Skip to main content

The Cattaneo Model for Laser-Induced Thermotherapy: Identification of the Blood-Perfusion Rate

  • Conference paper
  • First Online:
Modeling, Simulation and Optimization in the Health- and Energy-Sector

Abstract

We investigate the Cattaneo model as an alternative heat-transfer model for laser-induced thermotherapy. This model allows for a finite speed of propagation in contrast to the classical heat equation derived from Fourier’s law. In particular, we look at the identification of the blood-perfusion rate in this context to prepare the transition from ex-vivo to in-vivo experiments. We investigate the effect of the modified heat-transfer numerically and give a proof of concept for the parameter identification task on synthetic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andres, M., Blauth, S., Leithäuser, C., Siedow, N.: Identification of the blood perfusion rate for laser-induced thermotherapy in the liver (2019)

    Google Scholar 

  2. Andres, M., Schneider, F.: The second-order formulation of the \(p_n\) equations with Marshak boundary conditions (2019)

    Google Scholar 

  3. Aquilanti, V., Mundim, K.C., Elango, M., Kleijn, S., Kasai, T.: Temperature dependence of chemical and biophysical rate processes: phenomenological approach to deviations from Arrhenius law. Chem. Phys. Lett. 498(1), 209–213 (2010)

    Article  Google Scholar 

  4. Blauth, S.: Optimal control and asymptotic analysis of the Cattaneo model. masterthesis, Technische Universität Kaiserslautern (2018)

    Google Scholar 

  5. Blauth, S., Hübner, F., Leithäuser, C., Siedow, N., Vogl, T.J.: Mathematical modeling of vaporization during laser-induced thermotherapy in liver tissue (2019)

    Google Scholar 

  6. Cattaneo, C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  7. Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51(12), 705–729, 12 (1998)

    Google Scholar 

  8. Fasano, A., Hömberg, D., Naumov, D.: On a mathematical model for laser-induced thermotherapy. Appl. Math. Model. 34(12), 3831–3840 (2010)

    Article  MathSciNet  Google Scholar 

  9. F. for Research on Information Technologies in Society (IT’IS). Tissue properties. https://itis.swiss/virtual-population/tissue-properties/database/heat-transfer-rate/. Online Accessed 26 Sep 2018

  10. Ghazizadeh, H.R., Azimi, A., Maerefat, M.: An inverse problem to estimate relaxation parameter and order of fractionality in fractional single-phase-lag heat equation. Int. J. Heat Mass Transf. 55(7), 2095–2101 (2012)

    Article  Google Scholar 

  11. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE constraints. In: Mathematical Modelling: Theory and Applications, vol. 23. Springer Science & Business Media (2008)

    Google Scholar 

  12. Hübner, F., Leithäuser, C., Bazrafshan, B., Siedow, N., Vogl, T.: Validation of a mathematical model for laser-induced thermotherapy in liver tissue. Lasers Med. Sci. 32(6), 1399–1409 (2017)

    Article  Google Scholar 

  13. Iljaž, J., Škerget, L.: Blood perfusion estimation in heterogeneous tissue using BEM based algorithm. Eng. Anal. Bound. Elem. 39, 75–87 (2014)

    Article  MathSciNet  Google Scholar 

  14. Liu, J., Chen, X., Xu, L.X.: New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating. IEEE Trans. Biomed. Eng. 46(4), 420–428 (1999)

    Google Scholar 

  15. Joseph, D.D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61, 41–73 (1989)

    Article  MathSciNet  Google Scholar 

  16. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended irreversible thermodynamics revisited (1988–98). Rep. Prog. Phys. 62(7), 1035–1142 (1999)

    Article  MathSciNet  Google Scholar 

  17. Kaminski, W.: Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. J. Heat Transf. 112(3), 555–560, 08 (1990)

    Google Scholar 

  18. Kröner, A.: Numerical methods for control of second order hyperbolic equations. Dissertation, Technische Universität München, München (2011)

    Google Scholar 

  19. Liu, J.: Preliminary survey on the mechanisms of the wave-like behaviors of heat transfer in living tissues. Forschung im Ingenieurwesen 66(1), 1–10 (2000)

    Article  Google Scholar 

  20. López Molina, J.A., Rivera, M.J., Trujillo, M., Berjano, E.J.: Thermal modeling for pulsed radiofrequency ablation: analytical study based on hyperbolic heat conduction. Med. Phys. 36(4), 1112–1119 (2009)

    Google Scholar 

  21. Maillet, D.: A review of the models using the Cattaneo and Vernotte hyperbolic heat equation and their experimental validation. Int. J. Therm. Sci. 139, 424–432 (2019)

    Article  Google Scholar 

  22. Maxwell, J.C.: Iv. on the dynamical theory of gases. Philos. Trans. R. Soc. Lond. (157), 49–88 (1867)

    Google Scholar 

  23. Mitra, K., Kumar, S., Vedevarz, A., Moallemi, M.K.: Experimental evidence of hyperbolic heat conduction in processed meat. J. Heat Transf. 117(3), 568–573, 08 (1995)

    Google Scholar 

  24. Molina, J.A.L., Rivera, M.J., Trujillo, M., Berjano, E.J.: Effect of the thermal wave in radiofrequency ablation modeling: an analytical study. Phys. Med. Biol. 53(5), 1447–1462 (2008)

    Article  Google Scholar 

  25. Onsager, L.: Reciprocal relations in irreversible processes. i. Phys. Rev. 37, 405–426 (1931)

    Google Scholar 

  26. Pennes, H.H.: Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1(2), 93–122 (1948). PMID: 18887578

    Article  Google Scholar 

  27. Pinnau, R.: Analysis of optimal boundary control for radiative heat transfer modeled by the s\(p\)_ \(\{1\}\)-system. Commun. Math. Sci. 5(4), 951–969 (2007)

    Google Scholar 

  28. Quintanilla, R., Racke, R.: A note on stability in dual-phase-lag heat conduction. Int. J. Heat Mass Transf. 49(7), 1209–1213 (2006)

    Article  Google Scholar 

  29. Quintanilla, R., Racke, R.: Qualitative aspects in dual-phase-lag heat conduction. Proc. R. Soc. A: Math., Phys. Eng. Sci. 463(2079), 659–674 (2006)

    Article  MathSciNet  Google Scholar 

  30. Racke, R.: Heat conduction in elastic systems: Fourier versus Cattaneo. In: International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (2015)

    Google Scholar 

  31. Saldanha, D.F., Khiatani, V.L., Carrillo, T.C., Yap, F.Y., Bui, J.T., Knuttinen, M.G., Owens, C.A., Gaba, R.C.: Current tumor ablation technologies: basic science and device review. In: Seminars in Interventional Radiology, vol. 27, pp. 247–254. Thieme Medical Publishers (2010)

    Google Scholar 

  32. Straughan, B.: Heat Waves, vol. 177. Springer Science & Business Media (2011)

    Google Scholar 

  33. Taitel, Y.: On the parabolic, hyperbolic and discrete formulation of the heat conduction equation. Int. J. Heat Mass Transf. 15(2), 369–371 (1972)

    Article  Google Scholar 

  34. Terenji, A., Willmann, S., Osterholz, J., Hering, P., Schwarzmaier, H.-J.: Measurement of the coagulation dynamics of bovine liver using the modified microscopic Beer-Lambert law. Lasers Surg. Med. 36(5), 365–370 (2005)

    Article  Google Scholar 

  35. Tolle, K., Marheineke, N.: On online parameter identification in laser-induced thermotherapy (2019). submitted

    Google Scholar 

  36. Tzou, D.Y.: Experimental support for the lagging behavior in heat propagation. J. Thermophys. Heat Transf. 9(4), 686–693 (1995)

    Article  Google Scholar 

  37. Tzou, D.Y.: A unified field approach for heat conduction from macro- to micro-scales. J. Heat Transf. 117(1), 8–16, 02 (1995)

    Google Scholar 

  38. Zhang, M., Zhou, Z., Wu, S., Lin, L., Gao, H., Feng, Y.: Simulation of temperature field for temperature-controlled radio frequency ablation using a hyperbolic bioheat equation and temperature-varied voltage calibration: a liver-mimicking phantom study. Phys. Med. Biol. 60(24), 9455–9471 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the German Federal Ministry of Education and Research (BMBF) grant no. 05M16UKE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Andres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andres, M., Pinnau, R. (2022). The Cattaneo Model for Laser-Induced Thermotherapy: Identification of the Blood-Perfusion Rate. In: Pinnau, R., Gauger, N.R., Klar, A. (eds) Modeling, Simulation and Optimization in the Health- and Energy-Sector. SEMA SIMAI Springer Series(), vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-99983-4_2

Download citation

Publish with us

Policies and ethics