Skip to main content

Semiconductor-Based Plasmonic Nanohybrids: Synthesis, Characterization, Mechanistic Understanding of Structure–activity, and Their Multifunctional Applications

  • Chapter
  • First Online:
Multifunctional Hybrid Semiconductor Photocatalyst Nanomaterials

Part of the book series: Advances in Material Research and Technology ((AMRT))

  • 145 Accesses

Abstract

Semiconductor-based plasmonic nanohybrids are gaining increasing interest as photocatalysts in healthcare, sustainable environment, and energy-related applications due to their tunable electronic and optical properties. Plasmonic nanostructures (Gold and silver nanostructures) can be integrated with semiconductors, such as 2D materials, graphene, quantum dots, etc. that aid in improving their electro-optical properties and thereby enhancing the photocatalytic efficiency of such integrated plasmonic nanohybrids. The integrated nanohybrids due to their unique structural and functional properties serve as better photocatalysts and photodetectors. Controlling the structure and morphology of these materials along with the fundamental understanding of their structure–property correlation are pivotal in improving their efficacy. These semiconducting plasmonic hybrids have also been efficiently used for water and air purification, pollutant degradation, solar cells, hydrogen production, and so forth. This chapter discusses the synthetic protocols, characterization, mechanistic understanding of structure–activity relating photocatalysis, and significant applications of semiconductor-based plasmonic nanohybrids with an emphasis on their challenges and future impact on society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blankenship, R.E., Tiede, D.M., Barber, J., Brudvig, G.W., Fleming, G., Ghirardi, M., Gunner, M.R., Junge, W., Kramer, D.M., Melis, A., Moore, T.A., Moser, C.C., Nocera, D.G., Nozik, A.J., Ort, D.R., Parson, W.W., Prince, R.C., Sayre, R.T.: Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332(80), 805–809 (2011). https://doi.org/10.1126/science.1200165

  2. Lewis, N.S., Nocera, D.G.: Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. 103, 15729–15735 (2006). https://doi.org/10.1073/pnas.0603395103

    Article  ADS  Google Scholar 

  3. Nicewicz, D.A., MacMillan, D.W.C.: Merging photoredox catalysis with organocatalysis: The direct asymmetric alkylation of aldehydes. Chemtracts 23, 73–76 (2010)

    Google Scholar 

  4. Hu, Q., Yu, X., Gong, S., Chen, X.: Nanomaterial catalysts for organic photoredox catalysis-mechanistic perspective. Nanoscale 13, 18044–18053 (2021). https://doi.org/10.1039/d1nr05474k

    Article  Google Scholar 

  5. Ingram, D.B., Christopher, P., Bauer, J.L., Linic, S.: Predictive model for the design of plasmonic metal/semiconductor composite photocatalysts. ACS Catal. 1, 1441–1447 (2011). https://doi.org/10.1021/cs200320h

    Article  Google Scholar 

  6. Clavero, C.: Plasmon-induced hot-electron generation at nanoparticle/metal–oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics. 8, 95–103 (2014). https://doi.org/10.1038/nphoton.2013.238

    Article  ADS  Google Scholar 

  7. Dequilettes, D.W., Frohna, K., Emin, D., Kirchartz, T., Bulovic, V., Ginger, D.S., Stranks, S.D.: Charge-carrier recombination in halide perovskites. Chem. Rev. 119, 11007–11019 (2019). https://doi.org/10.1021/acs.chemrev.9b00169

    Article  Google Scholar 

  8. Cells, S.: Au @ Ag core à shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic. 3302–3312 (2014)

    Google Scholar 

  9. Sung, Y.M., Lai, Y.C., Tsai, M.F., Hsieh, H.H., Yang, M.H., Wei, P.P., Yeh, C.S., Hsu, F.C., Chen, Y.F.: Broad band plasmonic nanomaterials for high performance solar cells. J. Mater. Chem. C. 4, 513–520 (2016). https://doi.org/10.1039/c5tc02329g

    Article  Google Scholar 

  10. Lu, L., Luo, Z., Xu, T., Yu, L.: Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Nano Lett. 13, 59–64 (2013). https://doi.org/10.1021/nl3034398

    Article  ADS  Google Scholar 

  11. Chang, S., Li, Q., Xiao, X., Wong, K.Y., Chen, T.: Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods. Energy Environ. Sci. 5, 9444–9448 (2012). https://doi.org/10.1039/c2ee22657j

    Article  Google Scholar 

  12. de Aberasturi, D.J., Serrano-Montes, A.B., Liz-Marzán, L.M.: Modern applications of plasmonic nanoparticles: From energy to health. Adv. Opt. Mater. 3, 602–617 (2015). https://doi.org/10.1002/adom.201500053

    Article  Google Scholar 

  13. Wu, N.: Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: A review. Nanoscale 10, 2679–2696 (2018). https://doi.org/10.1039/c7nr08487k

    Article  Google Scholar 

  14. Volokh, M., Mokari, T.: Metal/semiconductor interfaces in nanoscale objects: Synthesis, emerging properties and applications of hybrid nanostructures. Nanoscale Adv. 2, 930–961 (2020). https://doi.org/10.1039/c9na00729f

    Article  ADS  Google Scholar 

  15. Li, J., Lou, Z., Li, B.: Engineering plasmonic semiconductors for enhanced photocatalysis. J. Mater. Chem. A. 9, 18818–18835 (2021). https://doi.org/10.1039/d1ta04541e

    Article  Google Scholar 

  16. Hou, W., Cronin, S.B.: A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 23, 1612–1619 (2013). https://doi.org/10.1002/adfm.201202148

    Article  Google Scholar 

  17. Ding, S.Y., Yi, J., Li, J.F., Ren, B., Wu, D.Y., Panneerselvam, R., Tian, Z.Q.: Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, (2016). https://doi.org/10.1038/natrevmats.2016.21

  18. West, J.L., Halas, N.J.: Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics. Annu. Rev. Biomed. Eng. 5, 285–292 (2003). https://doi.org/10.1146/annurev.bioeng.5.011303.120723

    Article  Google Scholar 

  19. Astruc, D., Lu, F., Aranzaes, J.R.: Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chemie - Int. Ed. 44, 7852–7872 (2005). https://doi.org/10.1002/anie.200500766

    Article  Google Scholar 

  20. Crooks, R.M., Zhao, M., Sun, L., Chechik, V., Yeung, L.K.: Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis. Acc. Chem. Res. 34, 181–190 (2001). https://doi.org/10.1021/ar000110a

    Article  Google Scholar 

  21. Grainger, D.W., Castner, D.G.: Nanobiomaterials and nanoanalysis: Opportunities for improving the science to benefit biomedical technologies. Adv. Mater. 20, 867–877 (2008). https://doi.org/10.1002/adma.200701760

    Article  Google Scholar 

  22. Jain, P.K., Lee, K.S., El-Sayed, I.H., El-Sayed, M.A.: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B. 110, 7238–7248 (2006). https://doi.org/10.1021/jp057170o

    Article  Google Scholar 

  23. Ahuja, T., Ghosh, A., Mondal, S., Basuri, P., Jenifer, S.K., Srikrishnarka, P., Mohanty, J.S., Bose, S., Pradeep, T.: Ambient electrospray deposition Raman spectroscopy (AESD RS) using soft landed preformed silver nanoparticles for rapid and sensitive analysis. Analyst. 144, 7412–7420 (2019). https://doi.org/10.1039/c9an01700c

    Article  ADS  Google Scholar 

  24. Ghosh, A., Ahuja, T., Chaudhari, K., Pradeep, T.: Probing subtle changes in molecular orientations using ambient electrospray deposition Raman spectroscopy (AESD RS). J. Phys. Chem. C. 124, 16644–16651 (2020). https://doi.org/10.1021/acs.jpcc.0c04116

    Article  Google Scholar 

  25. Van Schrojenstein Lantman, E.M., Deckert-Gaudig, T., Mank, A.J.G., Deckert, V., Weckhuysen, B.M.: Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotechnol. 7, 583–586 (2012). https://doi.org/10.1038/nnano.2012.131

  26. Ahuja, T., Chaudhari, K., Paramasivam, G., Ragupathy, G., Mohanty, J.S., Pradeep, T.: Toward vibrational tomography of citrate on dynamically changing individual silver nanoparticles. J. Phys. Chem. C. 125, 3553–3566 (2021). https://doi.org/10.1021/acs.jpcc.0c09981

    Article  Google Scholar 

  27. Linic, S., Christopher, P., Ingram, D.B.: Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011). https://doi.org/10.1038/nmat3151

    Article  ADS  Google Scholar 

  28. Ye, W., Long, R., Huang, H., Xiong, Y.: Plasmonic nanostructures in solar energy conversion. J. Mater. Chem. C. 5, 1008–1021 (2017). https://doi.org/10.1039/c6tc04847a

    Article  Google Scholar 

  29. Eustis, S., El-Sayed, M.A.: Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35, 209–217 (2006). https://doi.org/10.1039/b514191e

    Article  Google Scholar 

  30. Zheng, Z., Huang, B., Qin, X., Zhang, X., Dai, Y., Whangbo, M.H.: Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. J. Mater. Chem. 21, 9079–9087 (2011). https://doi.org/10.1039/c1jm10983a

    Article  Google Scholar 

  31. Jain, V., Kashyap, R.K., Pillai, P.P.: Plasmonic photocatalysis: Activating chemical bonds through light and plasmon. Adv. Opt. Mater. 10, 1–33 (2022). https://doi.org/10.1002/adom.202200463

    Article  Google Scholar 

  32. Tian, Y., Tatsuma, T.: Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. 1810–1811 (2004). https://doi.org/10.1039/b405061d

  33. Cushing, S.K., Li, J., Meng, F., Senty, T.R., Suri, S., Zhi, M., Li, M., Bristow, A.D., Wu, N.: Transfer from metal to semiconductor. J. Am. Chem. Soc. 134, 15033–15041 (2012)

    Article  Google Scholar 

  34. Awazu, K., Fujimaki, M., Rockstuhl, C., Tominaga, J., Murakami, H., Ohki, Y., Yoshida, N., Watanabe, T.: A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc. 130, 1676–1680 (2008). https://doi.org/10.1021/ja076503n

    Article  Google Scholar 

  35. Wang, C., Ranasingha, O., Natesakhawat, S., Ohodnicki, P.R., Andio, M., Lewis, J.P., Matranga, C.: Visible light plasmonic heating of Au–ZnO for the catalytic reduction of CO2. Nanoscale 5, 6968–6974 (2013). https://doi.org/10.1039/c3nr02001k

    Article  ADS  Google Scholar 

  36. Mondal, C., Pal, J., Ganguly, M., Sinha, A.K., Jana, J., Pal, T.: A one pot synthesis of Au-ZnO nanocomposites for plasmon-enhanced sunlight driven photocatalytic activity. New J. Chem. 38, 2999–3005 (2014). https://doi.org/10.1039/c4nj00227j

    Article  Google Scholar 

  37. Andriyanti, W., Nurfiana, F., Sari, A.N., Kundari, N.A., Aziz, I.: Synthesis TiO2-Ag thin film by DC sputtering method for dye degradation. J. Phys. Conf. Ser. 1436, 012008 (2020). https://doi.org/10.1088/1742-6596/1436/1/012008

    Article  Google Scholar 

  38. Kuriakose, S., Sahu, K., Khan, S.A., Tripathi, A., Avasthi, D.K., Mohapatra, S.: Facile synthesis of Au-ZnO plasmonic nanohybrids for highly efficient photocatalytic degradation of methylene blue. Opt. Mater. (Amst) 64, 47–52 (2017). https://doi.org/10.1016/j.optmat.2016.11.035

    Article  ADS  Google Scholar 

  39. Paul, K.K., Giri, P.K.: Plasmonic metal and semiconductor nanoparticle decorated TiO2-based photocatalysts for solar light driven photocatalysis. Encycl. Interfacial Chem. Surf. Sci. Electrochem. 786–794 (2018). https://doi.org/10.1016/B978-0-12-409547-2.13176-2

  40. Abouelela, M.M., Kawamura, G., Matsuda, A.: A review on plasmonic nanoparticle-semiconductor photocatalysts for water splitting. J. Clean. Prod. 294, 126200 (2021). https://doi.org/10.1016/j.jclepro.2021.126200

    Article  Google Scholar 

  41. Reddy, N.L., Rao, V.N., Vijayakumar, M., Santhosh, R., Anandan, S., Karthik, M., Shankar, M.V., Reddy, K.R., Shetti, N.P., Nadagouda, M.N., Aminabhavi, T.M.: A review on frontiers in plasmonic nano-photocatalysts for hydrogen production. Int. J. Hydrogen Energy. 44, 10453–10472 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.120

    Article  Google Scholar 

  42. Kawamura, G., Matsuda, A.: Synthesis of plasmonic photocatalysts for water splitting. Catalysts 9, (2019). https://doi.org/10.3390/catal9120982

  43. Zhang, J., Ji, M., Liu, J., Xu, M.: Metal/semiconductor hybrid nanocrystals and synergistic photocatalysis applications. Adv. Catal. Mater.—Photocatal. Other Curr. Trends. 297–337 (2016). https://doi.org/10.5772/61888

  44. Wang, C., Astruc, D.: Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. Chem. Soc. Rev. 43, 7188–7216 (2014). https://doi.org/10.1039/c4cs00145a

    Article  Google Scholar 

  45. Singh, J., Sahu, K., Satpati, B., Shah, J., Kotnala, R.K., Mohapatra, S.: Facile synthesis, structural and optical properties of Au-TiO2 plasmonic nanohybrids for photocatalytic applications. J. Phys. Chem. Solids. 135, 109100 (2019). https://doi.org/10.1016/j.jpcs.2019.109100

    Article  Google Scholar 

  46. Han, C., Quan, Q., Chen, H.M., Sun, Y., Xu, Y.J.: Progressive design of plasmonic metal–semiconductor ensemble toward regulated charge flow and improved vis–NIR-driven solar-to-chemical conversion. Small. 13, (2017). https://doi.org/10.1002/smll.201602947

  47. Yan, J., Wu, G., Dai, W., Guan, N., Li, L.: Synthetic design of gold nanoparticles on anatase TiO2 001 for enhanced visible light harvesting. ACS Sustain. Chem. Eng. 2, 1940–1946 (2014). https://doi.org/10.1021/sc500331k

    Article  Google Scholar 

  48. Ma, X.C., Dai, Y., Yu, L., Huang, B.B.: Energy transfer in plasmonic photocatalytic composites. Light Sci. Appl. 5, (2016). https://doi.org/10.1038/lsa.2016.17

  49. Wang, P., Huang, B., Dai, Y., Whangbo, M.H.: Plasmonic photocatalysts: Harvesting visible light with noble metal nanoparticles. Phys. Chem. Chem. Phys. 14, 9813–9825 (2012). https://doi.org/10.1039/c2cp40823f

    Article  Google Scholar 

  50. Gan, X., Lei, D.: Plasmonic-metal/2D-semiconductor hybrids for photodetection and photocatalysis in energy-related and environmental processes. Coord. Chem. Rev. 469, 214665 (2022). https://doi.org/10.1016/j.ccr.2022.214665

    Article  Google Scholar 

  51. Jiang, L., Zhou, G., Mi, J., Wu, Z.: Fabrication of visible-light-driven one-dimensional anatase TiO2/Ag heterojunction plasmonic photocatalyst. Catal. Commun. 24, 48–51 (2012). https://doi.org/10.1016/j.catcom.2012.03.017

    Article  Google Scholar 

  52. Zhu, H., Ke, X., Yang, X., Sarina, S., Liu, H.: Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light. Angew. Chemie—Int. Ed. 49, 9657–9661 (2010). https://doi.org/10.1002/anie.201003908

    Article  Google Scholar 

  53. Prakash, J., Kumar, P., Harris, R.A., Swart, C., Neethling, J.H., Van Vuuren, A.J., Swart, H.C.: Synthesis, characterization and multifunctional properties of plasmonic Ag-TiO2 nanocomposites. Nanotechnology 27, 1–20 (2016). https://doi.org/10.1088/0957-4484/27/35/355707

    Article  Google Scholar 

  54. Hou, W., Hung, W.H., Pavaskar, P., Goeppert, A., Aykol, M., Cronin, S.B.: Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catal. 1, 929–936 (2011). https://doi.org/10.1021/cs2001434

    Article  Google Scholar 

  55. Liu, J., Feng, J., Gui, J., Chen, T., Xu, M., Wang, H., Dong, H., Chen, H., Li, X., Wang, L., Chen, Z., Yang, Z., Liu, J., Hao, W., Yao, Y., Gu, L., Weng, Y., Huang, Y., Duan, X., Zhang, J., Li, Y.: Metal@semiconductor core-shell nanocrystals with atomically organized interfaces for efficient hot electron-mediated photocatalysis. Nano Energy 48, 44–52 (2018). https://doi.org/10.1016/j.nanoen.2018.02.040

    Article  Google Scholar 

  56. Wang, H., Zhao, W., Xu, C.H., Chen, H.Y., Xu, J.J.: Electrochemical synthesis of Au@semiconductor core-shell nanocrystals guided by single particle plasmonic imaging. Chem. Sci. 10, 9308–9314 (2019). https://doi.org/10.1039/c9sc02804h

    Article  Google Scholar 

  57. Zhang, N., Han, C., Fu, X., Xu, Y.J.: Function-oriented engineering of metal-based nanohybrids for photoredox catalysis: Exerting plasmonic effect and beyond. Chem. 4, 1832–1861 (2018). https://doi.org/10.1016/j.chempr.2018.05.005

    Article  Google Scholar 

  58. Bian, Z., Tachikawa, T., Zhang, P., Fujitsuka, M., Majima, T.: Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. J. Am. Chem. Soc. 136, 458–465 (2014). https://doi.org/10.1021/ja410994f

    Article  Google Scholar 

  59. Fragua, D.M., Abargues, R., Rodriguez-Canto, P.J., Sanchez-Royo, J.F., Agouram, S., Martinez-Pastor, J.P.: Au-ZnO nanocomposite films for plasmonic photocatalysis. Adv. Mater. Interfaces. 2, 1–10 (2015). https://doi.org/10.1002/admi.201500156

    Article  Google Scholar 

  60. Lu, J., Wang, H., Peng, D., Chen, T., Dong, S., Chang, Y.: Synthesis and properties of Au/ZnO nanorods as a plasmonic photocatalyst. Phys. E Low-Dimensional Syst. Nanostructures 78, 41–48 (2016). https://doi.org/10.1016/j.physe.2015.11.035

    Article  ADS  Google Scholar 

  61. Endo-kimura, M., Kowalska, E.: Plasmonic photocatalysts for microbiological applications. Catalysts 10, 824 (2020). https://doi.org/10.3390/catal10080824

    Article  Google Scholar 

  62. Endo, M., Wei, Z., Wang, K., Karabiyik, B., Yoshiiri, K., Rokicka, P., Ohtani, B., Markowska-Szczupak, A., Kowalska, E.: Noble metal-modified Titania with visible-light activity for the decomposition of microorganisms. Beilstein J. Nanotechnol. 9, 829–841 (2018). https://doi.org/10.3762/bjnano.9.77

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tripti Ahuja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, A., Ahuja, T. (2023). Semiconductor-Based Plasmonic Nanohybrids: Synthesis, Characterization, Mechanistic Understanding of Structure–activity, and Their Multifunctional Applications. In: Prakash, J., Cho, J., Campos Janegitz, B., Sun, S. (eds) Multifunctional Hybrid Semiconductor Photocatalyst Nanomaterials. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-39481-2_15

Download citation

Publish with us

Policies and ethics