Skip to main content

Catalytic Growth of Carbon Nanostructures in Glow Discharge

  • Conference paper
  • First Online:
Advances in Design, Simulation and Manufacturing V (DSMIE 2022)

Abstract

Glow discharge ignited between a graphite cathode and a copper anode was applied to conduct a process of carbon nanostructure growth in an argon atmosphere. During the first stage of the experiment, the samples mounted on the cathode were heated up till turning red, which significantly increased the thermionic emission and caused the formation of cathode arc spots on the sample surface. The arcing with a period of 3 to 5 s was maintained for 5 more minutes. As a result, a number of craters were observed on the samples, which were investigated using the SEM technique. Carbon nanotubes and bundles of them were found along the whole surface of the samples, and the tips of the nano- and microsized structures were capped by the copper particles, which states in favor of the catalytic growth. The yield of the carbon structures was richer in the craters and the regions at the proximity to them. In addition, a carbon deposit was taken from the anode and studied by use of TEM. In this case, typical nanostructures resemble the branches of spruce trees or balls of rolled nanotubes with a diameter of about 15 to 30 nm; at that, the anode nanostructures do not show any traces of the copper catalyst. Thus, the proposed setup is suitable to grow various carbon nanostructures in a catalytic process in the presence of copper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, N., et al.: Neural interfaces engineered via micro- and nanostructured coatings. Nano Today 14, 59–83 (2017)

    Article  Google Scholar 

  2. Giubileo, F., Di Bartolomeo, A., Iemmo, L., Luongo, G., Urban, F.: Field emission from carbon nanostructures. Appl. Sci. 8(4), 526 (2018)

    Article  Google Scholar 

  3. Henna, T.K., Raphey, V.R., Sankar, R., Ameena Shirin, V.K., Gangadharappa, H.V., Pramod, K.: Carbon nanostructures: the drug and the delivery system for brain disorders. Int. J. Pharm. 587, 119701 (2020)

    Article  Google Scholar 

  4. Sainio, S., et al.: Integrated carbon nanostructures for detection of neurotransmitters. Mol. Neurobiol. 52(2), 859–866 (2015). https://doi.org/10.1007/s12035-015-9233-z

    Article  Google Scholar 

  5. Al-Jumaili, A., Alancherry, S., Bazaka, K., Jacob, M.V.: Review on the antimicrobial properties of carbon nanostructures. Materials 10(9), 1066 (2017)

    Article  Google Scholar 

  6. Bannov, A.G., Jasek, O., Manakhov, A., Marik, M., Necas, D., Zajickova, L.: High-performance ammonia gas sensors based on plasma treated carbon nanostructures. IEEE Sens. J. 17(7), 1964–1970 (2017)

    Article  Google Scholar 

  7. Malik, R., et al.: Three-dimensional, free-standing polyaniline/carbon nanotube composite-based electrode for high-performance supercapacitors. Carbon 116, 579–590 (2017)

    Article  Google Scholar 

  8. Jiang, J., et al.: Progress of nanostructured electrode materials for supercapacitors. Adv. Sustain. Syst. 2(1), 1700110 (2017)

    Article  Google Scholar 

  9. Hatakeyama, R.: Nanocarbon materials fabricated using plasmas. Rev. Mod. Plasma Phys. 1(1), 1–110 (2017). https://doi.org/10.1007/s41614-017-0009-y

    Article  Google Scholar 

  10. Khataee, A., Sajjadi, S., Hasanzadeh, A., Vahid, B., Joo, S.W.: One-step preparation of nanostructured martite catalyst and graphite electrode by glow discharge plasma for heterogeneous electro-Fenton like process. J. Environ. Manage. 199, 31–45 (2017)

    Article  Google Scholar 

  11. Sobczyk, A.T., Jaworek, A.: Carbon microstructures synthesis in low temperature plasma generated by microdischarges. Appl. Sci. 11(13), 5845 (2021)

    Article  Google Scholar 

  12. Kalyan Kamal, S.S., et al.: A novel Approach for the synthesis of iron carbide nanostructures using spark plasma sintering. J. Magn. Magn. Mater. 510, 166935 (2020)

    Article  Google Scholar 

  13. Cho, H.J., Kondo, H., Ishikawa, K., Sekine, M., Hiramatsu, M., Hori, M.: Density control of carbon nanowalls grown by CH4/H2 plasma and their electrical properties. Carbon 68, 380–388 (2014)

    Article  Google Scholar 

  14. Ye, X., Zhou, H., Levchenko, I., Bazaka, K., Xu, S., Xiao, S.: Low-temperature synthesis of graphene by ICP-assisted amorphous carbon sputtering. Chem. Sel. 3(30), 8779–8785 (2018)

    Google Scholar 

  15. Zhou, H., et al.: Wearable, flexible, disposable plasma-reduced graphene oxide stress sensors for monitoring activities in austere environments. ACS Appl. Mater. Interfaces 11, 15122–15132 (2019)

    Article  Google Scholar 

  16. Bundaleska, N., et al.: Microwave plasma enabled synthesis of free standing carbon nanostructures at atmospheric pressure conditions. Phys. Chem. Chem. Phys. 20(20), 13810–13824 (2018)

    Article  Google Scholar 

  17. Tatarova, E., et al.: Microwave plasmas applied for the synthesis of free standing graphene sheets. J. Phys. D Appl. Phys. 47(38), 385501 (2014)

    Google Scholar 

  18. Ghosh, S., Polaki, S.R., Kumar, N., Amirthapandian, S., Kamruddin, M., Ostrikov, K.: Process-specific mechanisms of vertically oriented graphene growth in plasmas. Beilstein J. Nanotechnol. 8, 1658–1670 (2017)

    Article  Google Scholar 

  19. Sahoo, G., Polaki, S.R., Ghosh, S., Krishna, N.G., Kamruddin, M., Ostrikov, K.: Plasma-tuneable oxygen functionalization of vertical graphenes enhance electrochemical capacitor performance. Energy Storage Materials 14, 297–305 (2018)

    Article  Google Scholar 

  20. Levchenko, I., Romanov, M., Baranov, O., Keidar, M.: Ion deposition in a crossed E×B field system with vacuum arc plasma sources. Vacuum 72(3), 335–344 (2003)

    Article  Google Scholar 

  21. Baranov, O.O., Fang, J., Rider, A.E., Kumar, S., Ostrikov, K.: Effect of ion current density on the properties of vacuum arc-deposited TiN coatings. IEEE Trans. Plasma Sci. 41(12), 3640–3644 (2013)

    Article  Google Scholar 

  22. Baranov, O., Romanov, M.: Current distribution on the substrate in a vacuum arc deposition setup. Plasma Process. Polym. 5(3), 256–262 (2008)

    Article  Google Scholar 

  23. Li, D., Wang, C., Lu, Z., Song, M., Xia, W., Xia, W.: Synthesis of graphene flakes using a non-thermal plasma based on magnetically stabilized gliding arc discharge. Fullerenes, Nanotubes, Carbon Nanostruct. 28(10), 846–856 (2020)

    Article  Google Scholar 

  24. Zhang, D., et al.: Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber. Carbon 142, 278–284 (2018)

    Article  Google Scholar 

  25. Yatom, S., Selinsky, R.S., Koel, B.E., Raitses, Y.: Synthesis-on and synthesis-off modes of carbon arc operation during synthesis of carbon nanotubes. Carbon 125, 336–343 (2017)

    Article  Google Scholar 

  26. Yeh, Y.-W., Raitses, Y., Yao, N.: Structural variations of the cathode deposit in the carbon arc. Carbon 105, 490–495 (2016)

    Article  Google Scholar 

  27. Fang, X., Shashurin, A., Teel, G., Keidar, M.: Determining synthesis region of the single wall carbon nanotubes in arc plasma volume. Carbon 107, 273–280 (2016)

    Article  Google Scholar 

  28. Bystrov, K., et al.: Spontaneous synthesis of carbon nanowalls, nanotubes and nanotips using high flux density plasmas. Carbon 68, 695–707 (2014)

    Article  Google Scholar 

  29. Wang, C., Li, D., Lu, Z., Song, M., Xia, W.: Synthesis of carbon nanoparticles in a non-thermal plasma process. Chem. Eng. Sci. 227, 115921 (2020)

    Article  Google Scholar 

  30. Su, Y., Zhang, Y.: Carbon nanomaterials synthesized by arc discharge hot plasma. Carbon 83, 90–99 (2015)

    Article  Google Scholar 

  31. Levchenko, I., Cvelbar, U., Keidar, M.: Graphene sswth. Graphene 5, 81–89 (2016)

    Article  Google Scholar 

  32. Kostyuk, G., Popov, V., Shyrokyi, Y., Yevsieienkova, H.: Efficiency and performance of milling using cutting tools with plates of a new class. In: Tonkonogyi, V. (ed.) Inter-Partner 2020. LNME, pp. 598–608. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68014-5_58

  33. Kostyk, K., Kostyk, V., Akimov, O., Kamchatna-Stepanova, K., Shyrokyi, Y.: Ensuring the high strength characteristics of the surface layers of steel products. In: Tonkonogyi, V. (ed.) Inter-Partner 2021. LNME, pp. 292–301. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-91327-4_29

  34. Shyrokyi, Y., Kostyuk, G.: Investigation of the influence of crystallization energy on the size of nanostructures during copper ion-plasma treatment. In: Nechyporuk, M. (ed.) ICTM 2021. LNNS, pp. 57–66. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94259-5_6

Download references

Acknowledgment

The research was sponsored in part by the NATO Science for Peace and Security Programme under grant id. G5814 project NOOSE. A. Breus, S. Abashin, and O. Baranov acknowledge the support from the project funded by the National Research Foundation of Ukraine under grant agreement No. 2020.02/0119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Baranov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Breus, A., Abashin, S., Lukashov, I., Serdiuk, O., Baranov, O. (2022). Catalytic Growth of Carbon Nanostructures in Glow Discharge. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Rauch, E., Peraković, D. (eds) Advances in Design, Simulation and Manufacturing V. DSMIE 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-06025-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06025-0_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06024-3

  • Online ISBN: 978-3-031-06025-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics