Skip to main content

Lossy Mode Resonances Supported by Nanoparticle-Based Thin-Films

  • Conference paper
  • First Online:
Sensing Technology

Abstract

Optical fiber sensors based on the lossy mode resonance (LMR) effect obtained by means of the utilization nanoparticle-based thin-films are presented for the first time in this work. Tungsten oxide III nanoparticles (WO3NP) and diamond nanoparticles (DNP) have been deposited separately onto cladding removed multimode fiber to obtain LMRs. The fabrication of the thin-films was performed using the layer by layer (LbL) technique. Poly(allylamine hydrochloride) PAH was used in both cases to embed the nanoparticles. The LMRs obtained were characterized during the thin-film fabrication process allowing to precisely tuning the resonance in the desired part of the spectrum. Thin-film properties were studied using a scanning electron microscope (SEM) and optical microscope to verify their homogeneity and roughness. The response of the devices to changes in the surrounding medium refractive index (SMRI) was studied showing sensitivities of 5940 and 1368 nm/RI for WO3NP and DNP respectively, which opens the door to the utilization of these devices for novel sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pawar, D., Kale, S.N.: A review on nanomaterial-modified optical fiber sensors for gases, vapors and ions. Microchim. Acta. 186 (2019)

    Google Scholar 

  2. Fang, Z., Chin, K., Qu, R., Cai, H.: Fundamentals of Optical Fiber Sensors. Wiley (2012)

    Google Scholar 

  3. Del Villar, I., Arregui, F.J., Zamarreño, C.R., Corres, J.M., Bariain, C., Goicoechea, J., Elosua, C., Hernaez, M., Rivero, P.J., Socorro, A.B., Urrutia, A., Sanchez, P., Zubiate, P., Lopez, D., De Acha, N., Ascorbe, J., Matias, I.R.: Optical sensors based on lossy-mode resonances. Sens. Actuat., B Chem. 240, 174–185 (2017)

    Article  Google Scholar 

  4. Tabassum, R., Kant, R.: Recent trends in surface plasmon resonance based fiber–optic gas sensors utilizing metal oxides and carbon nanomaterials as functional entities. Sens. Actuat., B Chem. 310, 127813 (2020)

    Google Scholar 

  5. Vitoria, I., Zamarreño, C.R., Ozcariz, A., Matias, I.R.: Fiber optic gas sensors based on lossy mode resonances and sensing materials used therefor: a comprehensive review. Sensors (Switzerland). 21, 1–26 (2021)

    Article  Google Scholar 

  6. Hernáez, M., Zamarreño, C.R., Del Villar, I., Arregui, F.J., Matias, I.R.: Optical fiber sensors based on lossy mode resonances, 191–210 (2013)

    Google Scholar 

  7. Lopez, S., del Villar, I., Ruiz Zamarreño, C., Hernaez, M., Arregui, F.J., Matias, I.R.: Optical fiber refractometers based on indium tin oxide coatings fabricated by sputtering. Opt. Lett. 37, 28 (2012)

    Article  Google Scholar 

  8. Ozcariz, A., Dominik, M., Smietana, M., Zamarreño, C.R., Del Villar, I., Arregui, F.J.: Lossy mode resonance optical sensors based on indium-gallium-zinc oxide thin film. Sens. Actuat., A Phys. 290, 20–27 (2019)

    Article  Google Scholar 

  9. Kosiel, K., Koba, M., Masiewicz, M., Śmietana, M.: Tailoring properties of lossy-mode resonance optical fiber sensors with atomic layer deposition technique. Opt. Laser Technol. 102, 213–221 (2018)

    Article  Google Scholar 

  10. Sanchez, P., Zamarrẽo, C.R., Hernaez, M., Del Villar, I., Fernandez-Valdivielso, C., Matias, I.R., Arregui, F.J.: Lossy mode resonances toward the fabrication of optical fiber humidity sensors. Meas. Sci. Technol. 23 (2012)

    Google Scholar 

  11. Elosua, C., Lopez-Torres, D., Hernaez, M., Matias, I.R., Arregui, F.J.: Comparative study of layer-by-layer deposition techniques for poly(sodium phosphate) and poly(allylamine hydrochloride). Nanosc. Res. Lett. 8, 539 (2013)

    Article  Google Scholar 

  12. Elosua, C., Arregui, F.J., Del Villar, I., Ruiz-Zamarreño, C., Corres, J.M., Bariain, C., Goicoechea, J., Hernaez, M., Rivero, P.J., Socorro, A.B., Urrutia, A., Sanchez, P., Zubiate, P., Lopez-Torres, D., De Acha, N., Ascorbe, J., Ozcariz, A., Matias, I.R.: Micro and nanostructured materials for the development of optical fibre sensors. Sensors (Switzerland) 17 (2017)

    Google Scholar 

  13. Martínez-Hernández, M.E., Goicoechea, J., Arregui, F.J.: Hg2+ optical fiber sensor based on LSPR generated by gold nanoparticles embedded in LBL nano-assembled coatings. Sensors (Switzerland) 19 (2019)

    Google Scholar 

  14. Wang, Q., Li, X., Zhao, W.M., Jin, S.: Lossy mode resonance-based fiber optic sensor using layer-by-layer SnO2 thin film and SnO2 nanoparticles. Appl. Surf. Sci. 492, 374–381 (2019)

    Article  Google Scholar 

  15. Hernáez, M., Del Villar, I., Zamarreño, C. R., Arregui, F. J., Matias, I. R.: Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings. Appl. Opt. (2010). https://doi.org/10.1364/AO.49.003980

  16. Dong, C., Zhao, R., Yao, L., Ran, Y., Zhang, X., Wang, Y.: A review on WO3 based gas sensors: Morphology control and enhanced sensing properties. J. Alloy. Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.153194

  17. Villar, I. et al., Lossy Mode Resonance Sensors based on Tungsten Oxide Thin Films. Proc. IEEE Sensors. 2020 Octob, 7–10 (2020). https://doi.org/10.1109/SENSORS47125.2020.9278899

  18. Vijayakumar, S., Vadivel, S.: Fiber optic ethanol gas sensor based WO3 and WO3/gC3N4 nanocomposites by a novel microwave technique. Opt. Laser Technol. 118, 44–51 May (2019). https://doi.org/10.1016/j.optlastec.2019.04.040

  19. Okazaki, S. et aI.: Sensing characteristics of an optical fiber sensor for hydrogen leak. Sens. Actuators, B Chem. 93, (1–3), 142–147 (2003). https://doi.org/10.1016/S0925-4005(03)00211-9

  20. Yao, Q. et al.: 2D Plasmonic Tungsten Oxide Enabled Ultrasensitive Fiber Optics Gas Sensor Supporting information. Adv. Opt. Mater. 7, 24 (2019). https://doi.org/10.1002/adom.201901383

  21. Renganathan, B., Sastikumar, D., Raj, S.G., Ganesan, A.R.: Fiber optic gas sensors with vanadium oxide and tungsten oxide nanoparticle coated claddings. Opt. Commun. 315, 74–78 (2014). https://doi.org/10.1016/j.optcom.2013.10.072

  22. Fernandes-Junior, W.S. et al.: Electrochemical Sensor Based on Nanodiamonds and Manioc Starch for Detection of Tetracycline. J. Sens. 2021, (2021). https://doi.org/10.1155/2021/6622612

  23. Davydova, M., et al.: Gas-sensing behaviour of ZnO/diamond nanostructures. Beilstein J. Nanotechnol. 9, (1), 22–29, (2018). https://doi.org/10.3762/bjnano.9.4

  24. Chevallier, E., Scorsone, E., Bergonzo, P.: New sensitive coating based on modified diamond nanoparticles for chemical SAW sensors. Sens. Actuators, B Chem. 154, (2), 238–244 (2011). https://doi.org/10.1016/j.snb.2010.01.042

  25. Bae, H., Giri, A., Kolawole, O., Azimi, A., Jackson, A., Harris, G.: Miniature diamond-based fiber optic pressure sensor with dual polymer-ceramic adhesives. Sensors (Switzerland). 19, (9), 17–20, (2019). https://doi.org/10.3390/s19092202

  26. Moncea, O. et al.: Diamondoid Nanostructures as sp 3 ‐Carbon‐Based Gas Sensors. Angew. Chemie. 131, (29), 10038–10043 (2019). https://doi.org/10.1002/ange.201903089

  27. Zhu, H. et al.: Elastic loading enhanced NH3 sensing for surface acoustic wave sensor with highly porous nitrogen doped diamond like carbon film. Sens. Actuators, B Chem. 344, (130175), January (2021). https://doi.org/10.1016/j.snb.2021.130175

  28. Couty, M., Girard, H.A., Saada, S.: Nanoparticle Adhesion and Mobility in Thin Layers: Nanodiamonds As a Model. ACS Appl. Mater. Interfaces. 7, (29), 15752–15764 (2015). https://doi.org/10.1021/acsami.5b02364

  29. Shiratori, S.S., Rubner, M.F.: pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules. 33, (11), 4213–4219 (2000). https://doi.org/10.1021/ma991645q

  30. Praus, P., Svoboda, L., Dvorský, R., Reli, M., Kormunda, M., Mančík, P.: Synthesis and properties of nanocomposites of WO3 and exfoliated g-C3N4. Ceram. Int. 43, (16), 13581–13591 (2017). https://doi.org/10.1016/j.ceramint.2017.07.067

  31. Hongthani, W., Fermín, D.J.: Layer-by-Layer assembly and redox properties of undoped HPHT diamond particles. Diam. Relat. Mater. 19, (7–9), 680–684 (2010). https://doi.org/10.1016/j.diamond.2010.01.039

  32. Del Villar, I. et al.: Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers. J. Instrum. 5, (9), (2010). https://doi.org/10.1088/2040-8978/12/9/095503

Download references

Acknowledgements

This research was funded by the Ministry of Science, Innovation and Universities of Spain (PEJ2018-002958-P and PID2019-106231RB-I00) and the Institute of Smart Cities Ph.D. Student grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Vitoria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vitoria, I., Coronel, C., Ozcariz, A., Zamarreño, C.R., Matias, I.R. (2022). Lossy Mode Resonances Supported by Nanoparticle-Based Thin-Films. In: Suryadevara, N.K., George, B., Jayasundera, K.P., Roy, J.K., Mukhopadhyay, S.C. (eds) Sensing Technology. Lecture Notes in Electrical Engineering, vol 886. Springer, Cham. https://doi.org/10.1007/978-3-030-98886-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98886-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98885-2

  • Online ISBN: 978-3-030-98886-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics