Skip to main content

Polypharmacology in Predicting Drug Toxicity: Drug Promiscuity

  • Chapter
  • First Online:
Polypharmacology
  • 805 Accesses

Abstract

Drug promiscuity refers to multitarget activity of a drug and can elicit two distinct or opposing actions: adverse side effects and improved therapeutic efficacy. On one hand, drug promiscuity is the source and mechanism of off-target effects; on the other hand, it forms the basis for polypharmacology-based drug repurposing, thereby a source of drug rediscovery. These opposing effects reflect two sides of a coin: positive/good/desirable drug promiscuity and negative/bad/undesirable drug promiscuity. In Chap. 13, the “good” side of drug promiscuity for drug repurposing and how the “good” side should be used for drug rediscovery have been discussed. The topic in this chapter focuses on the “bad” side of drug promiscuity, specifically the application of polypharmacology principles to predicting the drug toxicity induced by drug promiscuity, which is a critical issue in drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hopkins AL. Drug discovery: predicting promiscuity. Nature. 2009;462(7270):167–8.

    Article  CAS  PubMed  Google Scholar 

  2. Feldmann C, Miljković F, Yonchev D, et al. Identifying promiscuous compounds with activity against different target classes. Molecules. 2019;24(22):4185.

    Article  CAS  PubMed Central  Google Scholar 

  3. Gupta MN, Alam A, Hasnain SE. Protein promiscuity in drug discovery, drug-repurposing and antibiotic resistance. Biochimie. 2020;175:50–7.

    Article  CAS  PubMed  Google Scholar 

  4. Scheiber J, Chen B, Milik M, et al. Gaining insight into off-target mediated effects of drug candidates with a comprehensive systems chemical biology analysis. J Chem Inf Model. 2009;49:308–17.

    Article  CAS  PubMed  Google Scholar 

  5. Fosnocht D, Taylor JR, Caravati EM. Emergency department patient knowledge concerning acetaminophen (paracetamol) in over-the-counter and prescription analgesics. Emerg Med J. 2008;25:213–6.

    Article  CAS  PubMed  Google Scholar 

  6. Huang T, Cui W, Hu L, et al. Prediction of pharmacological and xenobiotic responses to drugs based on time course gene expression profiles. PLoS ONE. 2009;4(12):e8126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3:711–6.

    Article  CAS  PubMed  Google Scholar 

  8. FitzGerald GA. Coxibs and cardiovascular disease. N Engl J Med. 2004;351:1709–11.

    Article  CAS  PubMed  Google Scholar 

  9. O. of R. Affairs, Primus Announces a Voluntary Nationwide Recall of All Lots Within Expiry of Prescription Medical Food Limbrel® Due to Rare But Serious and Reversible Adverse Events While Seeking FDA’s Cooperation to Restore Access for Patients with Medical Necessity, U.S. Food and Drug Administration. 2019. http://www.fda.gov/safety/recalls-market-withdrawals-safety-alerts/primus-announces-voluntary-nationwide-recall-all-lots-within-expiry-prescription-medical-food. Accessed 10 Mar 2020.

  10. Waring MJ, Arrowsmith J, Leach AR, et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov. 2015;14:475–86.

    Article  CAS  PubMed  Google Scholar 

  11. Thomas D, Clinical pharmacy education, practice and research: clinical pharmacy, drug information, pharmacovigilance, pharmacoeconomics and clinical research. Elsevier; 2018.

    Google Scholar 

  12. Hrdlicka M, Beranova I, Zamecnikova R, et al. Mirtazapine in the treatment of adolescent anorexia nervosa. Eur Child Adolesc Psychiatry. 2008;17:187–9.

    Article  PubMed  Google Scholar 

  13. Schatz SN, Weber RJ. Adverse drug reactions. In: Pharmacotherapy Self-Assessment Program (PSAP); 2015. p. 5–21.

    Google Scholar 

  14. Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4:682–90.

    Article  CAS  PubMed  Google Scholar 

  15. Plant N. Can systems toxicology identify common biomarkers of non-genotoxic carcinogenesis? Toxicology. 2008;254:164–9.

    Article  CAS  PubMed  Google Scholar 

  16. Baell JB, Walters MA. Chemistry: chemical con artists foil drug discovery. Nature. 2014;513:481–3.

    Article  CAS  PubMed  Google Scholar 

  17. Aldrich C, Bertozzi C, Georg GI, et al. The ecstasy and agony of assay interference compounds. J Chem Inf Model. 2017;57:387–90.

    Article  CAS  PubMed  Google Scholar 

  18. Irwin JJ, Duan D, Torosyan H, et al. An aggregation advisor for ligand discovery. J Med Chem. 2015;58:7076–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gaulton A, Hersey A, Nowotka M, et al. The ChEMBL database in 2017. Nucleic Acids Res. 2017;45(D1):D945–54.

    Article  CAS  PubMed  Google Scholar 

  20. Gilberg E, Gütschow M, Bajorath J. Promiscuous ligands from experimentally determined structures, binding conformations, and protein family-dependent interaction hotspots. ACS Omega. 2019;4(1):1729–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sturm N, Desaphy J, Quinn RJ, et al. Structural insights into the molecular basis of the ligand promiscuity. J Chem Inf Model. 2012;52:2410–21.

    Article  CAS  PubMed  Google Scholar 

  22. Haupt VJ, Daminelli S, Schroeder M. Drug promiscuity in PDB: protein binding site similarity is key. PLoS One. 2013;8:e65894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pinzi L, Caporuscio F, Rastelli G. Selection of protein conformations for structure-based polypharmacology studies. Drug Discov Today. 2018;23:1889–96.

    Article  CAS  PubMed  Google Scholar 

  24. Feldmann C, Bajorath J. X-ray structure-based chemoinformatic analysis identifies promiscuous ligands binding to proteins from different classes with varying shapes. Int J Mol Sci. 2020;21(11):3782.

    Article  CAS  PubMed Central  Google Scholar 

  25. Bugrim A, Nikolskaya T, Nikolsky Y. Early prediction of drug metabolism and toxicity: systems biology approach and modeling. Drug Discov Today. 2004;9(3):127–35.

    Article  CAS  PubMed  Google Scholar 

  26. Wu Q, Taboureau O, Audouze K. Development of an adverse drug event network to predict drug toxicity. Curr Res Toxicol. 2020;1:48–55.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stathias V, Turner J, Koleti A, et al. LINCS Data Portal 2.0: next generation access point for perturbation-response signatures. Nucleic Acids Res. 2020;48:D431–9.

    Article  CAS  PubMed  Google Scholar 

  28. Dix DJ, Houck KA, Martin MT, et al. The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicol Sci. 2007;95:5–12.

    Article  CAS  PubMed  Google Scholar 

  29. Kuhn M, Letunic I, Jensen LJ, et al. The SIDER database of drugs and side effects. Nucleic Acids Res. 2016;44:D1075–9.

    Article  CAS  PubMed  Google Scholar 

  30. Taboureau O, Nielsen SK, Audouze K, et al. ChemProt: a disease chemical biology database. Nucleic Acids Res. 2011;39:D367–72.

    Article  CAS  PubMed  Google Scholar 

  31. Ciallella HL, Zhu H. Advancing computational toxicology in the big data era by artificial intelligence: data-driven and mechanism-driven modeling for chemical toxicity. Chem Res Toxicol. 2019;32:536–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Audouze K, Juncker AS, Roque FJ, et al. Deciphering diseases and biological targets for environmental chemicals using toxicogenomics networks. PLoS Comput Biol. 2010;6(5):e1000788.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Taboureau O, Audouze K. Human environmental disease network: a computational model to assess toxicology of contaminants. ALTEX. 2017;34:289–300.

    Article  PubMed  Google Scholar 

  34. Hodos RA, Kidd BA, Khader S, et al. Computational approaches to drug repurposing and pharmacology. Wiley Interdiscip Rev Syst Biol Med. 2016;8:186–210.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Peters JU, Schnider P, Mattei P, et al. Pharmacological promiscuity: dependence on compound properties and target specificity in a set of recent Roche compounds. ChemMedChem. 2009;4(4):680–6.

    Article  CAS  PubMed  Google Scholar 

  36. Peters JU, Hert J, Bissantz C, et al. Can we discover pharmacological promiscuity early in the drug discovery process? Drug Discov Today. 2012;17(7-8):325–35.

    Article  PubMed  Google Scholar 

  37. Klekota J, Brauner E, Roth FP, et al. Using high-throughput screening data to discriminate compounds with single-target effects from those with side effects. J Chem Inf Model. 2006;46(4):1549–62.

    Article  CAS  PubMed  Google Scholar 

  38. McGovern SL, Caselli E, Grigorieff N, et al. A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J Med Chem. 2002;45(8):1712–22.

    Article  CAS  PubMed  Google Scholar 

  39. Feng BY, Shelat A, Doman TN, et al. High-throughput assays for promiscuous inhibitors. Nat Chem Biol. 2005;1(3):146–8.

    Article  CAS  PubMed  Google Scholar 

  40. Uesawa Y. Quantitative structure–activity relationship analysis using deep learning based on a novel molecular image input technique. Bioorg Med Chem Lett. 2018;28:3400–3.

    Article  CAS  PubMed  Google Scholar 

  41. Mateen R, Ali MM, Hoare T. A printable hydro-gel microarray for drug screening avoids false positives associated with promiscuous aggregating inhibitors. Nat Commun. 2018;9(1):602.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Bloomingdale P, Housand C, Apgar JF, et al. Quantitative systems toxicology. Curr Opin Toxicol. 2017;4:79–87.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ghasemi P-S, Mehri P-G. Neural network and deep-learning algorithms used in QSAR studies: merits and drawbacks. Drug Discov Today. 2018;23(10):1784–90.

    Article  CAS  PubMed  Google Scholar 

  44. Nantasenamat C, Isarankura-Na-Ayudhya C, Prachayasittikul V. Advances in computational methods to predict the biological activity of compounds. Expert Opin Drug Discov. 2010;5(7):633–54.

    Article  CAS  PubMed  Google Scholar 

  45. Yousefinejad S, Hemmateenejad B. Chemometrics tools in QSAR/QSPR studies: a historical perspective. Chemom Intell Lab Syst. 2015;149(B):177–204.

    Article  CAS  Google Scholar 

  46. Perkins R, Fang H, Tong W, et al. Quantitative structure-activity relationship methods: perspectives on drug discovery and toxicology. Environ Toxicol Chem. 2003;22(8):1666–79.

    Article  CAS  PubMed  Google Scholar 

  47. Kwon S, Bae H, Jo J, et al. Comprehensive ensemble in QSAR prediction for drug discovery. BMC Bioinform. 2019;20(1):521.

    Article  CAS  Google Scholar 

  48. Freyhult EK, Andersson K, Gustafsson MG. Structural modeling extends QSAR analysis of antibody-lysozyme interactions to 3D-QSAR. Biophysical J. 2003;84(4):2264–72.

    Article  CAS  Google Scholar 

  49. Mauri A, Consonni V, Todeschini R. Molecular descriptors. In: Handbook of computational chemistry. Springer; 2017. p. 2065–93.

    Chapter  Google Scholar 

  50. Zhu X, Kruhlak NL. Construction and analysis of a human hepatotoxicity database suitable for QSAR modeling using post-market safety data. Toxicology. 2014;321:62–72.

    Article  CAS  PubMed  Google Scholar 

  51. Atias N, Sharan R. An algorithmic framework for predicting side effects of drugs. J Comput Biol. 2011;18:207–18.

    Article  CAS  PubMed  Google Scholar 

  52. Hammann F, Gutmann H, Vogt N, et al. Prediction of adverse drug reactions using decision tree modeling. Clin Pharmacol Ther. 2010;88:52–9.

    Article  CAS  PubMed  Google Scholar 

  53. Azzaoui K, Hamon J, Faller B, et al. Modeling promiscuity based on in vitro safety pharmacology profiling data. ChemMedChem. 2007;2(6):874–80.

    Article  CAS  PubMed  Google Scholar 

  54. Dimova D, Hu Y, Bajorath J. Matched molecular pair analysis of small molecule microarray data identifies promiscuity cliffs and reveals molecular origins of extreme compound promiscuity. J Med Chem. 2012;55(22):10220–8.

    Article  CAS  PubMed  Google Scholar 

  55. Bender A, Scheiber J, Glick M, et al. Analysis of pharmacology data and the prediction of adverse drug reactions and off-target effects from chemical structure. ChemMedChem. 2007;2(6):861–73.

    Article  CAS  PubMed  Google Scholar 

  56. Ferreira LG, Dos Santos RN, Oliva G, et al. Molecular docking and structure-based drug design strategies. Molecules. 2015;20(7):13384–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Batool M, Ahmad B, Choi S. A Structure-based drug discovery paradigm. Int J Mol Sci. 2019;20(11):2783.

    Article  CAS  PubMed Central  Google Scholar 

  58. Hu Y, Bajorath J. Activity profile relationships between structurally similar promiscuous compounds. Eur J Med Chem. 2013;69:393–8.

    Article  CAS  PubMed  Google Scholar 

  59. Fukuzaki M, Seki M, Kashima H, et al. Side effect prediction using cooperative pathways. In: Proceedings of the IEEE international conference on bioinformatics and biomedicine (BIBM ‘09); 2009. p. 42–147.

    Google Scholar 

  60. Scheiber J, Jenkins JL, Sukuru SCK, et al. Mapping adverse drug reactions in chemical space. J Med Chem. 2009;52(9):3103–7.

    Article  CAS  PubMed  Google Scholar 

  61. Pauwels E, Stoven V, Yamanishi Y. Predicting drug side-effect profiles: a chemical fragment-based approach. BMC Bioinformatics. 2011;12:169.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chen L, Huang T, Zhang J, et al. Predicting drugs side effects based on chemical-chemical interactions and protein-chemical interactions. Biomed Res Int. 2013;2013:485034.

    PubMed  PubMed Central  Google Scholar 

  63. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kuhn M, von Mering C, Campillos M, et al. STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res. 2008;36(1):D684–8.

    CAS  PubMed  Google Scholar 

  65. Hu L, Chen C, Huang T, et al. Predicting biological functions of compounds based on chemical-chemical interactions. PLoS ONE. 2011;6(12):e29491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yamanishi Y, Araki M, Gutteridge A, et al. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics. 2008;24(13):i232–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen L, He Z, Huang T, et al. Using compound similarity and functional domain composition for prediction of drug-target interaction networks. Medicinal Chem. 2010;6(6):388–95.

    Article  CAS  Google Scholar 

  68. Chen L, Zeng W, Cai Y, et al. Predicting anatomical therapeutic chemical (ATC) classification of drugs by integrating chemical-chemical interactions and similarities. PLoS ONE. 2012;7(4):e35254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sharan R, Ulitsky I, Shamir R. Network-based prediction of protein function. Mol Syst Biol. 2007;3:88.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bogdanov P, Singh AK. Molecular function prediction using neighborhood features. IEEE/ACM Trans Comput Biol Bioinform. 2010;7(2):208–17.

    Article  CAS  PubMed  Google Scholar 

  71. Kourmpetis YAI, van Dijk ADJ, Bink MCAM, et al. Bayesian Markov random field analysis for protein function prediction based on network data. PLoS ONE. 2010;5(2):e9293.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Hu L, Huang T, Shi X, et al. Predicting functions of proteins in mouse based on weighted protein-protein interaction network and protein hybrid properties. PLoS ONE. 2011;6(1):e14556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kuhn M, Campillos M, Letunic I, et al. A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol. 2010;6:343.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Weininger DSMILES. a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Computer Sci. 1988;28:31–6.

    Article  CAS  Google Scholar 

  75. Chen X, Liu X, Jia X, et al. Network characteristic analysis of ADR-related proteins and identification of ADR-ADR associations. Sci Rep. 2013;3:1–7.

    CAS  Google Scholar 

  76. Campillos M, Kuhn M, Gavin A-C, et al. Drug target identification using side-effect similarity. Science. 2008;321:263–6.

    Article  CAS  PubMed  Google Scholar 

  77. Oprea TI, Nielsen SK, Ursu O, et al. Associating drugs, targets and clinical outcomes into an integrated network affords a new platform for computer-aided drug repurposing. Mol Inform. 2011;30:100–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hu Y, Bajorath J. Target family-directed exploration of scaffolds with different SAR profiles. J Chem Inf Model. 2011;51(12):3138–48.

    Article  CAS  PubMed  Google Scholar 

  79. Hu Y, Bajorath J. Polypharmacology directed compound data mining: identification of promiscuous chemotypes with different activity profiles and comparison to approved drugs. J Chem Inf Model. 2010;50(12):2112–8.

    Article  CAS  PubMed  Google Scholar 

  80. Yang JJ, Ursu O, Lipinski CA, et al. Badapple: promiscuity patterns from noisy evidence. J Cheminform. 2016;8:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem. 2010;53:2719–40.

    Article  CAS  PubMed  Google Scholar 

  82. Yang Y, Chen H, Nilsson I, et al. Investigation of the relationship between topology and selectivity for druglike molecules. J Med Chem. 2010;53:7709–14.

    Article  CAS  PubMed  Google Scholar 

  83. Peterson RT. Chemical biology and the limits of reductionism. Nat Chem Biol. 2008;4:635–8.

    Article  CAS  PubMed  Google Scholar 

  84. Lee JM, Gianchandani EP, Papin JA. Flux balance analysis in the era of metabolomics. Brief Bioinformatics. 2006;7:140–50.

    Article  PubMed  Google Scholar 

  85. McAdams HH, Shapiro L. Circuit simulation of genetic networks. Science. 1995;269:650–6.

    Article  CAS  PubMed  Google Scholar 

  86. Peleg M, Rubin D, Altman RB. Using Petri Net tools to study properties and dynamics of biological systems. J Am Med Inform Assoc. 2005;12:181–99.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Clément-Ziza M, Malabat C, Weber C, et al. Genoscape: a cytoscape plug-in to automate the retrieval and integration of gene expression data and molecular networks. Bioinformatics. 2009;25(19):2617–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Brown JB, Okuno Y. Systems biology and systems chemistry: new directions for drug discovery. Chem Biol. 2012;19(1):23–8.

    Article  CAS  PubMed  Google Scholar 

  90. Schneider G, Fechner U. Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov. 2005;4:649–63.

    Article  CAS  PubMed  Google Scholar 

  91. Jacoby E. Computational chemogenomics. Comput Mol Sci. 2011;1:57–67.

    Article  CAS  Google Scholar 

  92. Maggiora GM. The reductionist paradox: Are the laws of chemistry and physics sufficient for the discovery of new drugs? J Comput Aided Mol Des. 2011;25:699–708.

    Article  CAS  PubMed  Google Scholar 

  93. Duran-Frigola M, Siragusa L, Ruppin E, et al. Detecting similar binding pockets to enable systems polypharmacology. PLoS Comput Biol. 2017;13(6):e1005522.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Siragusa L, Cross S, Baroni M, et al. BioGPS: navigating biological space to predict polypharmacology, off-targeting, and selectivity. Proteins. 2015;83(3):517–32.

    Article  CAS  PubMed  Google Scholar 

  95. Siragusa L, Luciani R, Borsari C, et al. Comparing drug images and repurposing drugs with BioGPS and FLAPdock: the thymidylate synthase case. ChemMedChem. 2016;11(15):1653–66.

    Article  CAS  PubMed  Google Scholar 

  96. Konc J, Janezic D. Binding site comparison for function prediction and pharmaceutical discovery. Curr Opin Struct Biol. 2014;25:34–9.

    Article  CAS  PubMed  Google Scholar 

  97. Xie L, Xie L, Bourne PE. Structure-based systems biology for analyzing off-target binding. Curr Opin Struct Biol. 2011;21(2):189–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wong MT, Choi SB, Kuan CS, et al. Structural modeling and biochemical characterization of recombinant KPN_02809, a zinc-dependent metalloprotease from Klebsiella pneumoniae MGH 78578. Int J Mol Sci. 2012;13(1):901–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lin H, Sassano MF, Roth BL, et al. A pharmacological organization of G protein-coupled receptors. Nat Methods. 2013;10(2):140–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rubio-Perez C, Tamborero D, Schroeder MP, et al. In silico prescription of anticancer drugs to cohorts of 28 tumor types reveals targeting opportunities. Cancer Cell. 2015;27(3):382–96.

    Article  CAS  PubMed  Google Scholar 

  101. Yizhak K, Gaude E, Le Devedec S, et al. Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer. Elife. 2014;3:e03641.

    Article  PubMed Central  Google Scholar 

  102. Tatonetti NP, Liu T, Altman RB. Predicting drug side-effects by chemical systems biology. Genome Biol. 2009;10(9):238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Networking chemical biology. Nat Chem Biol. 2008;4:633.

    Article  CAS  Google Scholar 

  104. Russell RB, Aloy P. Targeting and tinkering with interaction networks. Nat Chem Biol. 2008;4:666–73.

    Article  CAS  PubMed  Google Scholar 

  105. Bonneau R. Learning biological networks: from modules to dynamics. Nat Chem Biol. 2008;4:658–64.

    Article  CAS  PubMed  Google Scholar 

  106. Research highlights. Nat Chem Biol. 2008;4:657.

    Google Scholar 

  107. Enoksson M, Salvesen GS. Proteolytic needles in the cellular haystack. Nat Chem Biol. 2008;4:651–2.

    Article  CAS  PubMed  Google Scholar 

  108. Simon GM, Cravatt BF. Challenges for the ‘chemical-systems’ biologist. Nat Chem Biol. 2008;4:639–42.

    Article  CAS  PubMed  Google Scholar 

  109. Zamir E, Bastiaens PIH. Reverse engineering intracellular biochemical networks. Nat Chem Biol. 2008;4:643–7.

    Article  CAS  PubMed  Google Scholar 

  110. Lehár J, Stockwell BR, Giaever G, et al. Combination chemical genetics. Nat Chem Biol. 2008;4:674–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Seelig B. An autocatalytic network for ribozyme self-construction. Nat Chem Biol. 2008;4:654–5.

    Article  CAS  PubMed  Google Scholar 

  112. Cipriano A, Sbardella G, Ciulli A. Targeting epigenetic reader domains by chemical biology. Curr Opin Chem Biol. 2020;57:82–94.

    Article  CAS  PubMed  Google Scholar 

  113. Apsel B, Blair JA, Gonzalez B, et al. Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat Chem Biol. 2008;4:691–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bilanges B, Torbett N, Vanhaesebroeck B. Killing two kinase families with one stone. Nat Chem Biol. 2008;4:648–9.

    Article  CAS  PubMed  Google Scholar 

  115. Yabuuchi H, Niijima S, Takematsu H, et al. Analysis of multiple compound-protein interactions reveals novel bioactive molecules. Mol Syst Biol. 2011;7:472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dobson CM. Chemical space and biology. Nature. 2004;432:824–8.

    Article  CAS  PubMed  Google Scholar 

  117. Lipinski C, Hopkins A. Navigating chemical space for biology and medicine. Nature. 2004;432:855–61.

    Article  CAS  PubMed  Google Scholar 

  118. Renner S, van Otterlo WA, Dominguez Seoane M, et al. Bioactivity-guided mapping and navigation of chemical space. Nat Chem Biol. 2009;5:585–92.

    Article  CAS  PubMed  Google Scholar 

  119. Wang Y, Xiao J, Suzek TO, et al. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 2009;37:W623–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Eckert H, Bajorath J. Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov Today. 2007;12:225–3.

    Article  CAS  PubMed  Google Scholar 

  121. Young DW, Bender A, Hoyt J, et al. Integrating high-content screening and ligand-target prediction to identify mechanism of action. Nat Chem Biol. 2008;4:59–68.

    Article  CAS  PubMed  Google Scholar 

  122. MacDonald ML, Lamerdin J, Owens S, et al. Identifying off-target effects and hidden phenotypes of drugs in human cells. Nat Chem Biol. 2006;2:329–33.

    Article  CAS  PubMed  Google Scholar 

  123. Paolini GV, Shapland RH, van Hoorn WP, et al. Global mapping of pharmacological space. Nat Biotechnol. 2006;24:805–15.

    Article  CAS  PubMed  Google Scholar 

  124. Oprea TI, Tropsha A, Faulon JL, et al. Systems chemical biology. Nat Chem Biol. 2007;3:447–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Keiser MJ, Setola V, Irwin JJ, et al. Predicting new molecular targets for known drugs. Nature. 2009;462:175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Oprea TI, Matter H. Integrating virtual screening in lead discovery. Curr Opin Chem Biol. 2004;8:349–58.

    Article  CAS  PubMed  Google Scholar 

  127. Muegge I, Oloff S. Advances in virtual screening. Drug Discov Today Technol. 2006;3:405–11.

    Article  Google Scholar 

  128. McInnes C. Virtual screening strategies in drug discovery. Curr Opin Chem Biol. 2007;11:494–502.

    Article  CAS  PubMed  Google Scholar 

  129. Xie L, Li J, Xie L, Bourne PE. Drug discovery using chemical systems biology: identification of the protein-ligand binding network to explain the side effects of CETP inhibitors. PLoS Comput Biol. 2009;5:e1000387.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Hert J, Keiser MJ, Irwin JJ, et al. Quantifying the relationships among drug classes. J Chem Inf Model. 2008;48:755–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Pathguide: the pathway resource list http://www.pathguide.org

  132. Blow N. Systems biology: untangling the protein web. Nature. 2009;460:415–8.

    Article  CAS  PubMed  Google Scholar 

  133. Hansen N, Brunak S, Altman R. Generating genome-scale candidate gene lists for pharmacogenomics. Clin Pharmacol Ther. 2009;86:183–9.

    Article  CAS  PubMed  Google Scholar 

  134. Dimova D, Gilberg E, Bajorath J. Identification and analysis of promiscuity cliffs formed by bioactive compounds and experimental implications. RSC Adv. 2017;7(1):58–66.

    Article  CAS  Google Scholar 

  135. Dimova D, Bajorath J. Rationalizing promiscuity cliffs. ChemMedChem. 2018;13(6):490–4.

    Article  CAS  PubMed  Google Scholar 

  136. Miljković F, Vogt M, Bajorath J. Systematic computational identification of promiscuity cliff pathways formed by inhibitors of the human kinome. J Comput Aided Mol Des. 2019;33(6):559–72.

    Article  PubMed  CAS  Google Scholar 

  137. Miljković F, Bajorath J. Data structures for compound promiscuity analysis: promiscuity cliffs, pathways and promiscuity hubs formed by inhibitors of the human kinome. Future Sci OA. 2019;5(7):FSO404.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Hu H, Bajorath J. Exploring structure-promiscuity relationships using dual-site promiscuity cliffs and corresponding single-site analogs. Bioorg Med Chem. 2020;28(1):115238.

    Article  CAS  PubMed  Google Scholar 

  139. Peltason L, Hu Y, Bajorath J. From structure-activity to structure-selectivity relationships: quantitative assessment, selectivity cliffs, and key compounds. ChemMedChem. 2009;4(11):1864–73.

    Article  CAS  PubMed  Google Scholar 

  140. Hu Y, Bajorath J. Compound promiscuity: what can we learn from current data? Drug Discov Today. 2013;18(13–14):644–50.

    Article  CAS  PubMed  Google Scholar 

  141. Hu Y, Bajorath J. Systematic assessment of molecular selectivity at the level of targets, bioactive compounds, and structural analogues. ChemMedChem. 2016;11(12):1362–70.

    Article  CAS  PubMed  Google Scholar 

  142. Maggiora GM. On outliers and activity cliffs--why QSAR often disappoints. J Chem Inf Model. 2006;46(4):1535.

    Article  CAS  PubMed  Google Scholar 

  143. Stumpfe D, Bajorath J. Exploring activity cliffs in medicinal chemistry. J Med Chem. 2012;55(7):2932–42.

    Article  CAS  PubMed  Google Scholar 

  144. Stumpfe D, Hu Y, Dimova D, et al. Recent progress in understanding activity cliffs and their utility in medicinal chemistry. J Med Chem. 2014;57(1):18–28.

    Article  CAS  PubMed  Google Scholar 

  145. Blaschke T, Feldmann C, Bajorath J. Prediction of promiscuity cliffs using machine learning. Mol Inform. 2021;40(1):e2000196.

    Article  PubMed  CAS  Google Scholar 

  146. Kenny PW, Sadowski J. Chemoinformatics in drug discovery. Weinheim: Wiley-VCH; 2004. p. 271–85.

    Google Scholar 

  147. Hussain J, Rea C. Computationally efficient algorithm to identify matched molecular pairs (MMPs) in large data sets. J Chem Inf Model. 2010;50(3):339–48.

    Article  CAS  PubMed  Google Scholar 

  148. Hu Y, Hu Y, Vogt M, et al. MMP-Cliffs: systematic identification of activity cliffs on the basis of matched molecular pairs. J Chem Inf Model. 2012;52(5):1138–45.

    Article  CAS  PubMed  Google Scholar 

  149. Wang Y, Suzek T, Zhang J, et al. PubChem BioAssay: 2014 update. Nucleic Acids Res. 2014;42(Database issue):D1075–82.

    Article  CAS  PubMed  Google Scholar 

  150. Shoichet BK. Screening in a spirit haunted world. Drug Discov Today. 2006;11(13-14):607–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hu Y, Jasial S, Gilberg E. Structure-promiscuity relationship puzzles-extensively assayed analogs with large differences in target annotations. AAPS J. 2017;19(3):856–64.

    Article  PubMed  Google Scholar 

  152. Blaschke T, Miljković F, Bajorath J. Prediction of different classes of promiscuous and nonpromiscuous compounds using machine learning and nearest neighbor analysis. ACS Omega. 2019;4:6883–90.

    Article  CAS  Google Scholar 

  153. Hu Y, Bajorath J. Extending the activity cliff concept: structural categorization of activity cliffs and systematic identification of different types of cliffs in the ChEMBL database. J Chem Inf Model. 2012;52(7):1806–11.

    Article  CAS  PubMed  Google Scholar 

  154. Heikamp K, Hu X, Yan A, et al. Chem Inf Model. 2012;52:2354–65.

    Article  CAS  Google Scholar 

  155. Gandomi A, Haider M. Beyond the hype: big data concepts, methods, and analytics. Int J Inf Manage. 2015;35(2):137–44.

    Article  Google Scholar 

  156. Schadt EE, Linderman MD, Sorenson J, et al. Cloud and heterogeneous computing solutions exist today for the emerging big data problems in biology. Nat Rev Genet. 2011;12:224.

    Article  CAS  PubMed  Google Scholar 

  157. Liu W, Schmidt B, Voss G, et al. Streaming algorithms for biological sequence alignment on GPUs. IEEE Trans Parallel Distrib Syst. 2007;18(9):1270–81.

    Article  Google Scholar 

  158. Charikar M, O’Callaghan L, Panigrahy R. Better streaming algorithms for clustering problems. Proc thirty-fifth ACM Symp Theory Comput – STOC. 2003;03:30–9.

    Article  Google Scholar 

  159. Zhu H, Bouhifd M, Donley E, et al. Supporting read-across using biological data. ALTEX. 2016;33(2):167–82.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Hartung T. Making big sense from big data in toxicology by read-across. ALTEX. 2016;33(2):83–93.

    Article  PubMed  Google Scholar 

  161. Hu Y, Bajorath J. Entering the ‘big data’ era in medicinal chemistry: molecular promiscuity analysis revisited. Future Sci OA. 2017;3:FSO179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lynch C. Big data: how do your data grow? Nature. 2008;455(7209):28–9.

    Article  CAS  PubMed  Google Scholar 

  163. Marx V. The big challenges of big data. Nature. 2013;498(7453):255–60.

    Article  CAS  PubMed  Google Scholar 

  164. Al-Lazikani B, Workman P. Minimizing bias in target selection by exploiting multidisciplinary Big Data and the protein interactome. Future Med Chem. 2016;8(14):1711–6.

    Article  CAS  PubMed  Google Scholar 

  165. Bajorath J, Jenkins J, Overington J, et al. Drug discovery and development in the era of big data. Future Med Chem. 2016;8(15):1807–13.

    Article  CAS  PubMed  Google Scholar 

  166. Hu Y, Bajorath J. Learning from ‘big data’: compounds and targets. Drug Discov Today. 2014;19(4):357–60.

    Article  PubMed  Google Scholar 

  167. Lusher SJ, McGuire R, van Schaik RC, et al. Data-driven medicinal chemistry in the era of big data. Drug Discov Today. 2014;19(7):859–68.

    Article  CAS  PubMed  Google Scholar 

  168. Boran AD, Iyengar R. Systems approaches to polypharmacology and drug discovery. Curr Opin Drug Discov Devel. 2010;13(3):297–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Jalencas X, Mestres J. On the origins of drug polypharmacology. Med Chem Commun. 2013;4(1):80–7.

    Article  CAS  Google Scholar 

  170. Anighoro A, Bajorath J, Rastelli G. Polypharmacology: challenges and opportunities in drug discovery: miniperspective. J Med Chem. 2014;57(19):7874–87.

    Article  CAS  PubMed  Google Scholar 

  171. Hu Y, Bajorath J. Promiscuity profiles of bioactive compounds: potency range and difference distributions and the relation to target numbers and families. Med Chem Commun. 2013;4:1196–201.

    Article  CAS  Google Scholar 

  172. Schneider G, Neidhart W, Giller T, et al. “Scaffold-hopping” by topological pharmacophore search: a contribution to virtual screening. Angew Chem Int Ed Engl. 1999;38(19):2894–6.

    Article  CAS  PubMed  Google Scholar 

  173. Müller G. Medicinal chemistry of target family-directed masterkeys. Drug Discov Today. 2003;8(15):681–91.

    Article  PubMed  Google Scholar 

  174. Hu Y, Bajorath J. How promiscuous are pharmaceutically relevant compounds? A data-driven assessment. AAPS J. 2013;15(1):104–11.

    Article  CAS  PubMed  Google Scholar 

  175. National Institutes of Health. Big Data to Knowledge; National Institutes of Health. 2018. https://commonfund.nih.gov/bd2k. Accessed 10 Nov 2018.

  176. Margolis R, Derr L, Dunn M, et al. The National Institutes of Health’s Big Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data. J Am Med Informatics Assoc. 2014;21(6):957–8.

    Article  Google Scholar 

  177. Judson RS, Houck KA, Kavlock RJ, et al. In Vitro screening of environmental chemicals for targeted testing prioritization: the ToxCast project. Environ Health Perspect. 2010;118(4):485–92.

    Article  CAS  PubMed  Google Scholar 

  178. Kavlock R, Chandler K, Houck K, et al. Update on EPA’s ToxCast program: providing high throughput decision support tools for chemical risk management. Chem Res Toxicol. 2012;25(7):1287–302.

    Article  CAS  PubMed  Google Scholar 

  179. Attene-Ramos MS, Miller N, Huang R, et al. The Tox21 robotic platform for the assessment of environ-mental chemicals – from vision to reality. Drug Discov Today. 2013;18(15–16):716–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Thomas RS, Paules RS, Simeonov A, et al. The US federal Tox21 program: a strategic and operational plan for continued leadership. ALTEX. 2018;35(2):163–8.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Shukla SJ, Huang R, Austin CP, et al. The future of toxicity testing: a focus on in vitro methods using a quantitative high-throughput screening platform. Drug Discov Today. 2010;15(23–24):997–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Hsu C-W, Huang R, Attene-Ramos MS, et al. Advances in high-throughput screening technology for toxicology. Int J Risk Assess Manage. 2017;20:109.

    Article  Google Scholar 

  183. Zhao L, Zhu H. Big data in computational toxicology: challenges and opportunities. In: Ekins S, editor. Computational toxicology. Hoboken: Wiley; 2018. p. 291–312.

    Chapter  Google Scholar 

  184. Judson RS, Martin MT, Egeghy P, et al. Aggregating data for computational toxicology applications: the U.S. Environmental Protection Agency (EPA) Aggregated Computational Toxicology Resource (ACToR) system. Int J Mol Sci. 2012;13(2):1805–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Judson R, Richard A, Dix D, et al. ACToR – aggregated computational toxicology resource. Toxicol Appl Pharmacol. 2008;233(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  186. Luechtefeld T, Maertens A, Russo DP, et al. Analysis of publically available skin sensitization data from REACH registrations 2008–2014. ALTEX. 2016;33(2):135–48.

    PubMed  PubMed Central  Google Scholar 

  187. Luechtefeld T, Maertens A, Russo DP, et al. Analysis of public oral toxicity data from REACH registrations 2008–2014. ALTEX. 2016;33(2):111–22.

    PubMed  PubMed Central  Google Scholar 

  188. Luechtefeld T, Maertens A, Russo DP, et al. Global analysis of publicly available safety data for 9,801 substances registered under REACH from 2008–2014. ALTEX. 2016;33(2):95–109.

    PubMed  PubMed Central  Google Scholar 

  189. Luechtefeld T, Maertens A, Russo DP, et al. Analysis of draize eye irritation testing and its prediction by mining publicly available 2008–2014 REACH data. ALTEX. 2016;33(2):123–34.

    PubMed  PubMed Central  Google Scholar 

  190. Bitsch A, Jacobi S, Melber C, et al. REPDOSE: a database on repeated dose toxicity studies of commercial chemicals – a multifunctional tool. Regul Toxicol Pharmacol. 2006;46(3):202–10.

    Article  CAS  PubMed  Google Scholar 

  191. Vinken M, Pauwels M, Ates G, et al. Screening of repeated dose toxicity data present in SCC(NF)P/SCCS safety evaluations of cosmetic ingredients. Arch Toxicol. 2012;86(3):405–12.

    Article  CAS  PubMed  Google Scholar 

  192. Fonger GC, Stroup D, Thomas PL, et al. TOXNET: a computerized collection of toxicological and environ-mental health information. Toxicol Ind Health. 2000;16(1):4–6.

    Article  CAS  PubMed  Google Scholar 

  193. Lea IA, Gong H, Paleja A, et al. CEBS: a comprehensive annotated database of toxicological data. Nucleic Acids Res. 2017;45(D1):D964–71.

    Article  CAS  PubMed  Google Scholar 

  194. Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012;40(D1):1100–7.

    Article  CAS  Google Scholar 

  195. Subramanian A, Narayan R, Corsello SM, et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell. 2017;171(6):1437–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Lamb J, Crawford ED, Peck D, et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929–35.

    Article  CAS  PubMed  Google Scholar 

  197. Davis AP, Grondin CJ, Johnson RJ, et al. The comparative toxicogenomics database: update 2017. Nucleic Acids Res. 2017;45(D1):D972–8.

    Article  CAS  PubMed  Google Scholar 

  198. Ganter B, Tugendreich S, Pearson CI, et al. Development of a large-scale chemogenomics database to improve drug candidate selection and to understand mechanisms of chemical toxicity and action. J Biotechnol. 2005;119(3):219–44.

    Article  CAS  PubMed  Google Scholar 

  199. Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets – update. Nucleic Acids Res. 2012;41(D1):D991–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Sayers EW, Barrett T, Benson DA, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2009;37(D1):D5–15.

    Article  CAS  PubMed  Google Scholar 

  202. Sayers EW, Barrett T, Benson DA, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2010;38(D1):D5–16.

    Article  CAS  PubMed  Google Scholar 

  203. Sayers EW, Agarwala R, Bolton EE, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2019;47(D1):D23–8.

    Article  CAS  PubMed  Google Scholar 

  204. Yoon M, Campbell JL, Andersen ME, et al. Quantitative in vitro to in vivo extrapolation of cell-based toxicity assay results. Crit Rev Toxicol. 2012;42(8):633–52.

    Article  CAS  PubMed  Google Scholar 

  205. Ankley GT, Bennett RS, Erickson RJ, et al. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem. 2010;29(3):730–41.

    Article  CAS  PubMed  Google Scholar 

  206. Patlewicz G, Simon TW, Rowlands JC, et al. Proposing a scientific confidence framework to help support the application of adverse outcome pathways for regulatory purposes. Regul Toxicol Pharmacol. 2015;71(3):463–77.

    Article  PubMed  Google Scholar 

  207. Clippinger AJ, Allen D, Behrsing H, et al. Pathway-based predictive approaches for non-animal assessment of acute inhalation toxicity. Toxicol In Vitro. 2018;52:131–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Bal-Price A, Lein PJ, Keil KP, et al. Developing and applying the adverse outcome pathway concept for understanding and predicting neurotoxicity. NeuroToxicology. 2017;59:240–55.

    Article  CAS  PubMed  Google Scholar 

  209. Bal-Price A, Meek ME. Adverse outcome pathways: application to enhance mechanistic understanding of neurotoxicity. Pharmacol Ther. 2017;179:84–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Sachana M, Rolaki A, Bal-Price A. Development of the adverse outcome pathway (AOP): Chronic binding of antagonist to N-methyl-D-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities of children. Toxicol Appl Pharmacol. 2018;354:153–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Maxwell G, MacKay C, Cubberley R, et al. Applying the skin sensitization adverse outcome pathway (AOP) to quantitative risk assessment. Toxicol In Vitro. 2014;28(1):8–12.

    Article  CAS  PubMed  Google Scholar 

  212. Patlewicz G, Kuseva C, Kesova A, et al. Towards AOP application – Implementation of an Integrated Approach to Testing and Assessment (IATA) into a pipeline tool for skin sensitization. Regul Toxicol Pharmacol. 2014;69(3):529–45.

    Article  CAS  PubMed  Google Scholar 

  213. Organization for Economic Co-Operation and Development. The adverse outcome pathway for skin sensitisation initiated by covalent binding to proteins part 1: scientific evidence. Ser Test Assess 2012; 168.

    Google Scholar 

  214. Browne P, Noyes PD, Casey WM, et al. Application of adverse outcome pathways to U.S. EPA’s endocrine disruptor screening program. Environ Health Perspect. 2017;125(9):096001.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Benigni R, Battistelli CL, Bossa C, et al. Endocrine disruptors: data-based survey of in vivo tests, predictive models and the adverse outcome pathway. Regul Toxicol Pharmacol. 2017;86:18–24.

    Article  CAS  PubMed  Google Scholar 

  216. Proctor DM, Suh M, Chappell G, et al. An adverse outcome pathway (AOP) for forestomach tumors induced by non-genotoxic initiating events. Regul Toxicol Pharmacol. 2018;96:30–40.

    Article  CAS  PubMed  Google Scholar 

  217. Vinken M, Landesmann B, Goumenou M, et al. Development of an adverse outcome pathway from drug-mediated bile salt export pump inhibition to cholestatic liver injury. Toxicol Sci. 2013;136(1):97–106.

    Article  CAS  PubMed  Google Scholar 

  218. Xia M, Huang R, Shi Q, et al. Comprehensive analyses and prioritization of tox21 10k chemicals affecting mitochondrial function by in-depth mechanistic studies. Environ Health Perspect. 2018;126(7):077010.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Mellor CL, Steinmetz FP, Cronin MTD. Using molecular initiating events to develop a structural alert based screening workflow for nuclear receptor ligands associated with hepatic steatosis. Chem Res Toxicol. 2016;29(2):203–12.

    Article  CAS  PubMed  Google Scholar 

  220. Gadaleta D, Manganelli S, Roncaglioni A, et al. QSAR modeling of ToxCast assays relevant to the molecular initiating events of AOPs leading to hepatic steatosis. J Chem Inf Model. 2018;58(8):1501–17.

    Article  CAS  PubMed  Google Scholar 

  221. Frid AA, Matthews EJ. Prediction of drug-related cardiac adverse effects in humans-B: use of QSAR programs for early detection of drug-induced cardiac toxicities. Regul Toxicol Pharmacol. 2010;56:276–89.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Z., Yang, B. (2022). Polypharmacology in Predicting Drug Toxicity: Drug Promiscuity. In: Polypharmacology. Springer, Cham. https://doi.org/10.1007/978-3-031-04998-9_14

Download citation

Publish with us

Policies and ethics