Skip to main content

On the Integrality Gap of Binary Integer Programs with Gaussian Data

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12707))

Abstract

For a binary integer program (IP) \(\max c^\mathsf {T}x, Ax \le b, x \in \{0,1\}^n\), where \(A \in \mathbb {R}^{m \times n}\) and \(c \in \mathbb {R}^n\) have independent Gaussian entries and the right-hand side \(b \in \mathbb {R}^m\) satisfies that its negative coordinates have \(\ell _2\) norm at most n/10, we prove that the gap between the value of the linear programming relaxation and the IP is upper bounded by \(\text {poly}(m)(\log n)^2 / n\) with probability at least \(1-1/n^7-2^{-\text {poly}(m)}\). Our results give a Gaussian analogue of the classical integrality gap result of Dyer and Frieze (Math. of O.R., 1989) in the case of random packing IPs. In constrast to the packing case, our integrality gap depends only polynomially on m instead of exponentially. By recent breakthrough work of Dey, Dubey and Molinaro (SODA, 2021), the bound on the integrality gap immediately implies that branch and bound requires \(n^{\text {poly}(m)}\) time on random Gaussian IPs with good probability, which is polynomial when the number of constraints m is fixed.

S. Borst, D. Dadush and S. Tiwari—This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement QIP–805241).

D. Dadush and S. Huiberts—This work was done while the author was participating in a program at the Simons Institute for the Theory of Computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beier, R., Vöcking, B.: Probabilistic analysis of knapsack core algorithms. In: Munro, J.I. (ed.) Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA, 11–14 Jan 2004, pp. 468–477. SIAM (2004)

    Google Scholar 

  2. Borst, S., Dadush, D., Huiberts, S., Tiwari, S.: On the Integrality Gap of Binary Integer Programs with Gaussian Data. arXiv:2012.08346 [cs, math] (Dec 2020)

  3. Dey, S.S., Dubey, Y., Molinaro, M.: Branch-and-bound solves random binary IPs in polytime. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 579–591. Society for Industrial and Applied Mathematics (Jan 2021). https://doi.org/10.1137/1.9781611976465.35

  4. Dyer, M., Frieze, A.: Probabilistic analysis of the generalised assignment problem. Math. Program. 55(1–3), 169–181 (1992). https://doi.org/10.1007/bf01581197

    Article  MathSciNet  MATH  Google Scholar 

  5. Dyer, M., Frieze, A.: Probabilistic analysis of the multidimensional knapsack problem. Math. OR 14(1), 162–176 (1989). https://doi.org/10.1287/moor.14.1.162

    Article  MathSciNet  MATH  Google Scholar 

  6. Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for integer programming using the Steinitz lemma. ACM Trans. Algorithms 16(1), 1–14 (2020). https://doi.org/10.1145/3340322

    Article  MathSciNet  MATH  Google Scholar 

  7. Goldberg, A., Marchetti-Spaccamela, A.: On finding the exact solution of a zero-one knapsack problem. In: Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing - STOC 1984. ACM Press (1984). https://doi.org/10.1145/800057.808701

  8. Jansen, K., Rohwedder, L.: Integer programming (2019). https://doi.org/10.1002/9781119454816.ch10

  9. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. OR 12(3), 415–440 (1987). https://doi.org/10.1287/moor.12.3.415

    Article  MathSciNet  MATH  Google Scholar 

  10. Lenstra, H.: Integer programming with a fixed number of variables. Math. OR 8(4), 538–548 (1983). https://doi.org/10.1287/moor.8.4.538

    Article  MathSciNet  MATH  Google Scholar 

  11. Lueker, G.S.: On the average difference between the solutions to linear and integer knapsack problems. In: Applied Probability-Computer Science: The Interface, vol. 1, pp. 489–504. Birkhäuser, Boston (1982). https://doi.org/10.1007/978-1-4612-5791-2

  12. Papadimitriou, C.H.: On the complexity of integer programming. J. ACM 28(4), 765–768 (1981). https://doi.org/10.1145/322276.322287

    Article  MathSciNet  MATH  Google Scholar 

  13. Röglin, H., Vöcking, B.: Smoothed analysis of integer programming. Math. Program. 110(1), 21–56 (2007). https://doi.org/10.1007/s10107-006-0055-7

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Huiberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borst, S., Dadush, D., Huiberts, S., Tiwari, S. (2021). On the Integrality Gap of Binary Integer Programs with Gaussian Data. In: Singh, M., Williamson, D.P. (eds) Integer Programming and Combinatorial Optimization. IPCO 2021. Lecture Notes in Computer Science(), vol 12707. Springer, Cham. https://doi.org/10.1007/978-3-030-73879-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73879-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73878-5

  • Online ISBN: 978-3-030-73879-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics