Skip to main content

Entanglement Dynamics in Hybrid Quantum Circuits

  • Chapter
  • First Online:
Entanglement in Spin Chains

Part of the book series: Quantum Science and Technology ((QST))

Abstract

The central philosophy of statistical mechanics (stat-mech) and random-matrix theory of complex systems are that while individual instances are essentially intractable to simulate, the statistical properties of random ensembles obey simple universal “laws.” This same philosophy promises powerful methods for studying the dynamics of quantum information in ideal and noisy quantum circuits—for which classical description of individual circuits is expected to be generically intractable. Here, we review recent progress in understanding the dynamics of quantum information in ensembles of random quantum circuits, through a stat-mech lens. We begin by reviewing discoveries of universal features of entanglement growth, operator spreading, thermalization, and chaos in unitary random quantum circuits, and their relation to stat-mech problems of random surface growth and noisy hydrodynamics. We then explore the dynamics of monitored random circuits, which can loosely be thought of as noisy dynamics arising from an environment monitoring the system, and exhibit new types of measurement-induced phases and criticality. Throughout, we attempt to give a pedagogical introduction to various technical methods and to highlight emerging connections between concepts in stat-mech, quantum information, and quantum communication theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As an aside, we note that if the ancilla qubit, R, is initially entangled non-locally with the system, e.g., by applying a scrambling unitary before undergoing MRC dynamics, then in the L → limit, \(\overline {S_R}\) precisely jumps from log2 for p < pc to 0 for p > pc. On the other hand, if the ancilla qubit is locally entangled with a single system qubit, \(\overline {S_R}\) is not quantized (for example, with probability p that qubit could immediately get measured even for p < pc) and its jump across the transition is non-universal.

  2. 2.

    For example, by continuously turning off the coupling between the stabilizer-state qubits and volume-law entangled trivial degrees of freedom in the above construction, and then dialing the stabilizer measurement probability to unity, which, in the replicated statistical mechanics description corresponds to disentangling two gapped degrees of freedom and then smoothly changing couplings within a gapped phase, respectively, and does not produce a phase transition.

References

  1. P. Hayden, J. Preskill, JHEP, 2007, 120 (2007)

    Article  Google Scholar 

  2. Y. Sekino, L. Susskind, JHEP, 2008, 065 (2008)

    Article  Google Scholar 

  3. W. Brown, O. Fawzi, Commun. Math. Phys. 340, 867 (2015)

    Article  ADS  Google Scholar 

  4. P. Hosur, X.-L. Qi, D.A. Roberts, B. Yoshida, JHEP, 2016, 4 (2016)

    Article  Google Scholar 

  5. R. Oliveira, O.C.O. Dahlsten, M.B. Plenio, Phys. Rev. Lett. 98, 130502 (2007)

    Article  ADS  Google Scholar 

  6. F.G.S.L. Brandão, A.W. Harrow, M. Horodecki, Commun. Math. Phys. 346, 397 (2016)

    Article  ADS  Google Scholar 

  7. A. Nahum, J. Ruhman, S. Vijay, J. Haah, Phys. Rev. X 7, 031016 (2017)

    Google Scholar 

  8. A. Nahum, S. Vijay, J. Haah, Phys. Rev. X 8 (2018)

    Google Scholar 

  9. M. Kardar, G. Parisi, Y.-C. Zhang, Phys. Rev. Lett. 56, 889 (1986)

    Article  ADS  Google Scholar 

  10. S. Ryu, T. Takayanagi, Phys. Rev. Lett. 96, 181602 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  11. S. Ryu, T. Takayanagi, 2006, 045 (2006)

    Google Scholar 

  12. C.W. Von Keyserlingk, T. Rakovszky, F. Pollmann, S.L. Sondhi, Phys. Rev. X 8 (2018)

    Google Scholar 

  13. A. Chan, A. De Luca, J.T. Chalker, Phys. Rev. X 8, 041019 (2018)

    Google Scholar 

  14. B. Bertini, P. Kos, T. Prosen, Phys. Rev. Lett. 121, 264101 (2018)

    Article  ADS  Google Scholar 

  15. A. Chan, A. De Luca, J.T. Chalker, Phys. Rev. Lett. 121, 060601 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  16. A.J. Friedman, A. Chan, A. De Luca, J.T. Chalker, Phys. Rev. Lett. 123, 210603 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  17. S. Gopalakrishnan, A. Lamacraft, Phys. Rev. B 100, 064309 (2019)

    Article  ADS  Google Scholar 

  18. B. Bertini, P. Kos, T. Prosen, Phys. Rev. Lett. 123, 210601 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  19. V. Khemani, A. Vishwanath, D.A. Huse, Phys. Rev. X 8, 031057 (2018)

    Google Scholar 

  20. T. Rakovszky, F. Pollmann, C.W. von Keyserlingk, Phys. Rev. X 8, 031058 (2018)

    Google Scholar 

  21. J. Preskill, Quantum 2, 79 (2018)

    Article  Google Scholar 

  22. Y. Li, X. Chen, M.P.A. Fisher, Phys. Rev. B 98, 205136 (2018)

    Article  ADS  Google Scholar 

  23. B. Skinner, J. Ruhman, A. Nahum, Phys. Rev. X 9 (2019)

    Google Scholar 

  24. P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter, Z. Yang, J. High Energy Phys. 2016, 9 (2016)

    Article  Google Scholar 

  25. R. Vasseur, A.C. Potter, Y.-Z. You, A.W.W. Ludwig, Phys. Rev. B 100, 134203 (2019)

    Article  ADS  Google Scholar 

  26. J. Lopez-Piqueres, B. Ware, R. Vasseur, Phys. Rev. B 102, 064202 (2020)

    Article  ADS  Google Scholar 

  27. A. Nahum, S. Roy, B. Skinner, J. Ruhman, PRX Quantum 2, 010352 (2021)

    Article  Google Scholar 

  28. R. Levy, B.K. Clark, arXiv:2108.02225 [cond-mat.stat-mech] (2021)

    Google Scholar 

  29. Z.-C. Yang, Y. Li, M.P.A. Fisher, X. Chen, arXiv:2107.12376 [cond-mat.stat-mech] (2021)

    Google Scholar 

  30. M.J. Gullans, D.A. Huse, Phys. Rev. X 10, 041020 (2020)

    Google Scholar 

  31. S. Choi, Y. Bao, X.L. Qi, E. Altman, Phys. Rev. Lett. 125, 030505 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  32. Y. Li, M.P.A. Fisher (2020). arXiv:2007.03822

    Google Scholar 

  33. R. Fan, S. Vijay, A. Vishwanath, Y.-Z. You, arXiv:2002.12385 [cond-mat, physics:quant-ph] (2020).

    Google Scholar 

  34. Y. Li, X. Chen, M.P. Fisher, Phys. Rev. B 100, 134306 (2019)

    Article  ADS  Google Scholar 

  35. A. Chan, R.M. Nandkishore, M. Pretko, G. Smith, Phys. Rev. B 99, 224307 (2019)

    Article  ADS  Google Scholar 

  36. Y. Li, X. Chen, A.W.W. Ludwig, M.P.A. Fisher, arXiv:2003.12721 [cond-mat, physics:quantph] (2020)

    Google Scholar 

  37. X. Cao, A. Tilloy, A.D. Luca, SciPost Phys. 7, 24 (2019)

    Article  ADS  Google Scholar 

  38. M. Szyniszewski, A. Romito, H. Schomerus, Phys. Rev. B 100, 064204 (2019)

    Article  ADS  Google Scholar 

  39. Y. Bao, S. Choi, E. Altman, Phys. Rev. B 101 (2020)

    Google Scholar 

  40. C.M. Jian, Y.Z. You, R. Vasseur, A.W. Ludwig, Phys. Rev. B 101 (2020)

    Google Scholar 

  41. M.J. Gullans, D.A. Huse, Phys. Rev. Lett. 125 (2020)

    Google Scholar 

  42. A. Zabalo, M.J. Gullans, J.H. Wilson, S. Gopalakrishnan, D.A. Huse, J.H. Pixley, Phys. Rev. B 101 (2020)

    Google Scholar 

  43. A. Nahum, B. Skinner, Phys. Rev. Research 2, 023288 (2020)

    Article  ADS  Google Scholar 

  44. M. Ippoliti, M.J. Gullans, S. Gopalakrishnan, D.A. Huse, V. Khemani, Quantum Physics (2020). arXiv:2004.09560

    Google Scholar 

  45. A. Lavasani, Y. Alavirad, M. Barkeshli, Nat. Phys. 17, 342–347 (2021)

    Article  Google Scholar 

  46. S. Sang, T.H. Hsieh, Phys. Rev. Research 3, 023200 (2021)

    Article  ADS  Google Scholar 

  47. Q. Tang, W. Zhu, Phys. Rev. Research 2, 013022 (2020)

    Article  ADS  Google Scholar 

  48. X. Turkeshi, R. Fazio, M. Dalmonte, Phys. Rev. B 102 (2020)

    Google Scholar 

  49. Y. Fuji, Y. Ashida, arXiv:2004.11957 [cond-mat, physics:quant-ph] (2020)

    Google Scholar 

  50. O. Lunt, M. Szyniszewski, A. Pal, Phys. Rev. B 104, 155111 (2021)

    Article  ADS  Google Scholar 

  51. O. Lunt, A. Pal, Phys. Rev. Research 2, 043072 (2020)

    Article  ADS  Google Scholar 

  52. S. Vijay, arXiv:2005.03052 [quant-ph] (2020)

    Google Scholar 

  53. X. Turkeshi, A. Biella, R. Fazio, M. Dalmonte, M. Schiró, Phys. Rev. B 103, 224210 (2021)

    Article  ADS  Google Scholar 

  54. M. Ippoliti, V. Khemani, Phys. Rev. Lett. 126, 060501 (2021)

    Article  ADS  Google Scholar 

  55. T.-C. Lu, T. Grover, arXiv:2103.06356 [quant-ph] (2021)

    Google Scholar 

  56. C.-M. Jian, B. Bauer, A. Keselman, A.W.W. Ludwig, arXiv:2012.04666 [cond-mat.stat-mech] (2020)

    Google Scholar 

  57. S. Gopalakrishnan, M.J. Gullans, Phys. Rev. Lett. 126, 170503 (2021)

    Article  ADS  Google Scholar 

  58. X. Turkeshi, arXiv:2101.06245 [cond-mat.stat-mech] (2021)

    Google Scholar 

  59. Y. Bao, S. Choi, E. Altman, arXiv:2102.09164 [condmat.stat-mech] (2021)

    Google Scholar 

  60. M. Block, Y. Bao, S. Choi, E. Altman, N. Yao, arXiv:2104.13372 [quant-ph] (2021)

    Google Scholar 

  61. G. Bentsen, S. Sahu, B. Swingle, arXiv:2104.07688 [quant-ph] (2021)

    Google Scholar 

  62. A. Zabalo, M.J. Gullans, J.H. Wilson, R. Vasseur, A.W.W. Ludwig, S. Gopalakrishnan, D.A. Huse, J.H. Pixley, arXiv:2107.03393 [cond-mat.dis-nn] (2021)

    Google Scholar 

  63. U. Agrawal, A. Zabalo, K. Chen, J.H. Wilson, A.C. Potter, J.H. Pixley, S. Gopalakrishnan, R. Vasseur, arXiv:2107.10279 [cond-mat.dis-nn] (2021)

    Google Scholar 

  64. Y. Li, M.P.A. Fisher, arXiv:2108.04274 [quant-ph] (2021)

    Google Scholar 

  65. O. Alberton, M. Buchhold, S. Diehl, Phys. Rev. Lett. 126, 170602 (2021)

    Article  ADS  Google Scholar 

  66. S.-K. Jian, C. Liu, X. Chen, B. Swingle, P. Zhang, arXiv:2106.09635 [quant-ph] (2021)

    Google Scholar 

  67. E.V.H. Doggen, Y. Gefen, I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, arXiv:2104.10451 [quant-ph] (2021)

    Google Scholar 

  68. P. Sierant, X. Turkeshi, arXiv:2109.06882 [cond-mat.statmech] (2021)

    Google Scholar 

  69. O. Lunt, M. Szyniszewski, A. Pal, arXiv arXiv:2012.03857 [quant-ph] (2020)

    Google Scholar 

  70. M. Buchhold, Y. Minoguchi, A. Altland, S. Diehl, arXiv:2102.08381 [cond-mat.stat-mech] (2021)

    Google Scholar 

  71. P. Sierant, G. Chiriacò, F.M. Surace, S. Sharma, X. Turkeshi, M. Dalmonte, R. Fazio, G. Pagano, Dissipative Floquet dynamics: from steady state to measurement induced criticality in trapped-ion chains (2021). arXiv:2107.05669 [quant-ph]

    Google Scholar 

  72. S. Sharma, X. Turkeshi, R. Fazio, M. Dalmonte, arXiv:2110.14403 [quant-ph] (2021)

    Google Scholar 

  73. T. Zhou, A. Nahum, Physical Review B 99 (2019)

    Google Scholar 

  74. M.J. Gullans, S. Krastanov, D.A. Huse, L. Jiang, S.T. Flammia, Phys. Rev. X 11, 031066 (2021)

    Google Scholar 

  75. N. Hunter-Jones, arXiv:1905.12053 [quant-ph] (2019)

    Google Scholar 

  76. J. Napp, R.L. La Placa, A.M. Dalzell, F.G.S.L. Brandao, A.W. Harrow, (2019). arXiv:2001.00021 [quant-ph]

    Google Scholar 

  77. C. Noel, P. Niroula, D. Zhu, A. Risinger, L. Egan, D. Biswas, M. Cetina, A.V. Gorshkov, M.J. Gullans, D.A. Huse, C. Monroe, arXiv:2106.05881 [quant-ph] (2021)

    Google Scholar 

  78. C. Jonay, D.A. Huse, A. Nahum, arXiv:1803.00089 [cond-mat.stat-mech] (2018)

    Google Scholar 

  79. T. Zhou, A. Nahum, Phys. Rev. X 10, 031066 (2020)

    Google Scholar 

  80. S. Gopalakrishnan, D.A. Huse, V. Khemani, R. Vasseur, Phys. Rev. B 98, 220303 (2018)

    Article  ADS  Google Scholar 

  81. D. Forster, D.R. Nelson, M.J. Stephen, Phys. Rev. A 16, 732 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  82. T. Rakovszky, F. Pollmann, C.W. Von Keyserlingk, Phys. Rev. Lett. 122, 250602 (2019)

    Article  ADS  Google Scholar 

  83. Y. Huang, arXiv:1902.00977 [cond-mat, physics:hep-th, physics:quant-ph] (2019)

    Google Scholar 

  84. T. Zhou, A.W.W. Ludwig, Phys. Rev. Research 2, 033020 (2020)

    Article  ADS  Google Scholar 

  85. T. Rakovszky, F. Pollmann, C.W. von Keyserlingk (2020). arXiv:2010.07969 [cond-mat.str-el]

    Google Scholar 

  86. M. Žnidarič, Commun. Phys. 3, 100 (2020)

    Article  Google Scholar 

  87. D. Aharonov, Phys. Rev. A 62, 062311 (2000)

    Article  ADS  Google Scholar 

  88. Y. Li, S. Vijay, M.P.A. Fisher, arXiv:2105.13352 [cond-mat.stat-mech] (2021)

    Google Scholar 

  89. S. Parameswaran, A.C. Potter, R. Vasseur, Annalen der Physik 529, 1600302 (2017)

    Article  ADS  Google Scholar 

  90. R. Nandkishore, D.A. Huse, Annu. Rev. Condens. Matter Phys. 6, 15 (2015)

    Article  ADS  Google Scholar 

  91. D.A. Abanin, E. Altman, I. Bloch, M. Serbyn, Rev. Mod. Phys. 91, 021001 (2019)

    Article  ADS  Google Scholar 

  92. A. Chandran, C. Laumann, Phys. Rev. B 92, 024301 (2015)

    Article  ADS  Google Scholar 

  93. M. Foss-Feig, D. Hayes, J.M. Dreiling, C. Figgatt, J.P. Gaebler, S.A. Moses, J.M. Pino, A.C. Potter, Phys. Rev. Research 3, 033002 (2021)

    Article  ADS  Google Scholar 

  94. E. Chertkov, J. Bohnet, D. Francois, J. Gaebler, D. Gresh, A. Hankin, K. Lee, R. Tobey, D. Hayes, B. Neyenhuis, R. Stutz, A.C. Potter, M. Foss-Feig, arXiv:2105.09324 [quant-ph] (2021)

    Google Scholar 

  95. B. Yoshida, arXiv:2109.08691 [quant-ph] (2021)

    Google Scholar 

  96. G. Smith, in 2010 IEEE Information Theory Workshop (IEEE, New York, 2010) pp. 1–5

    Google Scholar 

  97. D.A. Roberts, B. Yoshida, JHEP, 2017, 1 (2017)

    Article  Google Scholar 

  98. Y. Li, R. Vasseur, M.P.A. Fisher, A.W.W. Ludwig, arXiv:2110.02988 [cond-mat.stat-mech] (2021)

    Google Scholar 

  99. R. Orús, Ann. Phys. 349, 117 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  100. J.L. Cardy, Nucl. Phys. B 240, 514 (1984)

    Article  ADS  Google Scholar 

  101. J. Cardy, Encyclopedia of Mathematical Physics (2006)

    Google Scholar 

  102. C. Fortuin, P. Kasteleyn, Physica 57, 536 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  103. J.T. Chayes, L. Chayes, R. Durrett, J. Stat. Phys. 45, 933 (1986)

    Article  ADS  Google Scholar 

  104. J. Jiang, C.-L. Yao, arXiv:1612.01803 [math.PR] (2016)

    Google Scholar 

  105. A. Lavasani, Y. Alavirad, M. Barkeshli, arXiv:2011.06595 [cond-mat.stat-mech] (2020)

    Google Scholar 

  106. A. Kitaev, J. Preskill, Phys. Rev. Lett. 96, 110404 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  107. M. Levin, X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006)

    Article  ADS  Google Scholar 

  108. F. Barratt, U. Agrawal, S. Gopalakrishnan, D.A. Huse, R. Vasseur, A.C. Potter, arXiv:2111.09336 [quant-ph] (2021)

    Google Scholar 

  109. X. Chen, Y. Li, M.P.A. Fisher, A. Lucas, Phys. Rev. Research 2, 033017 (2020)

    Article  ADS  Google Scholar 

  110. X. Turkeshi, M. Dalmonte, R. Fazio, M. Schirò, arXiv:2111.03500 [cond-mat.stat-mech] (2021)

    Google Scholar 

Download references

Acknowledgements

We thank our collaborators Utkarsh Agrawal, Fergus Barratt, Matthew Fisher, Aaron Friedman, Sarang Gopalakrishnan, Michael Gullans, David Huse, Chao-Ming Jian, Yaodong Li, Andreas Ludwig, Adam Nahum, Javier Lopez-Piqueres, Jed Pixley, Hans Singh, Yi-Zhuang You, Brayden Ware, Justin Wilson, and Aidan Zabalo for many insightful discussions. We also thank Ehud Altman, Maissam Barkeshli, Xiao Chen, Michael Gullans, Tim Hsieh, Yaodong Li, Adam Nahum, and Jed Pixley for helpful comments on this manuscript. This research was supported in part from the US Department of Energy, Office of Science, Basic Energy Sciences, under Early Career Award No. DE-SC0019168 (RV), from the US National Science Foundation DMR-1653007 (ACP), and the Alfred P. Sloan Foundation through Sloan Research Fellowships (RV and ACP). This research was undertaken thanks, in part, to funding from the Max Planck-UBC-UTokyo Center for Quantum Materials and the Canada First Research Excellence Fund, Quantum Materials and Future Technologies Program (ACP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Vasseur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Potter, A.C., Vasseur, R. (2022). Entanglement Dynamics in Hybrid Quantum Circuits. In: Bayat, A., Bose, S., Johannesson, H. (eds) Entanglement in Spin Chains. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-03998-0_9

Download citation

Publish with us

Policies and ethics