Skip to main content

Anticholinesterase, Antidiabetic and Anti-inflammatory Activity of Secondary Metabolites of Teucrium Species

  • Chapter
  • First Online:
Teucrium Species: Biology and Applications

Abstract

The chapter reviews the data about anticholinesterase, antidiabetic, and anti-inflammatory activity of the active substances from Teucrium species. Extracts and essential oils from the species of Teucrium genus possess a wide range of secondary metabolites that exhibit biological activity. Discussed examinations are focused on the determination of the qualitative and quantitative composition of the active substances from Teucrium species, as well as the anticholinesterase, antidiabetic and anti-inflammatory activity. Many authors state that Alzheimer’s disease, diabetes mellitus, and inflammatory diseases correlate because they are precursors of neurodegenerative diseases. Secondary metabolites isolated from plants of the genus Teucrium have been shown to be potential inhibitors of acetylcholinesterase. Also, examined metabolites possess antihyperglycemic activity and reduce blood glucose levels. Extracts of the species from the genus Teucrium exhibit anti-inflammatory activity in in vitro and in vivo conditions by inhibiting carrageenan-induced inflammation and significantly reduced serum levels of triglyceride and cholesterol. As a result, it has been shown that the species of the genus Teucrium are rich in compounds such as flavonoids, phenolic acids and terpenoids that directly contribute to anticholinesterase, antidiabetic and anti-inflammatory activity. Species of the genus Teucrium are good candidates for further examination in order to the treatment of the previously mentioned disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACh:

Acetylcholine

AChE:

Acetylcholinesterase

AChI:

Acetylcholine iodide

AD:

Alzheimer’s disease

COX:

Cyclooxygenase

DTNB:

5,5-dithio-bis-2-nitrobenzoic acid

FDA:

Food and drug administration

HLA:

Human leukocyte antigen

IC50:

Half maximal inhibitory concentration

iNOS:

Inducible nitric oxide synthase

LDL:

Low density lipoproteins

mRNA:

Messenger ribonucleic acid

NO:

Nitric oxide

STZ:

Single dose streptozotocin

TNB:

2-nitro-5-mercaptobenzoic acid

References

  • Abbas A, Lichtman A, Pillai S (2010) Cellular and molecular immunology, 8th edn. Elsevier, Amsterdam

    Google Scholar 

  • Abeywickrama KRW, Ratnasooriya WD, Amarakoon AM (2011) Oral hypoglycaemic, antihyperglycaemic and antidiabetic activities of Sri Lankan Broken Orange Pekoe Fannings (BOPF) grade black tea (Camellia sinensis L.) in rats. J Ethnopharmacol 135:278–286

    Article  CAS  PubMed  Google Scholar 

  • Adewusi EA, Moodley N, Steenkamp V (2011) Antioxidant and acetylcholinesterase inhibitory activity of selected southern African medicinal plants. S Afr J Bot 77:638–644

    Article  CAS  Google Scholar 

  • Ahmad B, Mukarram Shah SM, Khan H, Hassan Shah SM (2007) Enzyme inhibition activities of Teucrium royleanum. J Enzyme Inhib Med Chem 22:730–732

    Article  CAS  PubMed  Google Scholar 

  • Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi AH, Khani M (2003) Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomized and placebo-controlled trial. J Clin Pharm Ther 28:53–59

    Article  CAS  PubMed  Google Scholar 

  • Akkol EK, Yalçın FN, Kaya D, Çalıs I, Yesilada E, Ersoz T (2008) In vivo anti-inflammatory and antinociceptive actions of some Lamium species. J Ethnopharmacol 118:166–172

    Article  PubMed  Google Scholar 

  • Alabdullatif M, Boujezza I, Mekni M, Taha M, Kumaran D, Yi QL, Landoulsi A, Ramirez-Arcos S (2017) Enhancing blood donor skin disinfection using natural oils. Transfusion 57:2920–2927

    Article  CAS  PubMed  Google Scholar 

  • Alamgeer RM, Bashir S, Mushtaq MN, Khan HU, Malik MNH, Qayyum A, ur Rahaman MS (2013) Comparative hypoglycemic activity of different extracts of Teucrium stocksianum in diabetic rabbits. Bangladesh J Pharmacol 8:186–193

    Google Scholar 

  • Alberti KG, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15:539–553

    Article  CAS  PubMed  Google Scholar 

  • Amraei M, Ghorbani A, Seifinejad Y, Mousavi SF, Mohamadpour M, Shirzadpour E (2018) The effect of hydroalcoholic extract of Teucrium polium L. on the inflammatory markers and lipid profile in hypercholesterolemic rats. J Inflamm Res 11:265–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ardestani A, Yazdanparast R, Jamshidi S (2008) Therapeutic effects of Teucrium polium extract on oxidative stress in pancreas of streptozotocin-induced diabetic rats. J Med Food 11:525–532

    Article  CAS  PubMed  Google Scholar 

  • Ashley TN, Weil MZ, Nelson JR (2012) Inflammation: mechanisms, costs, and natural variation. Annu Rev Ecol Evol Syst 43:385–406

    Article  Google Scholar 

  • Barrachina MD, Bello R, Martínez-Cuesta MA, Esplugues J, Primo-Yúfera E (1995) Antiinflamatory activity and effects on isolated smooth muscle of extracts from different Teucrium species. Phytother Res 9:368–371

    Article  CAS  Google Scholar 

  • Beale JM, Block JH (2010) Wilson and Gisvold’s textbook of organic medicinal and pharmaceutical chemistry, 12th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Breitner JC (1996) The role of antiinflammatory drugs in the prevention and treatment of Alzheimer’s disease. Annu Rev Med 47:401–411

    Article  CAS  PubMed  Google Scholar 

  • Brune K, Hinz B (2004) The discovery and development of antiinflamatory drugs. Arthritis Rheumatol 50:2391–2399

    Article  CAS  Google Scholar 

  • Burčul F (2008) The biological effects of essential oil and water extract of the plant (Achillea millefolium L.). MSc thesis, University of Split

    Google Scholar 

  • Cabral C, Francisco V, Cruz M, Lopes M, Salgueiro L, Sales F, Batist M (2010) Potential antioxidant and anti-inflammatory properties in Teucrium salviastrum Schreb. Planta Med 76:1163–1374. https://doi.org/10.1055/s-0030-1264535

    Article  Google Scholar 

  • Cakir A, Mavia A, Kazaz C, Yildirim A, Kufrevioglu OI (2006) Antioxidant activities of the extracts and components of Teucrium orientale L. var. orientale. Turk J Chem 30:483–494

    CAS  Google Scholar 

  • Chandrashekar KS, Thakur A, Prasanna KS (2010) Anti-inflammatory activity of Moringa oleifera stem bark extracts against carrageenen induced rat paw edema. J Chem Pharm Res 2:179–181

    Google Scholar 

  • Chiung-Chun H, Cheng-Che L, Kuei-Sen H (2010) The role of insulin receptor signaling in synaptic plasticity and cognitive function. Chang Gung Med J 33:115–125

    Google Scholar 

  • Čolović BM, Krstić DZ, Lazarević-Pašti TD, Bondžić MA, Vasić MV (2013) Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 11:315–335

    Article  PubMed  PubMed Central  Google Scholar 

  • Craft S (2007) Insulin resistance and Alzheimer’s disease pathogenesis: potential mechanisms and implications for treatment. Curr Alzheimer Res 4:147–152

    Article  CAS  PubMed  Google Scholar 

  • Das S, Barman S (2012) Antidiabetic and antihyperlipidemic effects of ethanolic extract of leaves of Punica granatum in alloxan-induced non-insulin-dependent diabetes mellitus albino rats. Indian J Pharm 44:219–224

    Article  Google Scholar 

  • Das M, Sarma BP, Khan AK, Mosihuzzaman M, Nahar N, Ali L, Bhowmik A, Begum R (2009) The antidiabetic and antilipidemic activity of aqueous extract of Urtica dioica L. on type 2 diabetic model rats. J Biol Sci 17:1–6

    Google Scholar 

  • Dastmalchi K, Dorman HJD, Viorela H, Hiltunen R (2007) Plants as potential source for drug development against Alzheimer’s disease. Int J Biomed Pharm Sci 1:83–104

    Google Scholar 

  • Dehghan G, Tahmasebpour N, Hosseinpour Feizi MA, Sheikhzadeh F, Banan Khojasteh SM (2013) Hypoglycemic, antioxidant and hepato- and nephroprotective effects of Teucrium orientale in streptozotocin diabetic rats. Pharmacology 1:182–189

    Google Scholar 

  • Devendra D, Liu E, Eisenbarth GS (2004) Type 1 diabetes: recent developments. BMJ 328:750–754

    Article  PubMed  PubMed Central  Google Scholar 

  • Dewhirst TE (1980) Structure-activity relationships for inhibition of prostaglandin cyclooxygenase by phenolic compounds. Prostaglandins 20:209–222

    Article  CAS  PubMed  Google Scholar 

  • Dharmasiri MG, ayakody JRAC, Galhena G, Liyanage SSP, Ratnasooriya WD (2003) Anti-inflammatory and analgesic activities of mature fresh leaves of Vitex negundo. J Ethnopharmacol 87:199–206

    Article  CAS  PubMed  Google Scholar 

  • El-Ashmawy IM (2018) Anti-inflammatory and phytoconstituents of Teucrium oliverianum Ging. Ex. Benth. Eur J Pharm Med Res 5:406–411

    Google Scholar 

  • Ellman G, Courtney D, Valentino A, Featherstone R (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Esmaeili MA, Yazdanparast R (2004) Hypoglycaemic effect of Teucrium polium: studies with rat pancreatic islets. J Ethnopharmacol (1):27–30

    Google Scholar 

  • Farshchi A, Ghiasi G, Asl AA (2010) Antinociceptive and antiinflammatory effects of Teucrium hyrcanicum aqueous extract in male mice and rats. Physiol Pharmacol 14:78–84

    Google Scholar 

  • Ferreira A, Proença C, Serralheiro MLM, Araújo MEM (2006) The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J Ethnopharmacol 108:31–37

    Article  CAS  PubMed  Google Scholar 

  • Garg VK, Paliwal SK (2011) Anti-inflammatory activity of aqueous extract of Cynodon dactylon. Int J Pharmacol 7:370–375

    Article  Google Scholar 

  • George C, Lochner A, Huisamen B (2011) The efficacy of Prosopis glandulosa as antidiabetic treatment in rat models of diabetes and insulin resistance. J Ethnopharmacol 137:298–304

    Article  CAS  PubMed  Google Scholar 

  • Gharaibeh MN, Elayan HH, Salhab AS (1988) Hypoglycemic effects of Teucrium polium. J Ethnopharmacol 24:93–99

    Article  CAS  PubMed  Google Scholar 

  • Golfakhrabadi F, Yousefbeyk F, Mirnezami T, Laghaei P, Hajimahmoodi M, Khanavi M (2015) Antioxidant and antiacetylcholinesterase activity of Teucrium hyrcanicum. Pharm Res 7:15–19

    CAS  Google Scholar 

  • Hannan JM, Marenah L, Ali L, Rokeya B, Flatt PR, Abdel-Wahab YH (2006) Ocimum sanctum leaf extracts stimulate insulin secretion from perfused pancreas, isolated islets and clonal pancreatic beta-cells. J Endocrinol 189:127–136

    Article  CAS  PubMed  Google Scholar 

  • Houshmand G, Goudarzi M, Forouzandeh H, Nazari A, Nourollahi V (2015) Evaluation of the analgesic effects of Teucrium extract on rats using the formalin test. J Babol Univ Med Sci 17:33–39

    Google Scholar 

  • Husain I, Chander R, Saxena JK, Mahdi AA, Mahdi F (2015) Antidyslipidemic effect of Ocimum sanctum leaf extract in streptozotocin induced diabetic rats. Indian J Clin Biochem 30:72–77

    Article  PubMed  Google Scholar 

  • Huseini HF, Fakhrzadeh H, Larijani B, Samani AS (2006) Review of anti-diabetic medicinal plant used in traditional medicine. J Med Plants 1(S2):1–8

    Google Scholar 

  • Hussain EHMA, Jamil K, Rao M (2001) Hypoglycaemic, hypolipidemic and antioxidant properties of tulsi (Ocimum sanctum Linn) on streptozotocin induced diabetes in rats. Indian J Clin Biochem 16:190–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jäger A, Eldeen I, Van Staden J (2007) COX-1 and -2 activity of rose hip. Phytother Res 21:1251–1252

    Article  PubMed  Google Scholar 

  • Jiao Y, Wang X, Jiang X, Kong F, Wang S, Yan C (2017) Antidiabetic effects of Morus alba fruit polysaccharides on high-fat diet- and streptozotocin-induced type 2 diabetes in rats. J Ethnopharmacol 199:119–127

    Article  CAS  PubMed  Google Scholar 

  • Kahn SE (2003) The relative contribution of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 46:3–19

    Article  CAS  PubMed  Google Scholar 

  • Kooti W, Farokhipour M, Asadzadeh Z, Ashtary-Larky D, Asadi-Samani M (2016) The role of medicinal plants in the treatment of diabetes: a systematic review. Electron Physician 8:1832–1842

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuhn H, Wiesner R, Alder L, Schewe T (1989) Occurrence of free and esterified lipoxygenase products in leaves of Glechoma hederacea L. and other Labiatae. Eur J Biochem 186:155–162

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Panghal S, Mallapur SS, Kumar M, Ram V, Singh BK (2009) Antiinflammatory activity of Piper longum fruit oil. Indian J Pharm Sci 71:454–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemke TL, Williams DA, Roche VF, Zito SW (2013) Foye’s principles of medicinal chemistry, 7th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Li RW, David Lin G, Myers SP, Leach DN (2003) Anti-inflammatory activity of Chinese medicinal vine plants. J Ethnopharmacol 85:61–67

    Article  PubMed  Google Scholar 

  • Mahesh B, Sathish S (2008) Antimicrobial activity of some important medicinal plant against plant and human pathogens. World J Agric Sci 4:839–843

    Google Scholar 

  • Martorana A, Esposito Z, Koch G (2010) Beyond the cholinergic hypothesis: do current drugs work in Alzheimer’s disease? CNS Neurosci Ther 16:235–245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435

    Article  CAS  PubMed  Google Scholar 

  • Menichini F, Conforti F, Rigano D, Formisano C, Piozzi F, Senatore F (2009) Phytochemical composition, anti-inflammatory and antitumour activities of four Teucrium essential oils from Greece. Food Chem 115:679–686

    Article  CAS  Google Scholar 

  • Miri A, Sharifi-Rad J, Tabriyian K, Nasiri AA (2015) Antinociceptive and anti-inflammatory activities of Teucrium persicum Boiss. extract in mice. Scientifica. https://doi.org/10.1155/2015/972827

  • Moghimi Z, Dehghan S, Sayadi S, Ghanbarian A (2017) Therapeutic effect and mechanism of Teucrium polium in diabetes mellitus: a review article. Res J Pharmacogn 4(S):73–73

    Google Scholar 

  • Mohan L, Pant CC, Melkani AB, Dev V (2010) Terpenoid composition of the essential oils of Teucrium royleanum and T. quadrifarium. Nat Prod Commun 5:939–942

    CAS  PubMed  Google Scholar 

  • Monsef-Esfahani HR, Hajiaghaee R, Shahverdi AR, Khorramizadeh MR, Amini M (2010) Flavonoids, cinnamic acid and phenyl propanoid from aerial parts of Scrophularia striata. Pharm Biol 48:333–336

    Article  CAS  PubMed  Google Scholar 

  • Moradi B, Abbaszadeh S, Shahsavari S, Alizadeh M, Beyranvand F (2018) The most useful medicinal herbs to treat diabetes. Biomed Res Ther 5:2538–2551

    Article  Google Scholar 

  • Mukherjee PK, Kumar V, Mal M, Houghton PJ (2007) Acetylcholinesterase inhibitors from plants. Phytomedicine 14:289–300

    Article  CAS  PubMed  Google Scholar 

  • Murphy K, Weaver C (2017) Janeway’s immunobiology, 9th edn. Garland Science, New York

    Google Scholar 

  • Nađpal J (2017) Phytochemical screening and biological activity of extracts and traditional products from fruits of wild roses (Rosa L.; Rosaceae). Dissertation, University of Novi Sad

    Google Scholar 

  • Ojewole J (2005) Antinociceptive, anti-inflammatory and antidiabetic effects of Bryophyllum pinnatum (Crassulaceae) leaf aqueous extract. J Ethnopharmacol 99:13–19

    Article  PubMed  Google Scholar 

  • Orhan I, Aslan M (2009) Appraisal of scopolamine-induced antiamnesic effect in mice and in vitro antiacetylcholinesterase and antioxidant activities of some traditionally used Lamiaceae plants. J Ethnopharmacol 122:327–332

    Article  PubMed  Google Scholar 

  • Orhan I, Kartal M, Naz Q, Ejaz A, Yilmaz G, Kan Y, Konuklugil B, Sener B, Choudhary MI (2007) Antioxidant and anticholinesterase evaluation of selected Turkish Salvia species. Food Chem 103:1247–1254

    Article  CAS  Google Scholar 

  • Orhan I, Aslan S, Kartal M, Şener B, Başer KHC (2008) Inhibitory effect of Turkish Rosmarinus officinalis L. on acetylcholinesterase and butyrylcholinesterase enzymes. Food Chem 108:663–668

    Article  CAS  PubMed  Google Scholar 

  • Pang L, Las-Heras BD, Hoult JR (1996) A novel diterpenoid labdane from Sideritis javalambrensis inhibits eicosanoid generation from stimulated macrophages but enhances arachidonate release. Biochem Pharmacol 51:863–868

    Article  CAS  PubMed  Google Scholar 

  • Patil R, Patil R, Ahirwar B, Ahirwar D (2011) Isolation and characterization of anti-diabetic component (bioactivity-guided fractionation) from Ocimum sanctum L. (Lamiaceae) aerial part. Asian Pac J Trop Med 4:278–282

    Article  CAS  PubMed  Google Scholar 

  • Pongprayoon U, Baeckstrom P, Jacobsson U, Lindstrom M, Bohlin L (1991) Compounds inhibiting prostaglandin synthesis isolated from Ipomoea pescaprae. Planta Med 57:515–518

    Article  CAS  PubMed  Google Scholar 

  • Pourmotabed A, Farschehi A, Ghiasi G, Khatabi PM (2010) Analgesic and anti-inflammatory activity of Teucrium chamaedrys leaves aqueous extract in male rats. Iran J Basic Med Sci 13:119–125

    Google Scholar 

  • Prabhakar PK, Doble M (2008) A target based therapeutic approach towards diabetes mellitus using medicinal plants. Curr Diabetes Rev 4:291–308

    Article  CAS  PubMed  Google Scholar 

  • Puntero BF, Peinado II, del Fresno AMV (1997) Anti-inflammatory and antiulcer activity of Teucrium buxifolium. J Ethnopharmacol 55:93–98

    Article  Google Scholar 

  • Rabiei Z, Rafieian-Kopaei M, Mokhtari S, Shahrani M (2014) Effect of dietary ethanolic extract of Lavandula officinalis on serum lipids profile in rats. Iran J Pharm Res 13:1295–1301

    PubMed  PubMed Central  Google Scholar 

  • Radhakrishnan R, Zakaria MNM, Islam MW, Kamil M, Ismail A, Chan K, Al-Attas A (2001) Analgesic and anti-inflammatory activities of Teucrium stocksianum. Pharm Biol 39:455–459

    Article  Google Scholar 

  • Rahmouni F, Hamdaoui L, Rebai T (2017) In vivo anti-inflamatory activity of aqueus extract of Teucrium polium against carrageenan-induced inflammation in experimental models. Arch Physiol Biochem 123:313–321

    Article  CAS  PubMed  Google Scholar 

  • Rao NK, Nammi S (2006) Antidiabetic and renoprotective effects of the chloroform extract of Terminalia chebula Retz. seeds in streptozotocin-induced diabetic rats. BMC Complement Altern Med 6(1):17. https://doi.org/10.1186/1472-6882-6-17

    Article  PubMed Central  Google Scholar 

  • Rasekh HR, Khoshnood-Mansourkhani MJ, Kamalinejad M (2001) Hypolipidemic effects of Teucrium polium in rats. Fitoterapia 72:937–939

    Article  CAS  PubMed  Google Scholar 

  • Rewers M (2012) The fallacy of reduction. Pediatr Diabetes 13:340–343

    Article  PubMed  Google Scholar 

  • Rodriguez Silva D, Baroni S, Svidzinski AE, Bersani-Amado CA, Cortez DA (2008) Anti-inflammatory activity of the extract, fractions and amides from the leaves of none Piper ovatum Vahl (Piperaceae) none. J Ethnopharmacol 116:569–573

    Article  CAS  Google Scholar 

  • Roseiro LB, Rauter AP, Mourato Serralheiro ML (2012) Polyphenols as acetylcholinesterase inhibitors: structural specificity and impact on human disease. Nutr Aging 1:99–111

    Article  Google Scholar 

  • Sabet Z, Roghani M, Najafi M, Maghsoudi Z (2013) Antidiabetic effect of Teucrium polium aqueous extract in multiple low-dose streptozotocin-induced model of type 1 diabetes in rat. J Basic Clin Pathophysiol 1:34–38

    Google Scholar 

  • Sadeghzadeh F, Eidi A, Parivar K, Mazooji A (2008) Hypoglycemic effect of alcoholic extract of Salvia nemorosa in normal and diabetic male rats. Res Med 32:233–238

    Google Scholar 

  • Shah BN, Seth AK (2010) Anti-inflammatory activity of fruits of Abelmoschus esculentus Linn. Pharmacology online 1:208–212

    Google Scholar 

  • Shah SMM, Shah SMH (2015) Phytochemicals, antioxidant, antinociceptive and anti-inflammatory potential of the aqueous extract of Teucrium stocksianum bioss. BMC Complement Altern Med. 15:351. https://doi.org/10.1186/s12906-015-0872-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah BN, Seth AK, Maheshwari KM (2011) A review on medicinal plants as a source of anti-inflammatory agents. Res J Med Plants 5:101–115

    Article  CAS  Google Scholar 

  • Shakhanbeh J (2001) Teucrium polium inhibits nerve conduction and carrageenan induced inflammation in the rat skin. Turk J Med Sci 31:15–21

    Google Scholar 

  • Sims-Robinson C, Kim B, Rosko A, Feldman EL (2010) How does diabetes accelerate Alzheimer disease pathology? Nat Rev Neurol 6:551–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Majumdar DK, Rehan HMS (1996) Evaluation of anti-inflammatory potential of fixed oil of Ocimum sanctum (Holy basil) and its possible mechanism of action. J Ethnopharmacol 54:19–26

    Article  CAS  PubMed  Google Scholar 

  • Sisodia SS, Tanzi RE (eds) (2006) Alzheimer disease advances in genetics, molecular and cellular biology. Springer, Basel

    Google Scholar 

  • Soehnlein O, Lindbon L (2010) Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 10:427–439

    Article  CAS  PubMed  Google Scholar 

  • Soreq H, Seidman S (2001) Acetylcholinesterase-new roles for an old actor. Nat Rev Neurosci 2:294–302

    Article  CAS  PubMed  Google Scholar 

  • Sreejith G, Latha PG, Shine VJ, Anuja GI, Suja SR, Sini S, Shyama S, Pradeep S, Shikha P, Rajasekharan S (2010) Anti-allergic, antiinflammatory and anti-lipidperoxidant effects of Cassia occidentalis Linn. Indian J Exp Biol 48:494–498

    CAS  PubMed  Google Scholar 

  • Stanković M (2012) Biological effects of secondary metabolites of Teucrium species of Serbian flora. Dissertation, University of Kragujevac

    Google Scholar 

  • Takeda M, Tanaka T, Cacabelos R (2004) Molecular neurobiology of Alzheimer disorder and related disorders. Karger AG, Basel

    Book  Google Scholar 

  • Tariq M, Ageel AM, Al-Yahya MA, Mossa JS, Al-Said MS (1989) Anti-inflammatory activity of Teucrium polium. Int J Tissue React 11:185–188

    CAS  PubMed  Google Scholar 

  • Topcu G, Kusman T (2014) Lamiaceae family plants as a potential anticholinesterase source in the treatment of Alzheimer’s disease. Bezmialem Sci 2:1–25

    Article  Google Scholar 

  • Uritu CM, Mihai CT, Stanciu G-D, Dodi G, Alexa-Stratulat T, Luca A, Leon-Constantin M-M, Stefanescu R, Bild V, Melnic S, Tamba BI (2018) Medicinal plants of the family Lamiaceae in pain therapy: a review. Pain Res Manag 8:7801543. https://doi.org/10.1155/2018/7801543

    Article  Google Scholar 

  • Vahidi AR, Dashti-Rahmatabadi MH, Bagheri SM (2010) The effect of Teucrium polium boiled extract in diabetic rats. Iran J Diabetes Obes 2:27–32

    Google Scholar 

  • Verma S (2016) Medicinal plants with anti-inflammatory activity. J Phytopharmacol 5:157–159

    Google Scholar 

  • Vigo E, Cepeda A, Perez-Fernandez R, Gualillo O (2004) In-vitro anti-inflammatory effect of Eucalyptus globulus and Thymus vulgaris: nitric oxide inhibition in J774A.1 murine macrophages. J Pharm Pharmacol 56:257–263

    Article  CAS  PubMed  Google Scholar 

  • Vishal V, Ganesh SN, Mukesh G, Ranjan B (2014) A review on some plants having anti-inflammatory activity. J Phytopharmacol 3:214–221

    Google Scholar 

  • Vladimir-Knežević S, Blažeković B, Kindl M, Vladić J, Lower-Nedza AD, Brantner AH (2014) Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae family. Molecules 19:767–782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoo KY, Park SY (2012) Terpenoids as potential anti-Alzheimer’s disease therapeutics. Molecules 17:3524–3538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Dou J, Wu T, Aisa HA (2013) Investigating the antioxidant and acetylcholinesterase inhibition activities of Gossypium herbaceam. Molecules 18:951–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmet P, Alberti KGMM, Shaw J (2001) Global and societal implication of the diabetes epidemic. Nature 414:782–787

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenad Zlatić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zlatić, N., Stanković, M. (2020). Anticholinesterase, Antidiabetic and Anti-inflammatory Activity of Secondary Metabolites of Teucrium Species. In: Stanković, M. (eds) Teucrium Species: Biology and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-52159-2_14

Download citation

Publish with us

Policies and ethics