Skip to main content

Physicochemical Characterizations of Functionalized Carbon Nanostructures

  • Living reference work entry
  • First Online:
Handbook of Functionalized Carbon Nanostructures

Abstract

The diversity of carbon nanostructures information is expanding as our understanding of nanoscale environments of nanomaterials increases with new advances in materials design and nanochemistry. Nanomaterial surfaces have dangling bonds with a partial electric charge that increases the surface energy and reactivity. Surface passivation or functionalization with anchoring molecules overcomes this problem. Chemical functionalization involves the carbon network modification, introducing heteroatoms, known as doping, or forming covalent bonds with functional groups and even molecules changing their physical and chemical properties with the possibility of having different applications like drug carriers, imaging technology, biosensors, air, and water filters. This chapter presents experimental procedures to study functionalized carbon nanostructures due to the importance of having an accurate instrument for chemical analysis that converts the information collected from the physical and chemical characteristics of carbon nanostructures into data for interpretation. Providing the sample with a stimulus of electromagnetic, mechanical, or nuclear energy generates a response that will provide the expected analytical information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Georgakilas, V., Perman, J.A., Tucek, J., Zboril, R.: Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 115, 4744–4822 (2015). https://doi.org/10.1021/cr500304f

    Article  CAS  Google Scholar 

  2. Bhat, A.P., Dhoble, S.J., Rewatkar, K.G.: Chapter 32 – Medical applications of quantum dots. In: Al-Douri, Y. (ed.) Graphene Nanotubes and Quantum Dots-Based Nanotechnology. Woodhead Publishing Series in Electronic and Optical Materials, pp. 803–836. Woodhead Publishing, Cambridge, MA (2022)

    Google Scholar 

  3. Iijima, S.: Helical microtubules of graphitic carbon. Nature. 354, 56–58 (1991). https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  4. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  5. Yence, M., Cetinkaya, A., Ozcelikay, G., Kaya, S.I., Ozkan, S.A.: Boron-Doped Diamond Electrodes: Recent Developments and Advances in View of Electrochemical Drug Sensors. Sep. Purif. Technol. 212, 802–821 (2022). https://doi.org/10.1016/j.seppur.2018.11.056

  6. Louro, H.: Relevance of Physicochemical Characterization of Nanomaterials for Understanding Nano-cellular Interactions. In: Saquib, Q., Faisal, M., Al-Khedhairy, A., Alatar, A. (eds) Cellular and Molecular Toxicology of Nanoparticles. Advances in Experimental Medicine and Biology. 1048, 123–142 (2018). Springer, Cham. https://doi.org/10.1007/978-3-319-72041-8_8

  7. Agnoli, S., Favaro, M.: Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications. J. Mater. Chem. A. 4, 5002–5025 (2016). https://doi.org/10.1039/c5ta10599d

    Article  CAS  Google Scholar 

  8. Speranza, G.: The role of functionalization in the applications of carbon materials: an overview. C J. Carbon Res. 5, 84 (2019). https://doi.org/10.3390/c5040084

    Article  Google Scholar 

  9. Thakur, A.K., Kurtyka, K., Majumder, M., Yang, X., Ta, H.Q., Bachmatiuk, A., Liu, L., Trzebicka, B., Rummeli, M.H.: Recent advances in boron- and nitrogen-doped carbon-based materials and their various applications. Adv. Mater. Interfaces. 9 (2022). https://doi.org/10.1002/admi.202101964

  10. Sawant, S.V., Patwardhan, A.W., Joshi, J.B., Dasgupta, K.: Boron doped carbon nanotubes: synthesis, characterization and emerging applications – a review. Chem. Eng. J. 427, 131616 (2022). https://doi.org/10.1016/j.cej.2021.131616

    Article  CAS  Google Scholar 

  11. Mantina, M., Chamberlin, A.C., Valero, R., Cramer, C.J., Truhlar, D.G.: Consistent van der Waals radü for the whole main group. J. Phys. Chem. A. 113, 5806–5812 (2009). https://doi.org/10.1021/jp8111556

    Article  CAS  Google Scholar 

  12. Kalish, R.: Doping of diamond. Carbon. 37, 781–785 (1999). https://doi.org/10.1016/S0008-6223(98)00270-X

    Article  CAS  Google Scholar 

  13. Jeon, I.Y., Noh, H.J., Baek, J.B.: Nitrogen-doped carbon nanomaterials: synthesis, characteristics and applications. Chem. Asian J. 15, 2282–2293 (2020). https://doi.org/10.1002/asia.201901318

    Article  CAS  Google Scholar 

  14. Shaheen Shah, S., Abu Nayem, S.M., Sultana, N., Saleh Ahammad, A.J., Abdul Aziz, M.: Preparation of sulfur-doped carbon for supercapacitor applications: a review. ChemSusChem. 15 (2022). https://doi.org/10.1002/cssc.202101282

  15. Puziy, A.M., Poddubnaya, O.I., Gawdzik, B., Tascón, J.M.D.: Phosphorus-containing carbons: preparation, properties and utilization. Carbon. 157, 796–846 (2020). https://doi.org/10.1016/j.carbon.2019.10.018

    Article  CAS  Google Scholar 

  16. Srivastava, S., Pal, P., Sharma, D.K., Kumar, S., Senguttuvan, T.D., Gupta, B.K.: Ultrasensitive boron–nitrogen-codoped CVD graphene-derived NO2 gas sensor. ACS Mater. Au. 2, 356–366 (2022). https://doi.org/10.1021/acsmaterialsau.2c00003

    Article  CAS  Google Scholar 

  17. Duan, X., Indrawirawan, S., Sun, H., Wang, S.: Effects of nitrogen-, boron-, and phosphorus-doping or codoping on metal-free graphene catalysis. Catal. Today. 249, 184–191 (2015). https://doi.org/10.1016/j.cattod.2014.10.005

    Article  CAS  Google Scholar 

  18. Bong, J.H., Sul, O., Yoon, A., Choi, S.-Y., Cho, B.J.: Facile graphene n-doping by wet chemical treatment for electronic applications. Nanoscale. 6, 8503–8508 (2014). https://doi.org/10.1039/C4NR01160K

    Article  CAS  Google Scholar 

  19. Chen, C., Li, P., Wang, T., Wang, S., Zhang, M.: S-doped carbon fibers uniformly embedded with ultrasmall TiO2 for Na+/Li+ storage with high capacity and long-time stability. Small. 15, 1–12 (2019). https://doi.org/10.1002/smll.201902201

    Article  CAS  Google Scholar 

  20. Wu, T., Jing, M., Yang, L., Zou, G., Hou, H., Zhang, Y., Zhang, Y., Cao, X., Ji, X.: Controllable chain-length for covalent sulfur–carbon materials enabling stable and high-capacity sodium storage. Adv. Energy Mater. 9, 1–11 (2019). https://doi.org/10.1002/aenm.201803478

    Article  CAS  Google Scholar 

  21. Ding, G., Li, Z., Wei, L., Yao, G., Niu, H., Wang, C., Zheng, F., Chen, Q.: Regulating the sodium storage sites in nitrogen-doped carbon materials by sulfur-doping engineering for sodium ion batteries. Electrochim. Acta. 424 (2022). https://doi.org/10.1016/j.electacta.2022.140645

  22. Wang, C., Sun, L., Zhou, Y., Wan, P., Zhang, X., Qiu, J.: P/N co-doped microporous carbons from H3PO4-doped polyaniline by in situ activation for supercapacitors. Carbon. 59, 537–546 (2013). https://doi.org/10.1016/j.carbon.2013.03.052

    Article  CAS  Google Scholar 

  23. Ostafiychuk, B.K., Budzulyak, I.M., Rachiy, B.I., Kuzyshyn, M.M., Shyyko, L.O.: Nanoporous nitrogen-containing coal for electrodes of supercapacitors. Nanosci. Nanotechnol. Res. 1, 17–22 (2013). https://doi.org/10.12691/nnr-1-2-2

    Article  Google Scholar 

  24. Olabintan, A.B., Ahmed, E., Al Abdulgader, H., Saleh, T.A.: Hydrophobic and oleophilic amine-functionalised graphene/polyethylene nanocomposite for oil–water separation. Environ. Technol. Innov. 27, 102391 (2022). https://doi.org/10.1016/j.eti.2022.102391

    Article  CAS  Google Scholar 

  25. Kundu, S., Xia, W., Busser, W., Becker, M., Schmidt, D.A., Havenith, M., Muhler, M.: The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study. Phys. Chem. Chem. Phys. 12, 4351–4359 (2010). https://doi.org/10.1039/B923651A

    Article  CAS  Google Scholar 

  26. Lai, L., Barnard, A.S.: Stability of nanodiamond surfaces exposed to N, NH, and NH2. J. Phys. Chem. C. 115, 6218–6228 (2011). https://doi.org/10.1021/jp1111026

    Article  CAS  Google Scholar 

  27. Barnard, A.S.: Chapter 1 – Stability of diamond at the nanoscale. In: Shenderova, O.A., Gruen, D.M. (eds.) Ultananocrystalline Diamond, 2nd edn, pp. 3–52. William Andrew Publishing, Oxford (2012)

    Chapter  Google Scholar 

  28. Stein, A., Wang, Z., Fierke, M.A.: Functionalization of porous carbon materials with designed pore architecture. Adv. Mater. 21(3), 265–293 (2009). https://doi.org/10.1002/adma.200801492

  29. Schönherr, J., Buchheim, J., Scholz, P., Stelter, M.: Oxidation of carbon nanotubes with ozone and hydroxyl radicals. Carbon. 111 (2017). https://doi.org/10.1016/j.carbon.2016.10.013

  30. Mao, J., Wang, Y., Zhu, J., Yu, J., Hu, Z.: Thiol functionalized carbon nanotubes: synthesis by sulfur chemistry and their multi-purpose applications. Appl. Surf. Sci. 447, 235–243 (2018). https://doi.org/10.1016/j.apsusc.2018.03.188

    Article  CAS  Google Scholar 

  31. Chadha, R., Das, A., Debnath, A.K., Kapoor, S., Maiti, N.: 2-thiazoline-2-thiol functionalized gold nanoparticles for detection of heavy metals, Hg(II) and Pb(II) and probing their competitive surface reactivity: a colorimetric, surface enhanced Raman scattering (SERS) and x-ray photoelectron spectroscopic (XPS). Colloids Surfaces A Physicochem. Eng. Asp. 615 (2021). https://doi.org/10.1016/j.colsurfa.2021.126279

  32. Long Huang, K., Hu, L., Liu, S.Q.: Preparation and characterization of disulfide functionalized multi-walled carbon nanotubes for biomedical applications. Int. J. Chem. 2, 2006–2010 (2010). https://doi.org/10.5539/ijc.v2n2p144

    Article  Google Scholar 

  33. Suriyaprakash, J., Gupta, N., Shan, L., Wu, L.: Immobilized molecules’ impact on the efficacy of nanocarbon organic sensors for ultralow dopamine detection in biofluids. Adv. Mater. Technol. 7, 2200099 (2022). https://doi.org/10.1002/admt.202200099

    Article  CAS  Google Scholar 

  34. Han, J., Gao, C.: Functionalization of carbon nanotubes and other nanocarbons by azide chemistry. Nanomicro Lett. 2, 213–226 (2010). https://doi.org/10.1007/BF03353643

    Article  Google Scholar 

  35. Iehl, J., Osinska, I., Louis, R., Holler, M., Nierengarten, J.F.: A stable fullerene-azide building block for the construction of a fullerene-porphyrin conjugate. Tetrahedron Lett. 50, 2245–2248 (2009). https://doi.org/10.1016/j.tetlet.2009.02.185

    Article  CAS  Google Scholar 

  36. Li, H., Cheng, F., Duft, A.M., Adronov, A.: Functionalization of single-walled carbon nanotubes with well-defined polystyrene by “click” coupling. J. Am. Chem. Soc. 127, 14518–14524 (2005). https://doi.org/10.1021/ja054958b

    Article  CAS  Google Scholar 

  37. Voggu, R., Suguna, P., Chandrasekaran, S., Rao, C.N.R.: Assembling covalently linked nanocrystals and nanotubes through click chemistry. Chem. Phys. Lett. 443, 118–121 (2007). https://doi.org/10.1016/j.cplett.2007.06.050

    Article  CAS  Google Scholar 

  38. Kozyrev, S., Yakutseni, P.: Nanocarbon Technologies: Prospects and Risks. In: Magarshak, Y., Kozyrev, S., Vaseashta, A.K. (eds) Silicon Versus Carbon. NATO Science for Peace and Security Series B: Physics and Biophysics, pp. 9–18 (2009). Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2523-4_2

  39. Chen, W., Wan, M., Liu, Q., Xiong, X., Yu, F., Huang, Y.: Heteroatom-doped carbon materials: synthesis, mechanism, and application for sodium-ion batteries. Small Methods. 3, 1–18 (2019). https://doi.org/10.1002/smtd.201800323

    Article  CAS  Google Scholar 

  40. Chen, B.B., Liu, M.L., Li, C.M., Huang, C.Z.: Fluorescent carbon dots functionalization. Adv. Colloid Interf. Sci. 270, 165–190 (2019). https://doi.org/10.1016/j.cis.2019.06.008

    Article  CAS  Google Scholar 

  41. Abd Elkodous, M., El-Sayyad, G.S., Abdelrahman, I.Y., El-Bastawisy, H.S., Mohamed, A.E., Mosallam, F.M., Nasser, H.A., Gobara, M., Baraka, A., Elsayed, M.A., El-Batal, A.I.: Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf. B Biointerfaces. 180, 411–428 (2019). https://doi.org/10.1016/j.colsurfb.2019.05.008

    Article  CAS  Google Scholar 

  42. Rani, U.A., Ng, L.Y., Ng, C.Y., Mahmoudi, E.: A review of carbon quantum dots and their applications in wastewater treatment. Adv. Colloid Interf. Sci. 278, 102124 (2020). https://doi.org/10.1016/j.cis.2020.102124

    Article  CAS  Google Scholar 

  43. Pandey, S., Bodas, D.: High-quality quantum dots for multiplexed bioimaging: a critical review. Adv. Colloid Interf. Sci. 278, 102137 (2020). https://doi.org/10.1016/j.cis.2020.102137

    Article  CAS  Google Scholar 

  44. Li, Y., Zhu, W., Li, J., Chu, H.: Research progress in nanozyme-based composite materials for fighting against bacteria and biofilms. Colloids Surf. B Biointerfaces. 198, 111465 (2021). https://doi.org/10.1016/j.colsurfb.2020.111465

    Article  CAS  Google Scholar 

  45. Berdimurodov, E., Verma, D.K., Kholikov, A., Akbarov, K., Guo, L.: The recent development of carbon dots as powerful green corrosion inhibitors: a prospective review. J. Mol. Liq. 349, 118124 (2022). https://doi.org/10.1016/j.molliq.2021.118124

    Article  CAS  Google Scholar 

  46. Pakdel, S., Erfan-Niya, H., Azamat, J.: Efficient separation of He/CH4 mixture by functionalized graphenylene membranes: a theoretical study. J. Mol. Graph. Model. 115, 108211 (2022). https://doi.org/10.1016/j.jmgm.2022.108211

    Article  CAS  Google Scholar 

  47. Lopez-Cantu, D.O., González-González, R.B., Melchor-Martínez, E.M., Martínez, S.A.H., Araújo, R.G., Parra-Arroyo, L., Sosa-Hernández, J.E., Parra-Saldívar, R., Iqbal, H.M.N.: Enzyme-mimicking capacities of carbon-dots nanozymes: properties, catalytic mechanism, and applications – a review. Int. J. Biol. Macromol. 194, 676–687 (2022). https://doi.org/10.1016/j.ijbiomac.2021.11.112

    Article  CAS  Google Scholar 

  48. Chatterjee, N., Kumar, P., Kumar, K., Misra, S.K.: What makes carbon nanoparticle a potent material for biological application? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 14, 1–30 (2022). https://doi.org/10.1002/wnan.1782

    Article  CAS  Google Scholar 

  49. Zang, X., Dong, Y., Jian, C., Ferralis, N., Grossman, J.C.: Upgrading carbonaceous materials: coal, tar, pitch, and beyond. Matter. 5, 430–447 (2022). https://doi.org/10.1016/j.matt.2021.11.022

    Article  CAS  Google Scholar 

  50. Mamidi, N., Velasco Delgadillo, R.M., Barrera, E.V., Ramakrishna, S., Annabi, N.: Carbonaceous nanomaterials incorporated biomaterials: the present and future of the flourishing field. Compos. Part B Eng. 243, 110150 (2022). https://doi.org/10.1016/j.compositesb.2022.110150

    Article  CAS  Google Scholar 

  51. Pandey, K., Dwivedi, M.M., Sanjay, S.S.: A brief review on synthesis and application of polymer–nanodiamond composite. Mater. Today Proc. 68, 2772–2780 (2022). https://doi.org/10.1016/j.matpr.2022.09.032

    Article  CAS  Google Scholar 

  52. Mahajan, M.R., Patil, P.O.: Design of zero-dimensional graphene quantum dots based nanostructures for the detection of organophosphorus pesticides in food and water: a review. Inorg. Chem. Commun. 144, 109883 (2022). https://doi.org/10.1016/j.inoche.2022.109883

    Article  CAS  Google Scholar 

  53. Govada, L., Rubio, N., Saridakis, E., Balaskandan, K., Leese, H.S., Li, Y., Wang, B., Shaffer, M.S.P., Chayen, N.: Graphene-based nucleants for protein crystallization. Adv. Funct. Mater. 32 (2022). https://doi.org/10.1002/adfm.202202596

  54. Sargazi, S., Er, S., Mobashar, A., Gelen, S.S., Rahdar, A., Ebrahimi, N., Hosseinikhah, S.M., Bilal, M., Kyzas, G.Z.: Aptamer-conjugated carbon-based nanomaterials for cancer and bacteria theranostics: a review. Chem. Biol. Interact. 361, 109964 (2022). https://doi.org/10.1016/j.cbi.2022.109964

    Article  CAS  Google Scholar 

  55. Wen, F., Yan, Y., Sun, S., Li, X., He, X., Meng, Q., Zhe Liu, J., Qiu, X., Zhang, W.: Synergistic effect of nitrogen and oxygen dopants in 3D hierarchical porous carbon cathodes for ultra-fast zinc ion hybrid supercapacitors. J. Colloid Interface Sci. 640, 1029–1039 (2023). https://doi.org/10.1016/j.jcis.2023.03.024

    Article  CAS  Google Scholar 

  56. Abel, S.B., Frontera, E., Acevedo, D., Barbero, C.A.: Functionalization of conductive polymers through covalent postmodification. Polymers (Basel). 15 (2023). https://doi.org/10.3390/polym15010205

  57. Malode, S.J., Shanbhag, M.M., Kumari, R., Dkhar, D.S., Chandra, P., Shetti, N.P.: Biomass-derived carbon nanomaterials for sensor applications. J. Pharm. Biomed. Anal. 222, 115102 (2023). https://doi.org/10.1016/j.jpba.2022.115102

    Article  CAS  Google Scholar 

  58. Kausar, A.: Carbohydrate polymer derived nanocomposites: design, features and potential for biomedical applications. Polym. Technol. Mater. 62, 582–603 (2023). https://doi.org/10.1080/25740881.2022.2121221

    Article  CAS  Google Scholar 

  59. Ahmadi, S., Ebrahimi Warkiani, M., Rabiee, M., Iravani, S., Rabiee, N.: Carbon-based nanomaterials against SARS-CoV-2: therapeutic and diagnostic applications. OpenNano. 10, 100121 (2023). https://doi.org/10.1016/j.onano.2023.100121

    Article  Google Scholar 

  60. Khabibullin, V.R., Chetyrkina, M.R., Obydennyy, S.I., Maksimov, S.V., Stepanov, G.V., Shtykov, S.N.: Study on doxorubicin loading on differently functionalized iron oxide nanoparticles: implications for controlled drug-delivery application. Int. J. Mol. Sci. 24 (2023). https://doi.org/10.3390/ijms24054480

  61. Guo, J., Zhang, S., Zheng, M., Tang, J., Liu, L., Chen, J., Wang, X.: Graphitic-N-rich N-doped graphene as a high performance catalyst for oxygen reduction reaction in alkaline solution. Int. J. Hydrog. Energy. 45 (2020). https://doi.org/10.1016/j.ijhydene.2020.08.210

  62. Mukhtar, A., Mellon, N., Saqib, S., Lee, S.P., Bustam, M.A.: Extension of BET theory to CO2 adsorption isotherms for ultra-microporosity of covalent organic polymers. SN Appl. Sci. 2 (2020). https://doi.org/10.1007/s42452-020-2968-9

  63. Schlumberger, C., Thommes, M.: Characterization of hierarchically ordered porous materials by physisorption and mercury porosimetry – a tutorial review. Adv. Mater. Interfaces. 8 (2021). https://doi.org/10.1002/admi.202002181

  64. Seyferth, D.: Infrared and Raman spectra of inorganic and coordination compounds. J. Organomet. Chem. 156, C47–C48 (1978). https://doi.org/10.1016/s0022-328x(00)93553-8

    Article  Google Scholar 

  65. Beć, K.B., Grabska, J., Huck, C.W.: Physical principles of infrared spectroscopy. Elsevier B.V., Amsterdam (2022)

    Google Scholar 

  66. Serrano-Martínez, J.L.: Espectroscopía infrarroja 1-Fundamentos. Instrum. métodos anál. Quim. 35, 1–35 (2009)

    Google Scholar 

  67. He, M., Zhang, J., Wang, H., Kong, Y., Xiao, Y., Xu, W.: Material and optical properties of fluorescent carbon quantum dots fabricated from lemon juice via hydrothermal reaction. Nanoscale Res. Lett. 13 (2018). https://doi.org/10.1186/s11671-018-2581-7

  68. Li, P., Long, F., Chen, W., Chen, J., Chu, P.K., Wang, H.: Fundamentals and applications of surface-enhanced Raman spectroscopy–based biosensors. Curr. Opin. Biomed. 13, 51–59 (2020). https://doi.org/10.1016/j.cobme.2019.08.008

  69. Tao, Z., Du, J., Qi, Z., Ni, K., Jiang, S., Zhu, Y.: Raman spectroscopy study of sp2 to sp3 transition in bilayer graphene under high pressures. Appl. Phys. Lett. 116 (2020). https://doi.org/10.1063/1.5135027

  70. Muzyka, R., Drewniak, S., Pustelny, T., Chrubasik, M., Gryglewicz, G.: Characterization of graphite oxide and reduced graphene oxide obtained from different graphite precursors and oxidized by different methods using Raman spectroscopy. Materials (Basel). 11, 15–17 (2018). https://doi.org/10.3390/ma11071050

    Article  CAS  Google Scholar 

  71. Surekha, G., Krishnaiah, K.V., Ravi, N., Padma Suvarna, R.: FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method. J. Phys. Conf. Ser. 1495 (2020). https://doi.org/10.1088/1742-6596/1495/1/012012

  72. Sci, J.V., Stevie, F.A., Donley, C.L.: Introduction to x-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A. 38, 063204 (2020). https://doi.org/10.1116/6.0000412

    Article  CAS  Google Scholar 

  73. Susi, T., Pichler, T., Ayala, P.: X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms. Beilstein J. Nanotechnol. 6, 177–192 (2015). https://doi.org/10.3762/bjnano.6.17

    Article  CAS  Google Scholar 

  74. Pichardo-Molina, J.L., Cardoso-Avila, P.E., Patakfalvi, R.J., Aparicio-Ixta, L., Pedro-García, F., Ojeda-Galvan, H.J., Flores-Villavicencio, L.L., Villagómez-Castro, J.C.: One-pot room-temperature direct synthesis of bovine serum albumin-based fluorescent carbon nanoparticles. Int. J. Biol. Macromol. 224 (2023). https://doi.org/10.1016/j.ijbiomac.2022.10.202

  75. Somaraj, G., Mathew, S., Abraham, T., Ambady, K.G., Mohan, C., Mathew, B.: Nitrogen and Sulfur Co-Doped Carbon Quantum Dots for Sensing Applications: A Review. ChemistrySelect 7(19), e202200473 (2022). https://doi.org/10.1002/slct.202200473

  76. Bose, S., Kuila, T., Mishra, A.K., Kim, N.H., Lee, J.H.: Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method. J. Mater. Chem. 22, 9696–9703 (2012). https://doi.org/10.1039/c2jm00011c

    Article  CAS  Google Scholar 

  77. Patel, S., Raulji, A., Patel, D., Panchal, D., Dalwadi, M., Upadhyay, U.: A review on “UV visible spectroscopy”. Int. J. Pharm. Res. Appl. 7 1144–1151 (2022)

    Google Scholar 

  78. Thakur, P.: Radiochemical methods | food and environmental applications. In: Encyclopedia of Analytical Science, Elsevier, Netherlands (2019)

    Google Scholar 

  79. Pinault-Thaury, M.A., Jomard, F.: Detection limit of phosphorus in diamond by high mass resolution secondary-ion mass spectrometry. Phys. Status Solidi Appl. Mater. Sci. 220 (2023). https://doi.org/10.1002/pssa.202200324

  80. Michałowski, P.P., Kaszub, W., Pasternak, I., Strupiński, W.: Graphene enhanced secondary ion mass spectrometry (GESIMS). Sci. Rep. 7, 7479 (2017). https://doi.org/10.1038/s41598-017-07984-1

    Article  CAS  Google Scholar 

  81. Kang, D.-Y., Moon, J.H.: Lithographically defined three-dimensional pore-patterned carbon with nitrogen doping for high-performance ultrathin supercapacitor applications. Sci. Rep. 4, 5392 (2014). https://doi.org/10.1038/srep05392

    Article  CAS  Google Scholar 

  82. Mazur, A.S., Vovk, M.A., Tolstoy, P.M.: Solid-state C NMR of carbon nanostructures (milled graphite, graphene, carbon nanotubes, nanodiamonds, fullerenes) in 2000 – 2019: a mini- review. Fuller. Nanotub. Carbon Nanostructures. 28, 1–12 (2019). https://doi.org/10.1080/1536383X.2019.1686622

    Article  Google Scholar 

  83. Garrido, M., Gualandi, L., Di Noja, S., Filippini, G., Bosi, S., Prato, M.: Synthesis and applications of amino-functionalized carbon nanomaterials. Chem. Commun. 56, 12698–12716 (2020). https://doi.org/10.1039/D0CC05316C

    Article  CAS  Google Scholar 

  84. Lamy-Mendes, A., Lopes, D., Girão, A.V., Silva, R.F., Malfait, W.J., Durães, L.: Carbon nanostructures – silica aerogel composites for adsorption of organic pollutants. Toxics. 11, 232 (2023). https://doi.org/10.3390/toxics11030232

    Article  CAS  Google Scholar 

  85. Li, X., Xue, C., Liu, Y., Zhao, J., Zhang, J., Zhang, J.: Amorphous structure and sulfur doping synergistically inducing defect-rich short carbon nanotubes as a superior anode material in lithium-ion batteries. Electrochim. Acta. 440, 141697 (2023). https://doi.org/10.1016/j.electacta.2022.141697

    Article  CAS  Google Scholar 

  86. Ali, A., Chiang, Y.W., Santos, R.M.: X-ray diffraction techniques for mineral characterization: a review for engineers of the fundamentals, applications, and research directions. Minerals. 12, 205 (2022). https://doi.org/10.3390/min12020205

    Article  CAS  Google Scholar 

  87. Huang, S., Yao, X., Bai, J., Huang, Z., Liu, X.: Effect of graphitization degree of mesocarbon microbeads (MCMBs) on the microstructure and properties of MCMB-SiC composites. Materials (Basel). 16, 541 (2023). https://doi.org/10.3390/ma16020541

    Article  CAS  Google Scholar 

  88. Bao, C., Zeng, Q., Li, F., Shi, L., Wu, W., Yang, L., Chen, Y., Liu, H.: Effect of boron doping on the interlayer spacing of graphite. Materials (Basel). 15 (2022). https://doi.org/10.3390/ma15124203

  89. Stetsenko, M.O., Abaszade, R.G.: X-ray phase analysis of carbon nanotubes obtained by the arc discharge method. UNEC J. Eng. Appl. Sci. 3(1), 15–20 (2023)

    Google Scholar 

  90. Rostami, A., Moosavi, M.I.: High-performance thermoplastic polyurethane nanocomposites induced by hybrid application of functionalized graphene and carbon nanotubes. J. Appl. Polym. Sci. 137, 1–11 (2020). https://doi.org/10.1002/app.48520

    Article  CAS  Google Scholar 

  91. Barhoum, A., García-Betancourt, M.L., Rahier, H., Van Assche, G.: Chapter 9 – Physicochemical characterization of nanomaterials: polymorph, composition, wettability, and thermal stability. In: Barhoum, A., Makhlouf, A.S.H. (eds.) Micro and Nano Technologies, pp. 255–278. Elsevier, Amsterdam (2018)

    Google Scholar 

  92. Di Marco, V., Pastore, P., Tosato, M., Andrighetto, A., Borgna, F., Realdon, N.: pH-static titrations for kinetic studies of metal-ligand complex formation: the case example of the reaction between Strontium(II) and DOTA. Inorganica Chim. Acta. 498, 119147 (2019). https://doi.org/10.1016/j.ica.2019.119147

    Article  CAS  Google Scholar 

  93. Nogueira, S.A., Lemes, A.D., Chagas, A.C., Vieira, M.L., Talhavini, M., Morais, P.A.O., Coltro, W.K.T.: Redox titration on foldable paper-based analytical devices for the visual determination of alcohol content in whiskey samples. Talanta. 194, 363–369 (2019). https://doi.org/10.1016/j.talanta.2018.10.036

    Article  CAS  Google Scholar 

  94. Eggermont, S.G.F., Prato, R., Dominguez-Benetton, X., Fransaer, J.: Metal removal from aqueous solutions: insights from modeling precipitation titration curves. J. Environ. Chem. Eng. 8, 103596 (2020). https://doi.org/10.1016/j.jece.2019.103596

    Article  CAS  Google Scholar 

  95. Dutta, J., Priyanka: A facile approach for the determination of degree of deacetylation of chitosan using acid-base titration. Heliyon. 8, e09924 (2022). https://doi.org/10.1016/j.heliyon.2022.e09924

    Article  CAS  Google Scholar 

  96. Bitter, J.H., van Dommele, S., de Jong, K.P.: On the virtue of acid-base titrations for the determination of basic sites in nitrogen doped carbon nanotubes. Catal. Today. 150, 61–66 (2010). https://doi.org/10.1016/j.cattod.2009.09.008

    Article  CAS  Google Scholar 

  97. Moaseri, E., Baniadam, M., Maghrebi, M., Karimi, M.: A simple recoverable titration method for quantitative characterization of amine-functionalized carbon nanotubes. Chem. Phys. Lett. 555 (2013). https://doi.org/10.1016/j.cplett.2012.10.064

  98. Kim, J., Park, D.B., Hong Choi, J., Jo, M., Kim, S., Oh, P., Son, Y.: Synthesis of highly dispersible functionalized carbon nanotubes as conductive material through a facile drying process for high-power lithium-ion batteries. ChemSusChem. (2022). https://doi.org/10.1002/cssc.202201924

  99. Liu, F.: A comparison between multivariate linear model and maximum likelihood estimation for the prediction of elemental composition of coal using proximate analysis. Results Eng. 13, 100338 (2022). https://doi.org/10.1016/j.rineng.2022.100338

    Article  CAS  Google Scholar 

  100. Imboon, T., Khumphon, J., Yotkuna, K., Tang, I.-M., Thongmee, S.: Enhancement of photocatalytic by Mn3O4 spinel ferrite decorated graphene oxide nanocomposites. SN Appl. Sci. 3, 653 (2021). https://doi.org/10.1007/s42452-021-04644-y

    Article  CAS  Google Scholar 

  101. Duma, Z.S., Sihvonen, T., Havukainen, J., Reinikainen, V., Reinikainen, S.P.: Optimizing energy dispersive X-Ray Spectroscopy (EDS) image fusion to Scanning Electron Microscopy (SEM) images. Micron. 163, 103361 (2022). https://doi.org/10.1016/j.micron.2022.103361

    Article  Google Scholar 

  102. Smith, D.J., McCartney, M.R.: Microscopy | Semiconductors☆. In: Worsfold, P., Poole, C., Townshend, A., Miró, M. (eds.) Encyclopedia of Analytical Science, 3rd edn, pp. 89–97. Academic, Oxford (2013)

    Google Scholar 

  103. Bojdys, M.J., Müller, J.O., Antonietti, M., Thomas, A.: Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chem. Eur. J. 14 (2008). https://doi.org/10.1002/chem.200800190

  104. Marguí, E., Queralt, I., de Almeida, E.: X-ray fluorescence spectrometry for environmental analysis: Basic principles, instrumentation, applications and recent trends. Chemosphere. 303, 135006 (2022). https://doi.org/10.1016/j.chemosphere.2022.135006

  105. Escalante, J., Chen, W.H., Tabatabaei, M., Hoang, A.T., Kwon, E.E., Andrew Lin, K.Y., Saravanakumar, A.: Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: a review of thermogravimetric analysis (TGA) approach. Renew. Sust. Energ. Rev. 169, 112914 (2022). https://doi.org/10.1016/j.rser.2022.112914

    Article  CAS  Google Scholar 

  106. Hulette, A.: Characterization of Functionalized Carbon Nanotubes and Polystyrene/CNT Composites Prepared with Microwave-Induced Polymerization. (2022). https://digitalcommons.georgiasouthern.edu/cgi/viewcontent.cgi?article=3647&context=etd

  107. Das, P., Das, M.K. Production and physicochemical characterization of nanocosmeceuticals. In: Nanocosmeceuticals, pp. 95–138. Academic Press (2022). https://doi.org/10.1016/B978-0-323-91077-4.00006-5

  108. Allahbakhsh, A., Bahramian, A.R.: Self-assembly of graphene quantum dots into hydrogels and cryogels: dynamic light scattering, UV–Vis spectroscopy and structural investigations. J. Mol. Liq. 265, 172–180 (2018). https://doi.org/10.1016/j.molliq.2018.05.123

    Article  CAS  Google Scholar 

  109. Elgrishi, N., Rountree, K.J., McCarthy, B.D., Rountree, E.S., Eisenhart, T.T., Dempsey, J.L.: A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2018). https://doi.org/10.1021/acs.jchemed.7b00361

    Article  CAS  Google Scholar 

  110. Wang, H.-W., Bringans, C., Hickey, A.J.R., Windsor, J.A., Kilmartin, P.A., Phillips, A.R.J.: Cyclic voltammetry in biological samples: a systematic review of methods and techniques applicable to clinical settings. Signals. 2 (2021). https://doi.org/10.3390/signals2010012

  111. Reyes-Rodríguez, J.L., Sathish-Kumar, K., Solorza-Feria, O.: Synthesis and functionalization of green carbon as a Pt catalyst support for the oxygen reduction reaction. Int. J. Hydrog. Energy. 40, 17253–17263 (2015). https://doi.org/10.1016/j.ijhydene.2015.07.019

    Article  CAS  Google Scholar 

  112. Wang, S., Zhang, J., Gharbi, O., Vivier, V., Gao, M., Orazem, M.E.: Electrochemical impedance spectroscopy. Nat. Rev. Methods Prim. 1, 41 (2021). https://doi.org/10.1038/s43586-021-00039-w

    Article  CAS  Google Scholar 

  113. Burinaru, T.A., Adiaconiţă, B., Avram, M., Preda, P., Enciu, A.-M., Chiriac, E., Mărculescu, C., Constantin, T., Militaru, M.: Electrochemical impedance spectroscopy based microfluidic biosensor for the detection of circulating tumor cells. Mater. Today Commun. 32, 104016 (2022). https://doi.org/10.1016/j.mtcomm.2022.104016

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María-Luisa García-Betancourt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Peña-García, JM., Terán-Salgado, E., García-Betancourt, ML. (2024). Physicochemical Characterizations of Functionalized Carbon Nanostructures. In: Barhoum, A., Deshmukh, K. (eds) Handbook of Functionalized Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-031-14955-9_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14955-9_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14955-9

  • Online ISBN: 978-3-031-14955-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics