Skip to main content

AIM in Nanomedicine

  • Living reference work entry
  • First Online:
Artificial Intelligence in Medicine
  • 73 Accesses

Abstract

Nanotechnology and its sister field of quantum technologies are interdisciplinary sciences that have been touted as one of the holy grails of technological advancements still yet to reach critical mass and unveil their transformative potential. Similarly, artificial intelligence and machine learning constitute another technological advancement that has captivated scientific hearts and minds, with both leading to next generation industrial revolutions.

The unification of the latter and former technologies has thus elevated opportunities for exciting emerging discoveries and promises to offer further combinatorically exponential translational discoveries for medicine and humankind. This chapter explores the use of AI in the subfield of nanomedicine. We explore the applications of machine learning algorithms to aspects of drug discovery, toxicology and regenerative medicine, as well as medical and surgical robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: principles, properties, and regulatory issues. Front Chem. 2018;6:360. https://doi.org/10.3389/fchem.2018.00360. PMID: 30177965; PMCID: PMC6109690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tinkle SMS, Muhlebach S, et al. Nanomedicines: addressing the scientific and regulatory gap. Ann N Y Acad Sci. 2014;1313:35–56.

    Article  CAS  Google Scholar 

  3. Zarbin M, Montemagno C, Leary J, Ritch R. Nanotechnology in ophthalmology a b. Can J Ophthalmol. 2010;45:457–76.

    Article  Google Scholar 

  4. Balaz I, Petric T, Kovacevic M, Tsompanas M-A, Stillman N. Harnessing adaptive novelty for automated generation of cancer treatments. Bio Systems. 2021;199:104290.

    Article  CAS  Google Scholar 

  5. Ban Z, Yuan P, Yu F, Peng T, Zhou Q, Hu X. Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles. Proc Natl Acad Sci U S A. 2020;117(19):10492–9.

    Article  CAS  Google Scholar 

  6. Basso J, Mendes M, Silva J, Cova T, Luque-Michel E, Jorge AF, et al. Sorting hidden patterns in nanoparticle performance for glioblastoma using machine learning algorithms. Int J Pharm. 2021;592:120095.

    Article  CAS  Google Scholar 

  7. Sayes C, Ivanov I. Comparative study of predictive computational models for nanoparticle-induced cytotoxicity. Risk Anal. 2010;30(11):1723–34. Epub 2010/06/22

    Article  Google Scholar 

  8. Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, et al. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol. 2011;6(3):175–8. Epub 2011/02/15

    Article  CAS  Google Scholar 

  9. Liu R, Rallo R, George S, Ji Z, Nair S, Nel AE, et al. Classification NanoSAR development for cytotoxicity of metal oxide nanoparticles. Small. 2011;7(8):1118–26. Epub 2011/04/02

    Article  CAS  Google Scholar 

  10. Horev-Azaria L, Baldi G, Beno D, Bonacchi D, Golla-Schindler U, Kirkpatrick JC, et al. Predictive toxicology of cobalt ferrite nanoparticles: comparative in-vitro study of different cellular models using methods of knowledge discovery from data. Part Fibre Toxicol. 2013;10:32. Epub 2013/07/31

    Article  CAS  Google Scholar 

  11. Winkler D, Burden FR, Yan B, Weissleder R, Tassa C, Shaw S, et al. Modelling and predicting the biological effects of nanomaterials. SAR QSAR Environ Res. 2014;25(2):161–72. Epub 2014/03/15

    Article  CAS  Google Scholar 

  12. Fourches D, Pu D, Tassa C, Weissleder R, Shaw SY, Mumper RJ, et al. Quantitative nanostructure-activity relationship modeling. ACS Nano. 2010;4(10):5703–12. Epub 2010/09/23

    Article  CAS  Google Scholar 

  13. Toropova A, Toropov AA, Rallo R, Leszczynska D, Leszczynski J. Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions. Ecotoxicol Environ Saf. 2015;112:39–45. Epub 2014/12/03

    Article  CAS  Google Scholar 

  14. Jones DE, Ghandehari H, Facelli JC. Predicting cytotoxicity of PAMAM dendrimers using molecular descriptors. Beilstein J Nanotechnol. 2015;6:1886–96.

    Article  CAS  Google Scholar 

  15. Liu X, Tang K, Harper S, Harper B, Steevens JA, Xu R. Predictive modeling of nanomaterial exposure effects in biological systems. Int J Nanomedicine. 2013;8(Suppl 1):31–43. Epub 2013/10/08

    Article  CAS  Google Scholar 

  16. Shalaby K, Soliman ME, Casettari L, Bonacucina G, Cespi M, Palmieri GF, et al. Determination of factors controlling the particle size and entrapment efficiency of noscapine in PEG/PLA nanoparticles using artificial neural networks. Int J Nanomedicine. 2014;9:4953–64. Epub 2014/11/05

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Davids J, Carlisle, R. Artificial nano-intelligence: using deep learning models to study the formation of gold nanoparticles: potential conceptual applications of transfer learning in the field of nano-neuroscience drug discovery In: Frontiers, editor. Neural bases of action – from cellular microcircuits to large-scale networks and modelling; erice: Frontiers Neuroscience; 2018.

    Google Scholar 

  18. Jones DE, Ghandehari H, Facelli JC. A review of the applications of data mining and machine learning for the prediction of biomedical properties of nanoparticles. Comput Methods Prog Biomed. 2016;132:93–103.

    Article  Google Scholar 

  19. Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8(7):543–57.

    Article  CAS  Google Scholar 

  20. Cottura N, Howarth A, Rajoli R, Siccardi M. The current landscape of novel formulations and the role of mathematical modeling in their development. J Clin Pharmacol. 2020;60(S1):S77–97.

    Article  CAS  Google Scholar 

  21. Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18(6):463–77.

    Article  CAS  Google Scholar 

  22. FDA. U. DOXIL. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=050718. Accessed 27 Feb 2021.

  23. FDA. U. Ambisome. https://www.accessdata.fda.gov/drugsatfda_docs/nda/97/050740_ambisome_toc.cfm. Accessed 27 Febuary 2021.

  24. Thomas DG, Klaessig F, Harper SL, Fritts M, Hoover MD, Gaheen S, et al. Informatics and standards for nanomedicine technology. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;3(5):511–32.

    Article  CAS  Google Scholar 

  25. Cova TFGG, Bento DJ, Nunes SCC. Computational approaches in theranostics: mining and predicting cancer data. Pharmaceutics. 2019;11(3):119.

    Article  CAS  Google Scholar 

  26. Oh JY, Kim HS, Palanikumar L, et al. Cloaking nanoparticles with protein corona shield for targeted drug delivery. Nat Commun. 2018;9:4548. https://doi.org/10.1038/s41467-018-06979-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaksonen M, Roux A. Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2018;19:313–26. https://doi.org/10.1038/nrm.2017.132.

    Article  CAS  PubMed  Google Scholar 

  28. Dogra P, Butner JD, Chuang YL, Caserta S, Goel S, Brinker CJ, et al. Mathematical modeling in cancer nanomedicine: a review. Biomed Microdevices. 2019;21(2):40.

    Article  Google Scholar 

  29. Müller K, Fedosov D, Gompper G. Margination of micro- and nano-particles in blood flow and its effect on drug delivery. Sci Rep. 2014;4:4871. https://doi.org/10.1038/srep04871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thakur V, Kutty RV. Recent advances in nanotheranostics for triple negative breast cancer treatment. J Exp Clin Cancer Res. 2019;38(1):430.

    Article  Google Scholar 

  31. Dell’Orco DLM, Oslakovic C, Cedervall T, Linse S. Modeling the time evolution of the nanoparticle-protein corona in a body fluid. PLoS One. 2010;5(6):e10949. https://doi.org/10.1371/journal.pone.0010949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Darabi Sahneh FSC, Riviere J. Dynamics of nanoparticle-protein corona complex formation: analytical results from population Balance equations. PLoS One. 8(5):e64690. https://doi.org/10.1371/journal.pone.0064690.

  33. Lopez HaL V. Coarse-grained model of adsorption of blood plasma proteins onto nanoparticles. J Chem Phys. 2015;143:243138. https://doi.org/10.1063/1.4936908.

    Article  CAS  Google Scholar 

  34. Gentile F, Ferrari M, Decuzzi P. The transport of nanoparticles in blood vessels: the effect of vessel permeability and blood rheology. Ann Biomed Eng. 2008;36:254–61. https://doi.org/10.1007/s10439-007-9423-6.

    Article  PubMed  Google Scholar 

  35. Zhdanov V, Cho NJ. Kinetics of the formation of a protein corona around nanoparticles. Math Biosci. 2016;282:82–90.

    Article  CAS  Google Scholar 

  36. Huajian G, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci. 2005;102:9469–74.

    Article  Google Scholar 

  37. Dogra P, Adolphi NL, Wang Z, Lin YS, Butler KS, Durfee PN, Croissant JG, Noureddine A, Coker EN, Bearer EL, Cristini V, Jeffrey Brinker C. Establishing the effects of mesoporous silica nanoparticle properties on in vivo disposition using imaging-based pharmacokinetics. Nat Commun. 2018;9:4551.

    Article  Google Scholar 

  38. Chauhan V, Stylianopoulos T, Martin JD, Popović Z, Chen O, Kamoun WS, Bawendi MG, Fukumura D, Jain RK. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol. 2012;7:383–8.

    Article  CAS  Google Scholar 

  39. Pascal J, Ashley CE, Wang Z, Brocato TA, Butner JD, Carnes EC, Koay EJ, Brinker CJ, Cristini V. Mechanistic modeling identifies drug-uptake history as predictor of tumor drug resistance and nano-carrier-mediated response. ACS Nano. 2013;7(12):11174–82.

    Google Scholar 

  40. Singh AV, Ansari MHD, Rosenkranz D, Maharjan RS, Kriegel FL, Gandhi K, et al. Artificial intelligence and machine learning in computational Nanotoxicology: unlocking and empowering nanomedicine. Adv Healthc Mater. 2020;9(17):e1901862.

    Article  Google Scholar 

  41. Agrahari V, Burnouf P-A, Burnouf T, Agrahari V. Nanoformulation properties, characterization, and behavior in complex biological matrices: challenges and opportunities for brain-targeted drug delivery applications and enhanced translational potential. Adv Drug Deliv Rev. 2019;148:146–80.

    Article  CAS  Google Scholar 

  42. Wilson B, Km G. Artificial intelligence and related technologies enabled nanomedicine for advanced cancer treatment. Nanomedicine (London). 2020;15(5):433–5.

    Article  CAS  Google Scholar 

  43. Yu S, Kang M, Chang H, Chen K, Yu Y. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc. 2005;127:17604–5.

    Article  CAS  Google Scholar 

  44. Horev-Azaria L, Kirkpatrick C, Korenstein R, Marche P, Maimon O, Ponti J, et al. Predictive toxicology of cobalt nanoparticles and ions: comparative in vitro study of different cellular models using methods of knowledge discovery from data. Toxicol Sci. 2011;122(2):489–501.

    Article  CAS  Google Scholar 

  45. Hassanzadeh P. Towards the quantum-enabled technologies for development of drugs or delivery systems. J Control Release. 2020;324:260–79.

    Article  CAS  Google Scholar 

  46. Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, et al. Quantum supremacy using a programmable superconducting processor. Nature. 2019;574(7779):505–10.

    Article  CAS  Google Scholar 

  47. Musk E, Neuralink, Shukla H. An integrated brain-machine interface platform with thousands of channels. J Med Internet Res 2019;21(10):e16194.

    Google Scholar 

  48. Izadifar M. An artificial intelligence approach to develop tunable nanoparticulate delivery systems for regenerative medicine applications. BioImpacts. 2018;8(Supplement 1):12. https://doi.org/10.15171/bi.2018.S1. Available from: https://www.fda.gov/media/88828/download.

  49. Ran F, Hsu P, Wright J, et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308. https://doi.org/10.1038/nprot.2013.143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ashrafian H, Clancy O, Grover V, Darzi A. The evolution of robotic surgery: surgical and anaesthetic aspects. BJA. 2017;119(suppl_1):i72–84. https://doi.org/10.1093/bja/aex383.

    Article  CAS  PubMed  Google Scholar 

  51. Kateb B, Heiss J. Final cover_The TextBook of Nanoneuroscience and Nanoneurosurgery_K122372013.

    Google Scholar 

  52. Wu Z, Troll J, Jeong H, Wei Q, Stang M, Ziemssen F, Wang Z, Dong M, Schnichels S, Qiu T, Fischer P. A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci Adv. 2018;4(11):eaat4388. https://doi.org/10.1126/sciadv.aat4388. Available from: https://www.fda.gov/media/88828/download.

  53. Liu C, Spicer M, Apuzzo M. The genesis of neurosurgery and the evolution of the neurosurgical operative environment: part II-concepts for future development, 2003 and beyond. Neurosurgery. 2003;52(1):20–35.

    PubMed  Google Scholar 

  54. Akram H, Dayal V, Mahlknecht P, Georgiev D, Hyam J, Foltynie T, et al. Connectivity derived thalamic segmentation in deep brain stimulation for tremor. NeuroImage: Clin. 2018;18:130–42.

    Article  Google Scholar 

  55. FDA. Use of nanomaterials in food for animals. US Department of Health and Human Services Food and Drug Administration Center for Veterinary Medicine 2015;August 2015.

    Google Scholar 

  56. FDA. Artificial intelligence and machine learning in software as a medical device: federal food and drug administration; 2021. Available from: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device.

  57. MHRA. MHRA role in development and use of artificial intelligence for safety monitoring: A board meeting. 2018. Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/749139/Item_07__42-OB-2018__Artificial_Intelligence.pdf.

  58. CQC. Using machine learning in diagnostic services- a report with recommendations from CQC’s regulatory sandbox. 2020. Available from: https://www.cqc.org.uk/sites/default/files/20200324%20CQC%20sandbox%20report_machine%20learning%20in%20diagnostic%20services.pdf.

  59. BSI, MHRA, AAMI. The emergence of artificial intelligence and machine learning algorithms in healthcare: recommendations to support governance and regulation. 2019. Available from: https://www.bsigroup.com/globalassets/localfiles/en-gb/about-bsi/nsb/innovation/mhra-ai-paper-2019.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Davids .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Davids, J., Ashrafian, H. (2021). AIM in Nanomedicine. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_240-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_240-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics