Skip to main content

Spoilage of Stored, Processed and Preserved Foods

  • Chapter
  • First Online:
Fungi and Food Spoilage

Abstract

The science of preserving foods, like so many other disciplines, requires compromise. Really dry foods, i.e. of a safe aw, may be impossible to obtain for climatic or economic reasons, or be unacceptable to the consumer; a sufficient heat process may destroy desirable flavours; and permitted preservative levels are set by law. Some fungi, by virtue of specific attributes, simply cannot be processed out of certain types of foods. Of particular importance are Xeromyces bisporus and Zygosaccharomyces rouxii – extreme xerophiles which grow in concentrated foods; Byssochlamys spp., Talaromyces spp. and Neosartorya fischeri with ascospores of very high heat resistance which can survive heat processing and may grow in heat processed acid foods; and Zygosaccharomyces bailii, a preservative resistant yeast. Making foods safe from these fungi requires that they be absent from raw materials or destroyed by pasteurisation, and then excluded from the processing and packing lines. This chapter looks at the kinds of fungi that grow in stored, processed or preserved foods, with emphasis on those that may cause spoilage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Hafez, S.I.I. and Saber, S.M. 1993. Mycoflora and mycotoxin of hazelnut (Corylus avellana L.) and walnut (Juglans regia L.) seeds in Egypt. Zentralbl. Mikrobiol. 148: 137–147.

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Kader, M.I.A. et al. 1979. Survey of the mycoflora of barley grains in Egypt. Mycopathologia 69: 143–147.

    Article  Google Scholar 

  • Abellana, M. et al. 1997. [Characterisation of different industrial bakery products. II. Study of mycoflora]. Alimentaria 35 (287): 51–56.

    Google Scholar 

  • Adebajo, L.O. and Diyaolu, S.A. 2003. Mycology and spoilage of retail cashew nuts. Afr. J. Biotechnol. 2: 369–373.

    Article  Google Scholar 

  • Ahmad, S.K. and Singh, P.L. 1991. Mycofloral changes and aflatoxin contamination in stored chickpea seeds. Food Addit. Contam. 8: 723–730.

    Article  CAS  PubMed  Google Scholar 

  • Akinfala, T.O., Houbraken, J., Sulyok, M., Adedeji, A.R., Odebode, A.C., Krska, R. and Ezekiel, C.N. 2020. Moulds and their secondary metabolites associated with the fermentation and storage of two cocoa bean hybrids in Nigeria. Int. J. Food Microbiol. 316: 108490. https://doi.org/10.1016/j.ijfoodmicro.2019.108490.

    Article  CAS  PubMed  Google Scholar 

  • Alía, A., Andrade, M.J., Rodríguez, A., Reyes-Prieto, M., Bernáldez, V. and Córdoba, J.J. 2016. Identification and control of moulds responsible for black spot spoilage in dry-cured ham. Meat Sci. 122: 16–24.

    Article  PubMed  Google Scholar 

  • Andersen, S.J. 1995. Compositional changes in surface mycoflora during ripening of naturally fermented sausages. J. Food Prot. 58: 426–429.

    Article  PubMed  Google Scholar 

  • Anelli, P. et al. 2018. Penicillium gravinicasei, a new species isolated from cave cheese in Apulia, Italy. Int. J. Microbiol. 282: 66–70.

    Google Scholar 

  • Anelli, P., Haidukowski, M., Epifani, F., Commarusti, M.T., Moretti, A., Logrieco, A.F. and Susca, A. 2019. Fungal mycobiota and mycotoxin risk for traditional artisan Italian cave cheese. Food Microbiol. 78: 62–72.

    Article  PubMed  CAS  Google Scholar 

  • Apinis, A.E. 1972. Mycological aspects of stored grain. In Biodeterioration of Materials, Vol. 2, eds A.H. Walters and E.H. Hueck-van der Plas. London: Applied Science Publishers. pp. 493–498.

    Google Scholar 

  • Ardhana, M.M. and Fleet, G.H. 2003. The microbial ecology of cocoa bean fermentations in Indonesia. Int. J. Food Microbiol. 86: 87–99.

    Article  CAS  PubMed  Google Scholar 

  • Atanda, O.O. et al. 1990. Mycoflora of dry ‘tatase’ pepper (Capsicum annuum L.) stored for sale in Ibadan markets. Lett. Appl. Microbiol. 10: 35–37.

    Article  Google Scholar 

  • Atapattu, R. and Samarajeewa, U. 1990. Fungi associated with dried fish in Sri Lanka. Mycopathologia 111: 55–59.

    Article  CAS  PubMed  Google Scholar 

  • Auerbach, H. et al. 1998. Incidence of Penicillium roqueforti and roquefortine C in silages. J. Sci. Food Agric. 76: 565–572.

    Article  CAS  Google Scholar 

  • Barkat, E.H. et al. 2017. Volatile organic compounds associated with postharvest fungi detected in stored wheat grain. Australasian Plant Pathol. 46: 483–492.

    Article  CAS  Google Scholar 

  • Barron, G.L. and Lichtwardt, R.W. 1959. Quantitative estimations of the fungi associated with deterioration of stored corn in Iowa. Iowa St. J. Sci. 34: 147–155.

    Google Scholar 

  • Barua, J. et al. 2007. Control of mycoflora of farmer’s stored seeds of mungbean. Asian J. Plant Sci. 6: 115–121.

    Article  Google Scholar 

  • Bassey, I.N. and Effiong, M.U. 2016. Fungi associated with post-harvest deterioration of dried Clarias gariepinus vended in some markets in Uyo, Akwa Ibom State, Nigeria. J. Aquatic Sci. 31: 409–416.

    Article  Google Scholar 

  • Bath, K., Persson, K.N., Schnurer, J. and Leong, S.L. 2012. Microbiota of an unpasteurised cellar-stored goat cheese from northern Sweden. Agric. Food Sci. 21: 197–203.

    Article  Google Scholar 

  • Batista, L.R. et al. 2003. Toxigenic fungi associated with processed (green) coffee beans (Coffea arabica L.). Int. J. Food Microbiol. 85: 293–300.

    Article  PubMed  Google Scholar 

  • Bayman, P. et al. 2002. Aspergillus on tree nuts: incidence and associations. Mycopathologia 155: 161–169.

    Google Scholar 

  • Baquião, A.C., Olivera, M.M.M. de., Reis, T.A., Zorete, P., Atayde, D.D. and Corrêa, B. 2013. Monitoring and determination of fungi and mycotoxins in stored Brazil nuts. J. Food Protect. 76: 1414–1420.

    Article  Google Scholar 

  • Berghofer, L.K. et al. 2003. Microbiology of wheat and flour milling in Australia. Int. J. Food Microbiol. 85: 137–149.

    Article  PubMed  Google Scholar 

  • Bhat, R. et al. 2007. Microbial quality evaluation of velvet bean seeds (Mucuna pruriens L. DC.) exposed to ionizing radiation. Trop. Subtrop. Agroecosyst. 7: 29–40.

    Google Scholar 

  • Broggi, L.E. et al. 2002. Mycoflora distribution in dry-milled fractions of corn in Argentina. Cereal Chem. 79: 741–744.

    Article  CAS  Google Scholar 

  • Calderari, T.O., Iamanak, B.T., Frisvad, J.C., Pitt, J.I., Sartor, D., Pereira, J.L., Fungaro, M.H. and Taniwaki, M.H. 2013. The biodiversity of Aspergillus section Flavi in brazil nuts: from rainforest to consumer. Int. J. Food Microbiol. 160: 267–272.

    Article  CAS  PubMed  Google Scholar 

  • Christensen, C.M. 1978. Moisture and seed decay. In Water Deficits and Plant Growth, vol. 5, Water and Plant Diseases, ed. T.T. Koslowski. New York: Academic Press. pp. 199–219.

    Google Scholar 

  • Christensen, C.M. and Kaufmann, H.H. 1965. Deterioration of stored grains by fungi. Annu. Rev. Phytopathol. 3: 69–84.

    Article  Google Scholar 

  • Christensen, C.M. and Kaufmann, H.H. 1969. Grain Storage - the Role of Fungi in Quality Loss. Minneapolis, Minnesota: University of Minnesota Press.

    Google Scholar 

  • Ciegler, A. and Kurtzman, C.P. 1970. Penicillic acid production by blue-eye fungi on various agricultural commodities. Appl. Microbiol. 20: 761–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colavita, G. et al. 1999. [Bacterial and fungal microflora of fresh, modified atmosphere-packaged pasta products]. Igiene Moderna 112: 17–29.

    Google Scholar 

  • Comi, G. and Cantoni, C. 1980. [Yeasts on sausage casing surfaces.] Ind. Aliment. (Pinerolo, Italy) 19: 563–569.

    Google Scholar 

  • Comi, G. et al. 1983. [Lipolytic activity of yeasts from raw ham.] Tecnol. Aliment. 6: 12–16.

    Google Scholar 

  • Comi, G. and Cantoni, C. 1983. Yeasts in dry Parma hams. Ind. Aliment. (Pinerolo, Italy) 22: 102–104.

    Google Scholar 

  • Comi, G., Manzano, M., Brichese, R. and Iacumin, L. 2014. New cause of spoilage in San Daniele cured ham. J. Food Safety 34: 263–269.

    Article  Google Scholar 

  • Copetti, M.V., Pereira, J.L., Iamanaka, B.T., Pitt, J.I. and Taniwaki, M.H. 2010. Ochratoxigenic fungi and ochratoxin A in cocoa during farm processing. Int. J. Food Microbiol. 143: 67–70.

    Article  CAS  PubMed  Google Scholar 

  • Copetti, M.V., Iamanaka, B.T., Frisvad, J.C., Pereira, J.L. and Taniwaki, M.H. 2011a. Mycobiota of cocoa: from farm to chocolate. Food Microbiol. 28: 1499–1504.

    Article  PubMed  Google Scholar 

  • Copetti, M.V., Iamanaka, B.T., Pereira, J.L. Fungaro, M.H. and Taniwaki, M.H. 2011b. Aflatoxigenic fungi and aflatoxins in cocoa. Int. J. Food Microbiol. 148: 141–144.

    Article  CAS  PubMed  Google Scholar 

  • Daley, J.D. et al. 1986. Off-flavours related to the use of sorbic acid as a food preservative. CSIRO Food Res. Q. 46: 59–63.

    CAS  Google Scholar 

  • Decontardi, S., Soares, C, Lima, N. and Battilani, P. 2018. Polyphasic identification of Penicillia and Aspergilli isolated from Italian grana cheese. Food Microbiol. 73: 137–149.

    Article  CAS  PubMed  Google Scholar 

  • De Clercq, N., van Coillie, E., van Pamel, E., de Meilenaer, B., Devlieghere, F. and Vlaemynck, G. 2015. Detection and identification of xerophilic fungi in Belgian chocolate confectionery factories. Food Microbiol. 46: 322–328.

    Article  PubMed  Google Scholar 

  • Dharmaputra, O.S. et al. 1999. The occurrence of insects and moulds in stored cocoa beans at South Sulawesi. Biotropia 12: 1–18.

    Google Scholar 

  • Dhungana, B., Ali, S., Byamukama, E., Krishnan, P. and Caffe-Treml, M. 2018. Incidence of Penicillium verrucosum in grain samples from oat varieties commonly grown in South Dakota. J. Food Protect. 81: 898–902.

    Article  CAS  Google Scholar 

  • Diyaolu, S.A. and Adebajo, L.O. 1994. Effects of sodium chloride and relative humidity on growth and sporulation of moulds isolated from cured fish. Nahrung 38: 311–317.

    Article  CAS  PubMed  Google Scholar 

  • Doster, M.A. et al. 1996. Aspergillus species and mycotoxins in figs from California orchards. Plant Dis. 80: 484–489.

    Google Scholar 

  • Doster, M.A. and Michailides, T.J. 1994. Aspergillus molds and aflatoxins in pistachio nuts in California. Phytopathology 84: 583–590.

    Article  CAS  Google Scholar 

  • Dragoni, I. and Cantoni, C. 1979. [Reddening of flour-based foods by Epicoccum purpurascens.] Tec. Molitoria 30: 84–86.

    Google Scholar 

  • Dragoni, I. et al. 1980a. [Moulds in flours used for industrial breadmaking.] Tec. Molitoria 31: 235–241.

    Google Scholar 

  • Dragoni, I. et al. 1980b. Descrizione e classificazione delle specie di Aspergillus isolate dalla superficie di prosciutti stagionati di Parma e San Daniele. Arch. Vet. Ital. 31(Suppl. 5): 1–56.

    Google Scholar 

  • Dragoni, I. et al. 1988. [Moulds on smoked bacon.] Ind. Aliment. (Pinerolo, Italy) 27: 353–355.

    Google Scholar 

  • Dupuy, J. et al. 1993. Thermostability of fumonisin B1, a mycotoxin from Fusarium moniliforme, in corn. Appl. Environ. Microbiol. 59: 2864–2867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel, G. and Teuber, M. 1991. Heat resistance of ascospores of Byssochlamys nivea in milk and cream. Int. J. Food Microbiol. 12: 225–234.

    Article  CAS  PubMed  Google Scholar 

  • Enigl, D.C. et al. 1993. Talaromyces trachyspermus, a heat resistant mold isolated from fruit juice. J. Food Prot. 12: 1039–1042.

    Google Scholar 

  • Esan, A.O., Fapohunda, S.O., Ezekiel, C.N., Sulyok, M. and Krska, R. 2020. Distribution of fungi and their toxic metabolites in melon and sesame seeds marketed in two major producing states in Nigeria. Mycotox. Res. 36: 361–369.

    Article  CAS  Google Scholar 

  • Eyles, M.J. et al. 1989. The microbiological status of Australian flour and the effects of milling procedures on the microflora of wheat and flour. Food Aust. 41: 704–708.

    Google Scholar 

  • Fernane, F., Cano-Sancho, G., Sanchis, V., Marín, S. and Ramos, A.J. 2010. Aflatoxins and ochratoxin A in pistachios samples in Spain: occurrence and presence of mycotoxigenic fungi. Food Addit. Contam. B. 3: 185–192.

    Article  CAS  Google Scholar 

  • Filtenborg, O. et al. 1996. Moulds in food spoilage. Int. J. Food Microbiol. 33: 85–102.

    Article  CAS  PubMed  Google Scholar 

  • Flannigan, B. 1969. Microflora of dried barley grain. Trans. Br. Mycol. Soc. 53: 371–379.

    Article  Google Scholar 

  • Fleet, G.H. 1992. Spoilage yeasts. Crit. Rev. Biotechnol. 12: 1–44.

    Article  CAS  PubMed  Google Scholar 

  • Frank, M. and Hess, E. 1941. Studies on salt fish. V. Studies on Sporendonema epizoum from dun salt fish. J. Fish. Res. Board Can. 5: 276–286.

    Article  Google Scholar 

  • Franke, I. et al. 2002. Shelf life extension of pre-baked buns by an active packaging ethanol emitter. Food Addit. Contam. 19: 314–322.

    Article  CAS  PubMed  Google Scholar 

  • Fraser, L. 1953. A new genus of the Plectascales. Proc. Linn. Soc. N.S.W. 78: 241–246.

    Google Scholar 

  • Freire, F.C.O. et al. 1999. Mycoflora and mycotoxins of Brazilian cashew kernels. Mycopathologia 145: 95–103.

    Article  CAS  PubMed  Google Scholar 

  • Freire, F.C.O. et al. 2000. Mycoflora and mycotoxins in Brazilian black pepper, white pepper and Brazil nuts. Mycopathologia 149: 13–19.

    Article  CAS  PubMed  Google Scholar 

  • Frisvad, J.C. et al. 2004. New ochratoxin A producing species of Aspergillus section Circumdati. Stud Mycol. 50: 23–43.

    Google Scholar 

  • Frisvad, J.C. et al. 2005. Ochratoxin A producing Penicillium verrucosum isolates from cereals reveal large AFLP fingerprinting variability. J. Appl. Microbiol. 98: 684–692.

    Article  CAS  PubMed  Google Scholar 

  • Gachomo, E.W. et al. 2004. Diversity of fungal species associated with peanuts in storage and the levels of aflatoxins in infected samples. Int. J. Agric. Biol. 6: 955–959.

    CAS  Google Scholar 

  • Galli, A. and Zambrini, A. 1978. [Surface microflora of Provolone cheese.] Ind. Latte 14: 3–12.

    Google Scholar 

  • Garcia, M.V., Bernardi, A.O., Parussolo, G., Stefanello, A., Lemos, J.G. and Copetti, M.V. 2019a. Spoilage fungi in a bread factory in Brazil: Diversity and incidence through the bread-making process. Food Res. Int. 126: 108593. https://doi.org/10.1016/j.foodres.2019.108593

    Article  CAS  PubMed  Google Scholar 

  • Garcia, M.V., Moraes, V.M., Bernardi, A.O., Oliveira, M.S., Mallman, C.A., Boscardin, J. and Copetti M.V. 2019b. Mycological quality of pecan nuts from Brazil: absence of aflatoxigenic fungi and aflatoxins. Ciência Rural 49 (6): e20190076; https://doi.org/10.1590/0103-8478cr20190076

    Article  Google Scholar 

  • Garnier. L., Valence, F., Pawtowski, A., Auhustsineva-Galerne, L., Frotte, N., Baroncelli, R., Deniel, F., Coton, E and Mounier, J. 2017. Diversity of spoilage fungi associated with various French dairy products. Int. J. Food Microbiol. 241: 191–197.

    Google Scholar 

  • Gatti, M.J. et al. 2003. Mycological survey for potential aflatoxin and ochratoxin producers and their toxicological properties in harvested Brazilian black pepper. Food Addit. Contam. 20: 1120–1126.

    Article  CAS  PubMed  Google Scholar 

  • Geremew, T., Abate, D., Landschoot, S., Haesaert, G. and Audenaert, K. 2016. Occurrence of toxigenic fungi and ochratoxin A in Ethiopian coffee for local consumption. Food Control 69: 65–73.

    Article  CAS  Google Scholar 

  • Geronikou, A., Srimahaeak, T., Rantsiou, K., Triantafillidis, G., Larsen, N and Jespersen, L. 2020. Occurrence of yeasts in white-brined cheeses: methodologies for identification spoilage potential and good manufacturing practices. Frontiers Microbiol. 11: 582778. Doi: https://doi.org/10.3389/fmicb.2020.582778.

    Article  Google Scholar 

  • Gonçalves, J.S., Ferracin, L.M., Vieira, M.L.C., Iamanaka, B.T., Taniwaki, M.H. and Fungaro, M.H.P. 2012. Molecular analysis of Aspergillus section Flavi isolated from Brazil nuts. World J. Microbiol. Biotechnol. 28: 1817–1825.

    Article  PubMed  CAS  Google Scholar 

  • Graves, R.R. and Hesseltine, C.W. 1966. Fungi in flour and refrigerated dough products. Mycopathol. Mycol. Appl. 29: 277–290.

    Article  CAS  PubMed  Google Scholar 

  • Grazia, L. et al. 1986. The role of moulds in the ripening process of salami. Food Microbiol. 3: 19–25.

    Article  Google Scholar 

  • Gueguen, M. 1988. Moisissures responsables de defauts d’affinage en fromagerie (à l’exclusion des Mucoraceae). Microbiol., Aliments, Nutr. 6: 31–35.

    Google Scholar 

  • Guehi, T.S.et al. 2007. Identification and lipase-producing abilities of moulds isolated from Ivorian raw cocoa beans. Res. J. Agric. Biol. Sci. 3: 838–843.

    CAS  Google Scholar 

  • Guynot, M.E. et al. 2003a. Modified atmosphere packaging for prevention of mold spoilage of bakery products with different pH and water activity levels. J. Food Prot. 66: 1864–1872.

    Article  CAS  PubMed  Google Scholar 

  • Guynot, M.E. et al. 2003b. Mold-free shelf-life extension of bakery products by active packaging. J. Food Sci. 68: 2547–2552.

    Article  CAS  Google Scholar 

  • Hadlok, R. 1969. Schimmelpiltzkontamination von Fleischerzeugnissen durch naturbelassene Gewrze. Fleischwirtschaft 49: 1601–1609.

    Google Scholar 

  • Hale, P.J. and Menapace, D.M. 1980. Effect of time and temperature on the viability of Ascosphaera apis. J. Invertebr. Pathol. 36: 429–430.

    Article  Google Scholar 

  • Halt, M. et al. 2004. Contamination of pasta and the raw materials for its production with mould of the genera Aspergillus. Czech J. Food Sci. 22: 67–72.

    Article  Google Scholar 

  • Heperkan, D. et al. 1994. Mycoflora and aflatoxin contamination in shelled pistachio nuts. J. Sci. Food Agric. 66: 273–278.

    Article  CAS  Google Scholar 

  • Hill, J.L. et al. 1995. The role of fungi in the production of chloranisoles in general purpose freight containers. Food Chem. 54: 161–166.

    Article  CAS  Google Scholar 

  • Hocking, A.D. 1981. Improved media for enumeration of fungi from foods. CSIRO Food Res. Q. 41: 7–11.

    Google Scholar 

  • Hocking, A.D. 1994. Fungal spoilage of high-fat foods. Food Aust. 46: 30–33.

    Google Scholar 

  • Hocking, A.D. 2003. Microbiological facts and fictions in grain storage. In Stored Grain in Australia 2003, eds E. J. Wright, M. C. Webb and E. Highley, Proceedings of the Australian Postharvest Technical Conference, Canberra, June 2003. Canberra, ACT: Stored Grain Research Laboratory, CSIRO. pp. 55–58.

    Google Scholar 

  • Hocking, A.D. and Faedo, M. 1992. Fungi causing thread mould spoilage of vacuum packaged Cheddar cheese during maturation. Int. J. Food Microbiol. 16: 123–130.

    Article  CAS  PubMed  Google Scholar 

  • Hocking, A.D. and Pitt, J.I. 1981. Trichosporonoides nigrescens sp. nov., a new xerophilic yeast-like fungus. Antonie van Leeuwenhoek 47: 411–421.

    Google Scholar 

  • Hocking, A.D. and Pitt, J.I. 1984. Food spoilage fungi. II. Heat resistant fungi. CSIRO Food Res. Q. 44: 73–82.

    Google Scholar 

  • Hocking, A.D. and Pitt, J.I. 1988. Two new species of xerophilic fungi and a further record of Eurotium halophilicum. Mycologia 80: 82–88.

    Article  Google Scholar 

  • Hocking, A.D. and Pitt, J.I. 1996. Fungi and mycotoxins in foods. In Fungi of Australia, Vol. 1B, Introduction - Fungi in the Environment, ed. A.E. Orchard. Canberra, Australia: Australian Biological Resources Study. pp. 315–342.

    Google Scholar 

  • Huang, L.H. and Hanlin, R.T. 1975. Fungi occurring in freshly harvested and in-market pecans. Mycologia 67: 689–700.

    Article  CAS  PubMed  Google Scholar 

  • Huerta, T. et al. 1987. Mycoflora of dry-salted Spanish ham. Microbiol., Aliments, Nutr. 5: 247–252.

    Google Scholar 

  • Hull, R. 1939. Study of Byssochlamys fulva and control measures in processed fruits. Ann. Appl. Biol. 26: 800–822.

    Article  CAS  Google Scholar 

  • Hwang, H.-J. et al. 1993. Entwicklung von Schimmelpilzkulturen fuer die Rohwurstherstellung. Technologische Eignung der Stämme und sensorische Bewertung der Produkte. Fleischwirtschaft 73: 327–328, 331–332.

    Google Scholar 

  • Iacumin, L., Manzano, M., Panseri, S., Chiesa, L. and Comi, G. 2016. A new cause of spoilage in goose sausages. Food Microbiol. 58: 56–62.

    Article  CAS  PubMed  Google Scholar 

  • Iamanaka, B.T., Teixeira, A.A., Teixeira, A.A.R., Copetti, M.V., Bragagnolo, N., and Taniwaki, M.H. 2014. The mycobiota of coffee beans and its influence on the coffee beverage. Food Res. Int. 62: 353–358.

    Article  CAS  Google Scholar 

  • Iglesias, H.H. and Chirife, J. 1982. Handbook of Food Isotherms. New York: Academic Press.

    Google Scholar 

  • Ihejirika, G.O. et al. 2005. Identification of fungi associated with storage rot of groundnut in Imo State, southeastern Nigeria. Plant Pathol. J. 4: 110–112.

    Article  Google Scholar 

  • Ilic, Z. et al. 2007. Survey of Vietnamese coffee beans for the presence of ochratoxigenic Aspergilli. Mycopathologia 163: 177–182.

    Article  CAS  PubMed  Google Scholar 

  • Ismail, M.A. 2001. Deterioration and spoilage of peanuts and desiccated coconuts from two sub-Saharan tropical East African countries due to the associated mycobiota and their degradative enzymes. Mycopathologia 150: 67–84.

    Article  CAS  PubMed  Google Scholar 

  • Ito, H. and Abu, M.Y. 1985. Study of microflora in Malaysian dried fishes and their decontamination by gamma-irradiation. Agric. Biol. Chem. 49: 1047–1051.

    Google Scholar 

  • Jermini, M.F.G. et al. 1987. Detection, isolation and identification of osmotolerant yeasts from high-sugar products. J. Food Prot. 50: 468–472, 478.

    Article  PubMed  Google Scholar 

  • Joffe, A.Z. 1969. The mycoflora of fresh and stored groundnut kernels in Israel. Mycopathol. Mycol. Appl. 39: 255–264.

    Article  Google Scholar 

  • Joffe, A.Z. 1972. Aspergillus niger on groundnuts and in groundnut soil in Israel. Oleagineux 27: 489–491.

    Google Scholar 

  • Jonsyn, F.E. and Lahai, G.P. 1992. Mycotoxic flora and mycotoxins in smoke-dried fish from Sierra Leone. Nahrung 36: 485–489.

    Article  CAS  PubMed  Google Scholar 

  • Juan, C. et al. 2007. Determination of ochratoxin A in maize bread samples by LC with fluorescence detection. Talanta 73: 246–250.

    Article  CAS  PubMed  Google Scholar 

  • Jurado, M. and Vicente, C.J. 2020. Penicillium commune affects textural properties and water distribution of hard and extra-hard cheese. J. Dairy Res. 87: 117–122.

    Article  CAS  PubMed  Google Scholar 

  • Kamphuis, H.J. et al. 1992. Mycological conditions of maize products. Int. J. Food Microbiol. 16: 237–245.

    Article  CAS  PubMed  Google Scholar 

  • Kankolongo, M.A., Hell, K. and Nawa, I.N. 2009. Assessment for fungal, mycotoxin and insect spoilage in maize stored for human consumption in Zambia. J. Sci. Food Agric. 89: 1366–1375.

    Article  CAS  Google Scholar 

  • Kavanagh, J. et al. 1963. Occurrence of a heat resistant species of Aspergillus in canned strawberries. Nature (London) 198: 1322.

    Article  Google Scholar 

  • Kenjo, T. 2007. Fungal population and distribution of aflatoxigenic fungi in commercial almond powder products. J. Food Hyg. Soc. Japan 48: 90–96.

    Article  Google Scholar 

  • Kinderlerer, J.L. 1984a. Spoilage in desiccated coconut resulting from growth of xerophilic fungi. Food Microbiol. 1: 23–28.

    Article  Google Scholar 

  • Kinderlerer, J.L. 1984b. Fungi in desiccated coconut. Food Microbiol. 1: 205–207.

    Article  Google Scholar 

  • Kinderlerer, J.L. and Hatton, P.V. 1990. Fungal metabolites of sorbic acid. Food Addit. Contam. 7: 657–669.

    Article  CAS  PubMed  Google Scholar 

  • Kinderlerer, J.L. and Kellard, B. 1984. Ketonic rancidity in coconut due to xerophilic fungi. Phytochemistry 23: 2847–2849.

    Article  CAS  Google Scholar 

  • Kinderlerer, J.L. et al. 1988. Essential oil produced by Chrysosporium xerophilum in coconut. Phytochemistry 27: 2761–2763.

    Article  CAS  Google Scholar 

  • King, A.D. and Schade, J.E. 1986. Influence of almond harvest, processing and storage on fungal population and flora. J. Food Sci. 51: 202–205, 215.

    Article  Google Scholar 

  • King, A.D. et al. 1981. The mycoflora of some Australian foods. Food Technol. Aust. 33: 55–60.

    Google Scholar 

  • Kumari, R., Jayachanran, L. and Ghosh, A.K. 2019. Investigation of diversity and dominance of fungal biota in stored wheat grains from governmental warehouses in West Bengal, India. J. Sci. Food Agric. 99: 3490–3500.

    Article  CAS  PubMed  Google Scholar 

  • Kurata, H. and Ichinoe, M. 1967. Studies on the population of toxigenic fungi in foodstuffs. I. Fungal flora of flour-type foodstuffs. Shokuhin Eiseigaku Zasshi (J. Food Hyg. Soc. Jpn) 8: 237–246.

    Article  Google Scholar 

  • Kurtzman, C.P. et al. 1970. Yeasts from wheat and flour. Mycologia 6: 542–547.

    Article  Google Scholar 

  • Larumbe, A. et al. 1991. Moisture migration and mold growth in a composite chocolate product. Lebensm. Wiss. Technol. 24: 307–309.

    Google Scholar 

  • Lefortier-Medvey, M. 1993. Unsere praktischen Erfahrungen in der Anwendung von Mikroorganismen für die Käseoberfläche. Milchwirtsch. Ber. Bundesanst. Wolfpassing Rotholz No. 114, 35–36.

    Google Scholar 

  • Legan, J.D. and Voysey, P.A. 1991. Yeast spoilage of bakery products and ingredients. J. Appl. Bacteriol. 70: 361–371.

    Article  CAS  PubMed  Google Scholar 

  • Leistner, L. and Ayres, J.C. 1968. Molds and meats. Fleischwirtschaft 48: 62–65.

    Google Scholar 

  • Leistner, L. and Eckardt, C. 1981. Schimmelpilze und Mykotoxine in Fleisch und Fleischerzeugnissen. In Mykotoxine in Lebensmitteln, ed. J. Reiss. Stuttgart, Germany: Gustav Fischer Verlag. pp. 297–341.

    Google Scholar 

  • Leistner, L. and Pitt, J.I. 1977. Miscellaneous Penicillium toxins. In Mycotoxins in Human and Animal Health, eds J.V. Rodricks, C.W. Hesseltine and M.A. Mehlman. Park Forest South, Illinois: Pathotox Publishers. pp. 639–653.

    Google Scholar 

  • Leong, S.L. et al. 2007. Ochratoxin A-producing Aspergilli in Vietnamese green coffee. Lett. Appl. Microbiol. 45: 301–306.

    Google Scholar 

  • Levi, C.P. et al. 1974. Study of the occurrence of ochratoxin A in green coffee beans. J. Assoc. Off. Anal. Chem. 57: 866–870.

    CAS  PubMed  Google Scholar 

  • Liardon, R. et al. 1992. Biogenesis of Rio flavour impact compound: 2,4,6-trichloroanisole. In Proc. 14th Int. Conf. Coffee Sci., San Francisco, 14–19 July 1991. Paris: Assoc. Sci. Int. Cafe. pp. 608–614.

    Google Scholar 

  • Lichtwardt, R.W. et al. 1958. Mold flora associated with shelled corn in Iowa. Iowa State Coll. J. Sci. 33: 1–11.

    Google Scholar 

  • Liewen, M.B. and Marth, E.H. 1985. Use of gas chromatography and mass spectroscopy to identify and determine 1,3-pentadiene in cheese or mold cultures. Z. Lebensm.-Unters. Forsch. 180: 45–47.

    Article  CAS  Google Scholar 

  • Limay-Rios, V. et al. 2017. Occurrence of Penicillium verrucosum, ochratoxin A, ochratoxin B and citrinin in on-farm stored winter wheat from the Canadian Great Lakes Region. PLoS ONE 12(7): e0181239. doi.org/10.1371/journal.pone.0181239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Llewellyn, G.C. et al. 1992. Mycotoxin contamination of spices - an update. Int. Biodeter. Biodegr. 29: 111–121.

    Article  CAS  Google Scholar 

  • Lozano-Ojalvo, D., Rodríguez, A., Cordero, M., Bernáldez, V., Reyes-Prieto, M. and Córdoba, J.J. 2015. Characterisation and detection of spoilage mould responsible for black spot in dry-cured fermented sausages. Meat Sci. 100: 283–290.

    Article  CAS  PubMed  Google Scholar 

  • Lund, F. and Frisvad, J.C. 2003. Penicillium verrucosum in wheat and barley indicates presence of ochratoxin A. J. Appl. Microbiol. 95: 1117–1123.

    Google Scholar 

  • Lund, F. et al. 1995. Associated mycoflora of cheese. Food Microbiol. 12: 173–180.

    Article  Google Scholar 

  • Lund, F. et al. 1996. Associated mycoflora of rye bread. Lett. Appl. Microbiol. 23: 213–217.

    Article  CAS  PubMed  Google Scholar 

  • Magnoli C. et al. 2006. Ochratoxin A and the occurrence of ochratoxin A-producing black aspergilli in stored peanut seeds from Córdoba, Argentina. J. Sci. Food Agric. 86: 2369–2373.

    Article  CAS  Google Scholar 

  • Magnoli C. et al. 2007a. Occurrence of ochratoxin A and ochratoxigenic mycoflora in corn and corn based foods and feeds in some South American countries. Mycopathologia 163: 249–260.

    Article  CAS  PubMed  Google Scholar 

  • Magnoli, C. et al. 2007b. Ochratoxin A and Aspergillus section Nigri in peanut seeds at different months of storage in Cordoba, Argentina. Int. J. Food Microbiol. 119: 213–218.

    Article  CAS  PubMed  Google Scholar 

  • Makun, H.A. et al. 2007a. Fungi and some mycotoxins contaminating rice (Oryza sativa) in Niger State, Nigeria. Afr. J. Biotechnol. 6: 99–108.

    Google Scholar 

  • Makun, H.A. et al. 2007b. Toxicological screening of fungi isolated from millet (Pennisetum spp.) during the rainy and dry harmattan seasons in Niger state, Nigeria. Afr. J. Biotechnol. 6: 34–40.

    Google Scholar 

  • Mallick, A.K. and Nandi, B. 1981. Research: rice - results of India experiments. Rice J. 84: 8–13, 19–23.

    Google Scholar 

  • Mann, G.E. et al. 1967. Effect of heat on aflatoxins in oilseed meals. Agric. Food Chem. 15: 1090–1092.

    Article  CAS  Google Scholar 

  • Mansfield, M.A. et al. 2008. Contamination of fresh and ensiled maize by multiple Penicillium mycotoxins. Phytopathology 98: 330–336.

    Article  CAS  PubMed  Google Scholar 

  • Marcellino, N. and Benson, D.R. 1992. Scanning electron and light microscopic study of microbial succession on Bethlehem St. Nectaire cheese. Appl. Environ. Microbiol. 58: 3448–3454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marín, S. et al. 2004. Efficacy of propionates and benzoates on the control of growth of Eurotium species in bakery products with near neutral pH. J. Sci. Food Agric. 84: 1147–1152.

    Article  CAS  Google Scholar 

  • Martins, M.L. et al. 2003. Incidence of microflora and of ochratoxin A in green coffee beans (Coffea arabica). Food Addit. Contam. 20: 1127–1131.

    Article  CAS  PubMed  Google Scholar 

  • Marvig, C.L., Kristiansen, R.M., Madsen, M.G. and Nielsen, D.S. 2014. Identification and characterisaton of organisms associated with chocolate pralines and sugar syrups used in their production. Int J. Food Microbiol. 185: 167–176.

    Article  PubMed  Google Scholar 

  • Massi, F.P., Viera, M.l.C., Sartori, D., Pehna, S.R.E., Munhoz, C.F., Ferreira, J.M., Iamanaka, B.T., Taniwaki, M.H., Frisvad, J.C. and Fungaro, M.H.P. Brazil nuts are subject to infection with B and G aflatoxin-producing fungus, Aspergillus pseudonomius. Int J Food Microbiol 186: 14–21. doi: https://doi.org/10.1016/j.ijfoodmicro.2014.06.006. Epub 2014 Jun 14.

  • Mazzani, C. et al. 2004. [Mycobiota associated to maize kernels in Venezuela and in vitro aflatoxigenity of the Aspergillus flavus isolates]. Fitopatol. Venezolana 17: 19–23.

    Google Scholar 

  • Mendoza, J.R., Kok, C.R., Stratton, J Bianchini A and HAllen-Adams, H.E. 2017. Understanding the mycobiota of maize from the highlands of Guatemala, and implications for maize quality and safety. Crop Protect. 101: 5–11.

    Article  Google Scholar 

  • McDonald, D. 1970. Fungal infection of groundnut fruit after maturity and during drying. Trans. Br. Mycol. Soc. 54: 461–472.

    Article  Google Scholar 

  • McEvoy, I.J. and Stuart, M.R. 1970. Temperature tolerance of Aspergillus fischeri var. glaber in canned strawberries. Ir. J. Agric. Res. 9: 59–67.

    Google Scholar 

  • Mheen, T.I. et al. 1982. Fungi in stored rice. Korean J. Appl. Microbiol. Bioeng. 10: 191–196.

    Google Scholar 

  • Micco, C. et al. 1989. A study of the contamination by ochratoxin A of green and roasted coffee beans. Food Addit. Contam. 6: 333–339.

    Article  CAS  PubMed  Google Scholar 

  • Miller, M.W. and Phaff, H.J. 1962. Successive microbial populations of Calimyrna figs. Appl. Microbiol. 10: 394–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills, J.T. et al. 1995. Nephrotoxigenic Penicillium species occurring on farm-stored cereal grains in western Canada. Mycopathologia 130: 23–28.

    Article  CAS  PubMed  Google Scholar 

  • Mintzlaff, H.-J. and Christ, W. 1973. Penicillium nalgiovensis als Starterkultur für Sudtiroler Bauernspeck. Fleischwirtschaft 53: 864–867.

    Google Scholar 

  • Mislivec, P.B. and Bruce, V.R. 1977. Incidence of toxic and other mold species and genera in soybeans. J. Food Prot. 40: 309–312.

    Article  PubMed  Google Scholar 

  • Mislivec, P.B. and Tuite, J. 1970a. Species of Penicillium occurring in freshly-harvested and in stored dent corn kernels. Mycologia 62: 67–74.

    Article  CAS  PubMed  Google Scholar 

  • Mislivec, P.B. and Tuite, J. 1970b. Temperature and relative humidity requirements of species of Penicillium isolated from yellow dent corn kernels. Mycologia 62: 75–88.

    Article  CAS  PubMed  Google Scholar 

  • Mislivec, P.B. et al. 1983. Incidence of toxigenic and other molds in green coffee beans. J. Food Prot. 46: 969–973.

    Article  PubMed  Google Scholar 

  • Miyaki, K. et al. 1970. [Toxigenic fungi growing on stored rice.] Shokuhin Eiseigaku Zasshi (J. Food Hyg. Soc. Japan) 11: 373–380.

    Google Scholar 

  • Mojtahedi, H. et al. 1979. Toxic Aspergilli from pistachio nuts. Mycopathologia 67: 123–127.

    Article  CAS  PubMed  Google Scholar 

  • Mok, W.Y. et al. 1981. Occurrence of Exophiala werneckii on salted freshwater fish Osteoglossum bicirrhosum. J. Food Technol. 16: 505–512.

    Article  Google Scholar 

  • Molina, I. et al. 1990. Study of the microbial flora in dry-cured ham. IV. Yeasts. Fleischwirtschaft 70: 74–76.

    Google Scholar 

  • Molyneux, R.J. et al. 2007. Mycotoxins in edible tree nuts. Int. J. Food Microbiol. 119: 72–78.

    Article  CAS  PubMed  Google Scholar 

  • Monte, E. et al. 1986. Fungal profiles of Spanish country-cured hams. Int. J. Food Microbiol. 3: 355–359.

    Article  Google Scholar 

  • Morassi, L.L.P., Bernardi, A.O., Amaral, A.L.P.M., Chaves, R.D., Santos, J.L.P., Copetti, M.V. and Sant’Ana, A.S. 2018. Fungi in cake production chain: Occurrence and evaluation of growth potential in different cake formulations during storage. Food Res. Int. 106: 141–148.

    Article  PubMed  Google Scholar 

  • Morello, L.G. et al. 2007. Detection and quantification of Aspergillus westerdijkiae in coffee beans based on selective amplification of beta-tubulin gene by using real-time PCR. Int. J. Food Microbiol. 119: 270–276.

    Article  CAS  PubMed  Google Scholar 

  • Moubasher, A.H. et al. 1972. Studies on the fungus flora of three grains in Egypt. Mycopathol. Mycol. Appl. 47: 261–274.

    Article  CAS  PubMed  Google Scholar 

  • Mphande, F.A. et al. 2004. Fungi, aflatoxins and cyclopiazonic acid associated with peanut retailing in Botswana. J. Food Prot. 67: 96–102.

    Article  CAS  PubMed  Google Scholar 

  • Muhamad, L.J. et al. 1986. Distribution of microorganisms in spices and their decontamination by gamma-irradiation. Agric. Biol. Chem. 50: 347–355.

    Google Scholar 

  • Munday, J.S. et al. 2008. Presumptive tremorgenic mycotoxicosis in a dog in New Zealand, after eating mouldy walnuts. N. Z. Vet. J. 56: 145–147.

    Article  CAS  PubMed  Google Scholar 

  • Muriuki, G.K. and Siboe, G.M. 1995. Maize flour contaminated with toxigenic fungi and mycotoxins in Kenya. Afr. J. Health Sci. 2: 236–241.

    PubMed  Google Scholar 

  • Mutti, P. et al. 1988. [Toxigenicity of mould strains isolated from salami as a function of culture medium.] Ind. Conserve 63: 142–145.

    Google Scholar 

  • Nakai, V.K. et al. 2008. Distribution of fungi and aflatoxins in a stored peanut variety. Food Chem. 106: 285–290.

    Article  CAS  Google Scholar 

  • Nielsen, D.S. et al. 2007. The microbiology of Ghanaian cocoa fermentations analysed using culture-dependent and culture-independent methods. Int. J. Food Microbiol. 114: 168–186.

    Article  CAS  PubMed  Google Scholar 

  • Northolt, M.D. et al. 1980. Fungal growth and the presence of sterigmatocystin in hard cheese. J. Assoc. Off. Anal. Chem. 63: 115–119.

    CAS  PubMed  Google Scholar 

  • Nunez, M. et al. 1981. [Yeasts and moulds of Cabrales blue cheese.] Lait 61: 62–79.

    Google Scholar 

  • Ogundero, V.W. 1983. Thermophilic fungi and fermenting cocoa beans in Nigeria. Mycopathologia 82: 159–165.

    Google Scholar 

  • Oh, J.Y. et al. 2008. Temporal changes of fungal and bacterial populations in rice under indoor storage conditions. 2008. Plant Pathol. J. 24: 74–79.

    Article  Google Scholar 

  • Olsen, M. et al. 2006. Prevention of ochratoxin A in cereals in Europe. In Advances in Food Mycology, eds A.D. Hocking, J.I. Pitt, R.A. Samson and U. Thrane. New York: Springer, pp. 317–342.

    Google Scholar 

  • Olsen, M. et al. 2008. Aspergillus nomius, an important aflatoxin producer in Brazil nuts? World Mycotoxin J. 1: 123–126.

    Article  CAS  Google Scholar 

  • Oluma, H.O.A. and Nwankiti, A.O. 2003. Seed-storage mycoflora of peanut cultivars grown in Nigerian savanna. Tropicultura 21: 79–85.

    Google Scholar 

  • Overy, D.P. et al. 2003. Spoilage fungi and their mycotoxins in commercially marketed chestnuts. Int. J. Food Microbiol. 88: 69–77.

    Article  CAS  PubMed  Google Scholar 

  • Ozay, G. et al. 2008. Factors influencing fungal and aflatoxin levels in Turkish hazelnuts (Corylus avellana L.) during growth, harvest, drying and storage: a 3-year study. Food Addit. Contam. A 25: 209–218.

    Article  CAS  Google Scholar 

  • Park, J.W. et al. 2005a. Fungal mycoflora and mycotoxins in Korean polished rice destined for humans. Int. J. Food Microbiol. 103: 305–314.

    Article  CAS  PubMed  Google Scholar 

  • Park, S.-I. et al. 2005b. Antifungal coatings on fresh strawberries (Fragaria x ananassa) to control mold growth during cold storage. J. Food Sci. 70: M202–M207.

    Article  CAS  Google Scholar 

  • Pelhate, J. 1968. Inventaire de la mycoflore des blés de conservation. Bull. Trimest. Soc. Mycol. Fr. 84: 127–143.

    Google Scholar 

  • Perrone, G. et al. 2015. Penicillium salamii, a new species occurring during seasoning of dry-cured meat. Int. J. Food Microbiol. 193: 91–98.

    Google Scholar 

  • Phillips, S. et al. 1988. Rice yellowing during post-harvest drying by aeration and during storage. J. Stored Prod. Res. 24: 173–181.

    Article  Google Scholar 

  • Pitt, J.I. and Christian, J.H.B. 1968. Water relations of xerophilic fungi isolated from prunes. Appl. Microbiol. 16: 1853–1858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitt, J.I. and Hocking, A.D. 1982. Food spoilage fungi. I. Xeromyces bisporus Fraser. CSIRO Food Res. Q. 42: 1–6.

    Google Scholar 

  • Pitt, J.I. and Hocking, A.D. 1985. New species of fungi from Indonesian dried fish. Mycotaxon 22: 197–208.

    Google Scholar 

  • Pitt, J.I. and Hocking, A.D. 1997. Fungi and Food Spoilage. 2nd edn. Blackie Academic and Professional, London.

    Book  Google Scholar 

  • Pitt, J.I. and Richardson, K.C. 1973. Spoilage by preservative-resistant yeasts. CSIRO Food Res. Q. 33: 80–85.

    Google Scholar 

  • Pitt, J.I. et al. 1993. The normal mycoflora of commodities from Thailand. 1. Nuts and oilseeds. Int. J. Food Microbiol. 20: 211–226.

    Article  CAS  PubMed  Google Scholar 

  • Pitt, J.I. et al. 1994. The normal mycoflora of commodities from Thailand. 2. Beans, rice, small grains and other commodities. Int. J. Food Microbiol. 23: 35–53.

    Article  CAS  PubMed  Google Scholar 

  • Pitt, J.I. et al. 1998. The mycoflora of food commodities from Indonesia. J. Food Mycol. 1, 41–60.

    Google Scholar 

  • Poncini, L. and Wimmer, F.L. 1986. Characterization of the yeasts (Blastomycetes) in some Fijian honeys. Acta Aliment. Polonica 12: 143–151.

    Google Scholar 

  • Powers, E.M. and Berkowitz, D. 1990. Efficacy of an oxygen scavenger to modify the atmosphere and prevent mold growth on meal, ready-to-eat pouched bread. J. Food Prot. 53: 767–771.

    Article  CAS  PubMed  Google Scholar 

  • Put, H.M.C. and Kruiswijk, J.T. 1964. Disintegration and organoleptic deterioration of processed strawberries caused by the mould Byssochlamys nivea. J. Appl. Bacteriol. 27: 53–58.

    Article  Google Scholar 

  • Ramos-Pereira, J., Mareze, J., Patrinou, E., Santos, J.A. and Lopez-Diaz, T.M. 2019. Polyphasic identification of Penicillium spp. Isolated from Spanish semi-hard ripened cheeses. Food Microbiol. 84: Article No. 103253. DOI https://doi.org/10.1016/j.fm.2019.103253.

  • Ratomahenina, R. et al. 1994. [Concerning Sporendonema casei Desmazieres]. Latte 19: 616–617.

    Google Scholar 

  • Reis, T.A., Oliveira, T.D., Baquião, A.C., Gonçalves, S.S., Zorzete, P. and Corrêa, B. 2012. Mycobiota and mycotoxins in Brazil nut samples from different states of the Brazilian Amazon region. Int. J. Food Microbiol. 159: 61–68.

    Article  CAS  PubMed  Google Scholar 

  • Riba, A. et al. 2008. Mycoflora and ochratoxin A producing strains of Aspergillus in Algerian wheat. Int. J. Food Microbiol. 122: 85–92.

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro, S.A.L. et al. 2003. [Filamentous fungi isolated from corn-derived products]. Rev. Brasil. Botan. 26: 223–229.

    Google Scholar 

  • Richardson, K.C. 1965. Incidence of Byssochlamys fulva in Queensland grown canned strawberries. Queensl. J. Agric. Anim. Sci. 22: 347–350.

    Google Scholar 

  • Rojas, F.J. et al. 1991. Mycoflora and toxigenic Aspergillus flavus in Spanish dry-cured ham. Int. J. Food Microbiol. 13: 249–256.

    Article  CAS  PubMed  Google Scholar 

  • Roostita, R. and Fleet, G.H. 1996. The occurrence and growth of yeasts in Camembert and Blue-veined cheeses. Int. J. Food Microbiol. 28: 393–404.

    Article  CAS  PubMed  Google Scholar 

  • Sahin, I. and Kalyoncuoglu, M.E. 1994. Erkenntnisse über die Schimmelpilze in der Mikroflora von Hasel-, Walnüssen und Sonnen- Blumenkernen. Chem., Mikrobiol., Technol. Lebensm. 16: 85–92.

    Google Scholar 

  • Santos, J.L.P., Bernardi, A.O., Morassi, L.L.P., Silva, B.S., Copetti, M.V. and Sant’Ana, A.S. 2016. Incidence, populations and diversity of fungi from raw materials, final products and air of processing environment of multigrain whole meal bread. Food Res. Int. 87: 103–108.

    Article  PubMed  Google Scholar 

  • Sarantinos, J. et al. 1996. The effects of fungal infection on the chemical and functional properties of chickpeas (Cicer arietinum) and faba beans (Vicia faba). J. Sci. Food Agric. 70: 197–203.

    Article  CAS  Google Scholar 

  • Sartori, M.R. et al. 1991. [Storage of maize with moderately high moisture content in an underground polyethylene silo.] Colet. Inst. Tecnol. Aliment. (Campinas, Braz.) 21: 309–316.

    Google Scholar 

  • Sato, N., Sugiura, Y., Nukuzuma, S. Udagawa, S.I. and Tanaka, T. 2013. Two rare contaminants, Helicostylum pulchrum and Scopulariopsis flava, found in a white natural cheese, and the effect of their presence. Japan. J, Food Microbiol. 30: 15–21

    Article  Google Scholar 

  • Sauer, D.B. et al. 1984. Fungal populations in U.S. farm-stored grain and their relationship to moisture, storage time, regions and insect infestation. Phytopathology 74: 1050–1053.

    Article  Google Scholar 

  • Schindler, A.F. et al. 1974. Mycotoxins produced by fungi isolated from inshell pecans. J. Food Sci. 39: 213–214.

    Article  CAS  Google Scholar 

  • Schmidt, J.L. and Lenoir, J. 1980. [Study of the yeast flora composition of Camembert cheese. II.] Lait 60: 272–282.

    Google Scholar 

  • Schmidt, J.L., et al. 1979. [Biochemical aptitudes of yeasts isolated from Camembert cheese. I. Preliminary studies.] Lait 59: 142–163.

    Google Scholar 

  • Schwan, R.F. and Wheals, A.E. 2003. Mixed microbial fermentations of chocolate and coffee. In Yeasts in Food, eds T. Boekhout and V. Robert. Cambridge, UK: Woodhead Publishing, pp. 429–449.

    Google Scholar 

  • Scudamore, K.A. et al. 1993. Isolation of Penicillium strains producing ochratoxin A, citrinin, xanthomegnin, viomellein and vioxanthin from stored cereal grains. Lett. Appl. Microbiol 17: 82–87.

    Article  CAS  Google Scholar 

  • Seiler, D.A.L. 1980. Yeast spoilage of bakery products. In Biology and Activities of Yeasts, eds F.A. Skinner, S.M. Passmore and R.R. Davenport. London: Academic Press. pp. 141–152.

    Google Scholar 

  • Senser, F. 1979. Untersuchungen zum Aflatoxingehalt in Haselnüssen. Gordian 79: 117–123.

    CAS  Google Scholar 

  • Sensidoni, A. et al. 1994. Presence of an off-flavour associated with the use of sorbates in cheese and margarine. Ital. J. Food Sci. 6: 237–242.

    CAS  Google Scholar 

  • Sharman, M. et al. 1991. Surveillance and control of aflatoxin contamination of dried figs and fig paste imported into the United Kingdom. Food Addit. Contam. 8: 299–304.

    Article  CAS  PubMed  Google Scholar 

  • Siemens, K. and Zawistowski, J. 1993. Occurrence of PR imine, a metabolite of Penicillium roqueforti, in blue cheese. J. Food Prot. 56: 317–319, 325.

    Article  CAS  PubMed  Google Scholar 

  • Singh, P. and Ahmad, S.K. 1989. Prestorage aflatoxin contamination and Aspergillus flavus association with various growth stages of chickpea (Cicer arietinum). Ann. Agric. Sci. 34: 805–812.

    Google Scholar 

  • Singh, P.K. and Shukla, A.N. 2008. Survey of mycoflora counts, aflatoxin production biochemical changes in walnut kernels. J. Stored Prod. Res. 44: 169–172.

    Article  CAS  Google Scholar 

  • Smith, J.P. 1994. Modified atmosphere packaging of bakery products. Tech. Bull., Am. Inst. Baking Res. Dept 16: 1–9.

    Google Scholar 

  • Solanki, M.K., Abdelfattah, A., Britzi, M., Zakin, V., Wisniewski, M., Droby, S. and Sionov, E. 2019. Shifts in the composition of the microbiota of stored wheat grains in response to fumigation. Frontiers Microbiol. 10: Article 1098 doi: https://doi.org/10.3389/fmicb.2019.01098

  • Spicher, G. 1984. Die Erreger der Schimmelbildung bei Backwaren. I. Die auf verpackten Schnittbroten aufretenden Schimmelpilze. Getreide, Mehl Brot 38: 77–80.

    Google Scholar 

  • Spicher, G. 1985. Die Erreger der Schimmelbildung bei Backwaren. I. Weitere Untersuchungen über die auf verpackten Schnittbroten aufretenden Schimmelpilze. Dtsch. Lebensm.-Rundsch. 81: 16–20.

    Google Scholar 

  • Spicher, G. and Isfort, G. 1988. Die Erreger der Schimmelbildung bei Backwaren. X. Monascus ruber, ein nicht alltäglicher Schimmelerreger des Brotes. Getreide, Mehl Brot 42: 176–181.

    CAS  Google Scholar 

  • Spicher, G. and Mellenthin, B. 1983. Zur Frage der mikrobiologischen Qualität von Getreidevollkornerzeugnissen. III. Die bei Speisegetreide und Mehlen auftretenden Hefen. Dtsch. Lebensm.-Rundsch. 79: 35–38.

    Google Scholar 

  • Spotti, E. et al. 1988. [Microbiological study of the ‘phenol defect’ of ham during ripening.] Ind. Conserve 63: 343–346.

    Google Scholar 

  • Spotti, E. et al. 1989. [Occurrence of moulds on hams during preripening and ripening, contamination of the environment and growth on the muscle portion of hams.] Ind. Conserve 64: 110–113.

    Google Scholar 

  • Stenwig, H. and Liven, E. 1988. Mycological examination of improperly stored grains. Acta Agric. Scand. 38: 199–205.

    Article  Google Scholar 

  • Stoloff, L. and Trucksess, M.W. 1981. Effect of boiling, frying and baking on recovery of aflatoxin from naturally contaminated corn grits and cornmeal. J. Assoc. Off. Anal. Chem. 64: 678–680.

    CAS  PubMed  Google Scholar 

  • Studer-Rohr, I. et al. 1995. The occurrence of ochratoxin A in coffee. Food Chem. Toxicol. 33: 341–355.

    Article  CAS  PubMed  Google Scholar 

  • Sud, D. et al. 2005. Seed mycoflora in kidney bean (Phaseolus vulgaris L.) in Himachal Pradesh. Seed Research 33: 103–107.

    Google Scholar 

  • Taniwaki, M.H. et al. 2003. The source of ochratoxin A in Brazilian coffee and its formation in relation to processing methods. Int. J. Food Microbiol. 82: 173–179.

    Article  CAS  PubMed  Google Scholar 

  • Taniwaki, M.H. et al. 2005. The influence of fungi on the flavour of coffee beverages. ASIC 20th Int. Conf. Coffee Sci. Bangalore, India, 11–15 October 2004, pp. 317–321.

    Google Scholar 

  • Taniwaki, M.H., Frisvad, J.C., Ferranti, L.S., de Souza Lopes, A., Larsen, T.O., Fungaro, M.H.P. and Iamanaka, B.T. 2017. Biodiversity of mycobiota throughout the Brazil nut supply chain: from rainforest to consumer. Food Microbiol. 61: 14–22.

    Article  PubMed  Google Scholar 

  • Tharappan, B. and Ahmad, R. 2006. Fungal colonization and biochemical changes in coffee beans undergoing monsooning. Food Chem. 94: 247–252.

    Article  CAS  Google Scholar 

  • Tilbury, R.H. 1980. Xerotolerant yeasts at high sugar concentrations. In Microbial Growth and Survival in Extreme Environments, eds G.W. Gould and J.E.L. Corry. Tech. Ser., Soc. Appl. Bacteriol. 15: 103–128.

    Google Scholar 

  • Tonon, S.A. et al. 1997. Mycoflora of paddy and milled rice produced in the region of Northeastern Argentina and Southern Paraguay. Int. J. Food Microbiol. 37: 231–235.

    Article  CAS  PubMed  Google Scholar 

  • Tournas, V.H. and Niazi, N.S. 2018. Potentially toxigenic fungi from selected grains and grain products. J. Food Safety 38: e12422. https://doi.org/10.1111/jfs.12422

    Article  CAS  Google Scholar 

  • Townsend, J.F. et al. 1971. Fungal flora of South Vietnamese fish and rice. J. Trop. Med. Hyg. 74: 98–100.

    CAS  PubMed  Google Scholar 

  • Trung, T.S. et al. 2001. Fungal contamination of rice from south Vietnam, mycotoxinogenesis of selected strains and residues in rice. Rev. Med. Vet. 152: 555–560. 2001

    CAS  Google Scholar 

  • Tseng, T.C., Tu, J.C. and Tzean, S.S. 1995. Mycoflora and mycotoxins in dry bean (Phaseolus vulgaris) produced in Taiwan and in Ontario, Canada. Bot. Bull. Acad. Sinica 36: 229–234.

    CAS  Google Scholar 

  • Tsubouchi, H. et al. 1984. A survey of occurrence of mycotoxins and toxigenic fungi in imported green coffee beans. Maikotokishin (Proc. Jpn. Assoc. Mycotoxicol.) 19: 14–21.

    Google Scholar 

  • Tsuruta, O. and Saito, M. 1980. Mycological damage of domestic brown rice during storage in warehouses under natural conditions. 3. Changes in mycoflora during storage. Trans. Mycol. Soc. Jpn 21: 121–125.

    Google Scholar 

  • Urbano, G.R. et al. 2001. Occurrence of ochratoxin A-producing fungi in raw Brazilian coffee. J. Food Prot. 64: 1226–1230.

    Article  CAS  PubMed  Google Scholar 

  • Van der Riet, W.B. 1976. Studies on the mycoflora of biltong. S. Afr. Food Rev. 3: 105, 107, 109, 111.

    Google Scholar 

  • Vergeade, J. et al. 1976. [Yeasts of Saint-Nectaire cheeses.] Lait 56: 275–285.

    Google Scholar 

  • Viljoen, B.C. and Greyling, T. 1995. Yeasts associated with Cheddar and Gouda making. Int. J. Food Microbiol. 28: 79–88.

    Article  CAS  PubMed  Google Scholar 

  • Vytřasová, J. et al. 2002. Occurrence of xerophilic fungi in bakery gingerbread production. Int. J. Food Microbiol. 72: 91–96.

    Article  PubMed  Google Scholar 

  • Walker, H.W. and Ayres, J.C. 1970. Yeasts as spoilage organisms. In The Yeasts. Vol. 3, eds A.H. Rose and J.S. Harrison. London: Academic Press. pp. 500–527.

    Google Scholar 

  • Wallace, H.A.H. et al. 1976. Fungi associated with small wheat bulks during prolonged storage in Manitoba. Can. J. Bot. 54: 1332–1343.

    Article  Google Scholar 

  • Wei, L., Fu, H., Lin, M., Dang, H., Zhao, Y., Xu, Y. and Zhang, B. 2020. Identification of dominant fungal contamination of walnut in Northwestern China and effects of storage conditions on walnut kernels. Sci. Hort. 264: 109141. https://doi.org/10.1016/j.scienta.2019.109141

    Article  Google Scholar 

  • Weidenbörner, M. et al. 2000. Whole wheat and white wheat flour - the mycobiota and potential mycotoxins. Food Microbiol. 17: 103–107.

    Article  CAS  Google Scholar 

  • Wells, J.M. 1980. Toxigenic fungi isolated from late-season pecans. J. Food Saf. 2: 213–220.

    Article  Google Scholar 

  • Wells, J.M. and Payne, J.A. 1976. Toxigenic species of Penicillium, Fusarium and Aspergillus from weevil-damaged pecans. Can. J. Microbiol. 22: 281–285.

    Article  CAS  PubMed  Google Scholar 

  • Wicklow, D.T. 1995. The mycology of stored grain: an ecological perspective. In Stored Grain Ecosystems, eds D.S. Jayas, N.D.G. White and W.E. Muir. New York: Marcel Dekker. pp. 197–249.

    Google Scholar 

  • Wicklow, D.T. et al. 1998. Fungal colonists of maize grain conditioned at constant temperatures and humidities. J. Stored Prod. Res. 34: 355–361.

    Article  Google Scholar 

  • Zohri, A.A. and Saber, S.M. 1993. [Filamentous fungi and mycotoxins detected in coconut.] Zentralbl. Mikrobiol. 148: 325–332.

    Google Scholar 

  • Zohri, A.A. et al. 1995. Incidence of aflatoxins and mould flora in corn snacks. J. Food Sci. Technol., India 32: 289–294.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pitt, J.I., Hocking, A.D. (2022). Spoilage of Stored, Processed and Preserved Foods. In: Fungi and Food Spoilage. Springer, Cham. https://doi.org/10.1007/978-3-030-85640-3_12

Download citation

Publish with us

Policies and ethics