Skip to main content

Relative Aromaticity of Pyrrole, Furan, Thiophene and Selenophene, and Their Diels–Alder Stereoselectivity

  • Chapter
  • First Online:
Steric and Stereoelectronic Effects in Organic Chemistry

Abstract

Thiophene has been suggested to have better aromatic character than pyrrole and furan for its poorest reactivity under Diels–Alder cycloadditions conditions. Many theories have been developed around this notion over a period of time, prominent among them being aromaticity index based on interaction coordinates (AIBIC), nucleus-independent chemical shift (NICS), topological resonance energy (TRE), magnetic resonance energy (MRE), ring current (RC), and ring current diamagnetic susceptibility. However, they are not consistent because different aromaticity values derived from different indices lead to different aromaticity orders. The suitability of the NICS and some other approaches for the prediction of aromaticity has also been questioned. Aromaticity follows Hückel’s 4n + 2 (n = 0, 1, 2, 3, etc.) rule. The electron count, however, is not enough. Along with the number of requisite electrons, all the bond lengths in the ring must be the same or very similar, as in benzene. In five-membered heterocylces such as pyrrole, furan, and thiophene, the size of the heteroatom lone pair orbital must be similar to that of the p orbital on ring π bonds. Both the requirements are not fulfilled in thiophene because σC–S bond is significantly longer than σC–C bond and, in comparison to the p orbital on carbon, the size of lone pair orbital on sulfur is too large to allow effective overlap. It is demonstrated with enough experimental data available in the literature and new data from computations that the separation between the termini of 1,3-diene is a significant control factor as the p orbitals on these carbons must coaxially interact with the p orbitals on dienophile to result in σ bonds. This control factor has been named R-factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.I. Minkin, M.N. Glukhovtsev, B.Y. Simkin, Aromaticity and Antiaromaticity (Wiley, New York, 1994)

    Google Scholar 

  2. S. Dey, D. Manogaran, S. Manogaran, H.F. Schaefer III., J. Phys. Chem. A 122, 6953 (2018)

    Article  CAS  PubMed  Google Scholar 

  3. K.E. Horner, P.B. Karadakov, J. Org. Chem. 80, 7150 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. K.E. Horner, P.B. Karadakov, J. Org. Chem. 78, 8037 (2013)

    Article  CAS  PubMed  Google Scholar 

  5. P.v.R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N.J.R.v.E. Homes, J. Am. Chem. Soc. 118, 6317 (1996)

    Google Scholar 

  6. J. Aihara, J. Am. Chem. Soc. 98, 2750 (1976)

    Article  CAS  Google Scholar 

  7. I. Gutman, M. Milun, N. Trinajstic, J. Am. Chem. Soc. 99, 1692 (1977)

    Article  CAS  Google Scholar 

  8. J. Aihara, H. Kanno, T. Ishida, J. Phys. Chem. A 111, 8873 (2007)

    Article  CAS  PubMed  Google Scholar 

  9. J. Aihara, J. Am. Chem. Soc. 128, 2873 (2006)

    Article  CAS  PubMed  Google Scholar 

  10. R. Arkin, A. Kerim, Chem. Phys. Lett. 546, 144 (2012)

    Article  CAS  Google Scholar 

  11. J. Aihara, Bull. Chem. Soc. Jpn. 76, 103 (2003)

    Article  CAS  Google Scholar 

  12. J. Poater, I. Garcia-Cruz, F. Illas, M. Sola, Phys. Chem. Chem. Phys. 6, 314 (2004)

    Article  CAS  Google Scholar 

  13. A. Stanger, Chem. Commun. 2009, 15 (1939)

    Google Scholar 

  14. I.V. Omelchenko, O.V. Shishkin, L. Gorb, J. Leszczynski, S. Fiase, P. Bultinck, Phys. Chem. Chem. Phys. 13, 20536 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. R. Islas, G. Martinez-Guajardo, J.O.C. Jimenez-Halla, M. Sola, G. Merino, J. Chem. Theory Comput. 6, 1131 (2010)

    Article  CAS  Google Scholar 

  16. P. Lazzeretti, Phys. Chem. Chem. Phys. 6, 217 (2004)

    Article  CAS  Google Scholar 

  17. S. Fias, P.W. Fowler, J.L. Delgado, U. Hahn, P. Bultinck, Chem.−Eur. J. 14, 3093 (2008)

    Google Scholar 

  18. K. Najmidin, A. Kerim, P. Abdirishit, H. Kalam, T. Tawar, J. Mol. Model. 19, 3529 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. F. Feixas, E. Matito, J. Poater, M. Sola, J. Comput. Chem. 29, 1543 (2008)

    Article  CAS  PubMed  Google Scholar 

  20. (a) E. Hückel, Z. Phys. 76, 628 (1932)

    Google Scholar 

  21. W.v.E. Doering, F.L. Detert, J. Am. Chem. Soc. 73, 876 (1951)

    Google Scholar 

  22. (a) J. Kruszewski, T.M. Krygowski, Tetrahedron Lett. 13, 3839 (1972)

    Google Scholar 

  23. T.M. Krygowski, J. Chem. Inf. Comput. Sci. 33, 70 (1993)

    Article  CAS  Google Scholar 

  24. R. Islas, T. Heine, G. Merino, Acc. Chem. Res. 45, 215 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. J. Poater, M. Duran, M. Sola, B. Silvi, Chem. Rev. 105, 3911 (2005)

    Article  CAS  PubMed  Google Scholar 

  26. Z.F. Chen, C.S. Wannere, C. Corminboeuf, R. Puchta, P.v.R. Schleyer, Chem. Rev. 10, 3842 (2005)

    Google Scholar 

  27. G. Merino, A. Vela, T. Heine, Chem. Rev. 105, 3812 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. P. Lazzeretti, Prog. Nucl. Magn. Reson. Spectrosc. 36, 1 (2000)

    Article  CAS  Google Scholar 

  29. G. Doddi, G. Illuminati, P. Mencarelli, F. Stegel, J. Org. Chem. 41, 2824 (1976)

    Article  CAS  Google Scholar 

  30. G. Marino, G. Adv, Heterocycl. Chem. 13, 235 (1971)

    Google Scholar 

  31. The chemistry of the aromatic heterocycles, Chapter 25, p. 1228. https://www.saplinglearning.com/media/loudon/loudon5ech25sec03.pdf

  32. L.I. Belen'kii, I.A. Suslov, N.D. Chuvylkin, Chem. Heterocycl. Compd. 39, 36 (2003); and references cited therein

    Google Scholar 

  33. P. Baran, J.R. Richter, https://www.scripps.edu/baran/heterocycles/Essentials1-2009.pdf

  34. The chemical shifts are for the neat liquids with only a small amount of TMS added as a standard. See: T.F. Page Jr., T. Alger, D.M. Grant, J. Am. Chem. Soc. 87, 5333 (1965)

    Google Scholar 

  35. W.G. Dauben, H.O. Krabbenhoft, J. Am. Chem. Soc. 1976, 98 (1992)

    Google Scholar 

  36. H. Kotsuki, S. Kitagawa, H. Nishizawa, T. Tokoroyama, J. Org. Chem. 43, 1471 (1978)

    Article  CAS  Google Scholar 

  37. H. Kotsuki, H. Nishizawa, S. Kitagawa, M. Ochi, N. Yamasaki, K. Matsuoka, T. Tokoroyama, Bull. Chem. Soc. Jpn. 52, 544 (1979)

    Article  CAS  Google Scholar 

  38. K. Kumamoto, I. Fukada, H. Kotsuki, Angew. Chem. Int. Ed. 2004, 43 (2015)

    Google Scholar 

  39. C.W. Bird, G.W.H. Cheeseman, A.-B. Hörnfeldt, in Comprehensive Heterocyclic Chemistry, ed. by A.R. Katrizky, C.W. Rees (Elsevier, 1984). https://doi.org/10.1016/B978-008096519-2.00066-7

  40. V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102 (1995)

    Google Scholar 

  41. M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 24, 669 (2003)

    Article  CAS  PubMed  Google Scholar 

  42. A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)

    Article  CAS  Google Scholar 

  43. L. Nyulászi, P.v.R. Schleyer, J. Am. Chem. Soc. 121, 6872 (1999)

    Google Scholar 

  44. P.v.R. Schleyer, L. Nyulászi, T. Kárpáti, Eur. J. Org. Chem. 10, 1923 (2003)

    Google Scholar 

  45. I. Fernández, J.I. Wu, P.v.R. Schleyer, Org. Lett. 15, 2990 (2013)

    Google Scholar 

  46. B.J. Levandowski, L. Zou, K.N. Houk, P.v.R. Schleyer, J. Comput. Chem. 37, 117 (2016)

    Google Scholar 

  47. The electronegativities of nitrogen and oxygen are, respectively, 3.0 and 3.5 on the Pauling scale

    Google Scholar 

  48. L.R. Domingo, J.A. Sáez, Org. Biomol. Chem. 7, 3576 (2009)

    Article  CAS  PubMed  Google Scholar 

  49. S.V. Rosokha, V. Korotchenko, C.L. Stern, V. Zaitsev, J.T. Ritzert, J. Org. Chem. 77, 5971 (2012)

    Article  CAS  PubMed  Google Scholar 

  50. T. Sexton, E. Kraka, D. Cremer, J. Phys. Chem. A 120, 1097 (2016)

    Article  CAS  PubMed  Google Scholar 

  51. R. Shimizu, Y. Okada, K. Chiba, Beilstein J. Org. Chem. 14, 704 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. B.J. Levandowski, T.A. Hamlin, R.C. Helgeson, F.M. Bickelhaupt, K.N. Houk, J. Org. Chem. 83, 3164 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. M. Westerhausen, B. Stein, M.W. Ossberger, H. Görls, J.C.G. Ruiz, H. Nöth, P. Mayer, ARKIVOC, Part (iii), 46–59 (2007)

    Google Scholar 

  54. A. Laporterie, G. Manuel, J. Dubac, P. Mazerolles, H. Iloughmane, J. Organomet. Chem. 210, C33 (1981)

    Article  CAS  Google Scholar 

  55. K. Alder, G. Stein, Angew. Chem. 50, 510 (1937)

    Article  CAS  Google Scholar 

  56. R. Hoffmann, R.B. Woodward, J. Am. Chem. Soc. 87, 4388 (1965)

    Article  CAS  Google Scholar 

  57. R. Hoffmann, R.B. Woodward, J. Am. Chem. Soc. 87, 4389 (1965)

    Article  CAS  Google Scholar 

  58. A. Wassermann, J. Chem. Soc. 1511 (1935)

    Google Scholar 

  59. K.L. Williamson, Y.F.L. Hsu, J. Am. Chem. Soc. 92, 7385 (1970)

    Article  CAS  Google Scholar 

  60. J. Furukawa, Y. Kobuke, T. Fueno, J. Am. Chem. Soc. 92, 6548 (1970)

    Article  CAS  Google Scholar 

  61. Y. Kobuke, T. Sugimoto, J. Furukawa, T. Fueno, J. Am. Chem. Soc. 94, 3633 (1972)

    Article  CAS  Google Scholar 

  62. R. Sustmann, M. Boehm, J. Sauer, Chem. Ber. 112, 883 (1979)

    Article  CAS  Google Scholar 

  63. H.D. Scharf, H. Plum, J. Fleischhauer, W. Schleker, Chem. Ber. 112, 862 (1979)

    Article  CAS  Google Scholar 

  64. P. Vogel, K.N. Houk, in Organic Chemistry: Theory, Reactivity and Mechanisms in Modern Syntheses (Wiley-VCH, 2019), Chapter 5.3.12

    Google Scholar 

  65. K.B. Wiberg, D.Y. Nakaji, K.M. Morgan, J. Am. Chem. Soc. 115, 3527 (1993)

    Google Scholar 

  66. K.B. Wiberg, D. Nakaji, C.M. Breneman, J. Am. Chem. Soc. 111, 4178 (1989)

    Article  CAS  Google Scholar 

  67. D.L. Boger, Chem. Rev. 86, 781 (1986)

    Article  CAS  Google Scholar 

  68. For theoretical calculations of the DA reactions of benzene and naphthalene, see: V.D. Kiselev, E.A. Kashaeva, L.N. Potapova, G.G. Iskhakova, Russ. Chem. Bull. 53, 51 (2004)

    Google Scholar 

  69. For DA reaction of naphthalene at elevated temperature and pressure, see: W.H. Jones, D. Mangold, H. Plieninger, Tetrahedron, 18, 267 (1962)

    Google Scholar 

  70. For DA reaction of naphthalene at elevated temperature and pressure, also see: F.-G. Klarner, V. Breitkopf, Eur. J. Org. Chem. 2757 (1999)

    Google Scholar 

  71. For DA reaction of naphthalene under co-encapsulated condition, see: T. Murase, S. Horiuchi, M. Fujita, J. Am. Chem. Soc. 132, 2866 (2010)

    Google Scholar 

  72. For temperature effect on the Diels-Alder reaction of furan with maleic anhydride and maleimide, see: V.K. Yadav, D.L.V.K. Prasad, A. Yadav, K. Yadav, J. Phys. Organic Chem. (2020). https://doi.org/10.1002/poc.4131

  73. A. Papaspyrou, K. Spyropoulou, M.S. Paraskevas, S.M. Paraskevas, Synthesis and reactivity in inorganic, metal-organic, and nano-metal. Chemistry 38, 623 (2008)

    CAS  Google Scholar 

  74. For a report on the formation of a single product from the reaction of pyrrole and maleic anhydride, see: S.V. Leont’eva, O.S. Manulik, E.M. Evstigneeva, E.N. Bobkova, V.R. Flid, Kinet. Catal. 47, 384 (2006)

    Google Scholar 

  75. R.B. Woodward, H. Baer, J. Am. Chem. Soc. 70, 1161 (1948)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veejendra K. Yadav .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, V.K. (2021). Relative Aromaticity of Pyrrole, Furan, Thiophene and Selenophene, and Their Diels–Alder Stereoselectivity. In: Steric and Stereoelectronic Effects in Organic Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-75622-2_9

Download citation

Publish with us

Policies and ethics