03531

    Article  CAS  PubMed  Google Scholar 

  197. Deutsch JM, Mandelare-Ruiz P, Yang Y et al (2022) Metabolomics approaches to dereplicate natural products from coral-derived bioactive bacteria. J Nat Prod 85:462–478. https://doi.org/10.1021/acs.jnatprod.1c01110

    Article  CAS  PubMed  Google Scholar 

  198. Kešnerová L, Mars RAT, Ellegaard KM et al (2017) Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biol 15:e2003467. https://doi.org/10.1371/journal.pbio.2003467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Hou Y, Braun DR, Michel CR et al (2012) Microbial strain prioritization using metabolomics tools for the discovery of natural products. Anal Chem 84:4277–4283. https://doi.org/10.1021/ac202623g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Wu C, Zacchetti B, Ram AFJ et al (2015) Expanding the chemical space for natural products by Aspergillus-Streptomyces co-cultivation and biotransformation. Sci Rep 5:10868. https://doi.org/10.1038/srep10868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lívia Soman de Medeiros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Medeiros, L.S. et al. (2023). Discovering New Natural Products Using Metabolomics-Based Approaches. In: Pacheco Fill, T. (eds) Microbial Natural Products Chemistry. Advances in Experimental Medicine and Biology(), vol 1439. Springer, Cham. https://doi.org/10.1007/978-3-031-41741-2_8

Download citation

Publish with us

Policies and ethics