Skip to main content

Special Adaptive Features of Plant Species in Response to Salinity

  • Chapter
  • First Online:
Book cover Salt and Drought Stress Tolerance in Plants

Abstract

Plants are the primary producers of any organic material for food, via their pigment-light harvesting process, utilizing carbon dioxide and water. Salinity has negative influence on plant’s growth, development, and productivity as it limits the plant from giving its full yield potential. The occurrence of salinity is one of the most substantial abiotic stresses in agriculture. Halophytes are plants that exhibit high salt tolerance, allowing them to survive and complete their life cycle under extremely saline conditions; the family Chenopodiaceae has the highest number of halophytic population. Studies have elucidated the role and adaptive features of various halophytic species required for their survival in high salinity conditions, including secretion of salt through the salt glands and bladders, succulent nature, regulation of cellular ion homeostasis and osmotic pressure, detoxification of reactive oxygen species, and changes in membrane composition. Also, several stress-responsive genes/transcription factors have been isolated and characterized in vitro as well as in planta via advanced technologies. In this chapter, we discuss the different adaptive mechanisms employed by halophytes to attain normal growth and metabolism under salt stress, with emphasis on two important halophytes of the Gujarat coast, a salt secreting grass Aeluropus lagopoides and a salt accumulating succulent Salicornia brachiata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MDA:

Malondialdehyde

NaCl:

Sodium chloride

KCl:

Potassium chloride

H2O2:

Hydrogen peroxide

MAPK:

Mitogen activated protein kinase

DREB:

Dehydration responsive element binding proteins

EST:

Expressed sequence tag

CAT:

Catalase

References

  • Abarsaji GA (2000) Identification and investigation on some of eco physiological characteristics of Aeluropus spp. in saline and alkaline rangelands in the north of Gorgan. Pajouhesh-Va-Sazandegi 46:21–25

    Google Scholar 

  • Abernethy GA, Fountain DW, McManus MT (1998) Observations on the leaf anatomy of Festuca novae-zelandiae and biochemical responses to a water deficit. N Z J Bot 36:113–123

    Article  Google Scholar 

  • Agarwal PK, Gupta K, Jha B (2009) Molecular characterization of the Salicornia brachiata SbMAPKK gene and its expression by abiotic stress. Mol Biol Rep 37:981–986

    Article  CAS  Google Scholar 

  • Agarwal PK, Gupta Kapil, Jha B (2010) Molecular characterization of the Salicornia brachiata SbMAPKK gene and its expression by abiotic stress. Mol Biol Rep 2:981

    Article  CAS  Google Scholar 

  • Agarwal PK, Gupta K, Lopato S, Agarwal P (2017) Drought responsive element binding transcription factors and their applications for the engineering of stress tolerance. J Exp Bot 68(9):2135–2148

    Article  CAS  PubMed  Google Scholar 

  • Ahmed MZ, Shimazaki T, Gulzar S, Kikuchi A, Gul B, Khan MA, Watanabe KN (2013) The influence of genes regulating transmembrane transport of Na+ on the salt resistance of Aeluropus lagopoides. Funct Plant Biol 40:860–871

    Article  CAS  PubMed  Google Scholar 

  • Albert R, Kinzel H (1973) Different physiotypes among halophytes from region east of Lake Neusiedlersee (Austria). Z Pflanzenphysiol 2:138–157

    Article  Google Scholar 

  • Albert R, Pfundner G, Hertenberger G, Kastenbauer T, Watzka M (2000) The physiotype approach to understanding halophytes and xerophytes. Ergebnisse weltweiter ökologischer Forschung, vol 7. Verlag Günter Heimbach, Stuttgart, Germany, pp 69–87

    Google Scholar 

  • Aronson J (1989) Economic halophytes-a global review. In: Plants for arid lands, pp 177–188

    Google Scholar 

  • Askari H, Edqvist J, Hajheidari M, Kafi M, Salekdeh GH (2006) Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics 6:2542–2554

    Article  CAS  PubMed  Google Scholar 

  • Aslam R, Bostansup N, Mariasup M, Safdar W (2011) A critical review on halophytes: salt tolerant plants. J Med Plant Res 33:7108–7118

    Google Scholar 

  • Barhoumi Z, Djebali W, Chaïbi W, Abdelly C, Smaoui A (2007) Salt impact on photosynthesis and leaf ultrastructure of Aeluropus littoralis. J Plant Res 120:529–537

    Article  CAS  PubMed  Google Scholar 

  • Barrett-Lennard EG (2002) Restoration of saline land through revegetation. Agric Water Manag 53:213–226

    Article  Google Scholar 

  • Bartels D, Dinakar C (2013) Balancing salinity stress responses in halophytes and non-halophytes: a comparison between Thellungiella and Arabidopsis thaliana. Funct Plant Biol 40:819–831

    Article  CAS  PubMed  Google Scholar 

  • Bhaskaran C, Selvaraj T (1997) Seasonal incidence and distribution of VA-mycorrhizal fungi in native saline soils. J Environ Biol 18:209–212

    Google Scholar 

  • Binzel ML, Hess FD, Bressan RA, Hasegawa PM (1988) Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiol 86:607–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bor NL (1970) Aeluropus. Flora Iranica 70:419–423

    Google Scholar 

  • Breckle SW (1983) Temperate deserts and semi-deserts of Afghanistan and Iran. In: West NE (ed) Ecosystems of the world, temperate deserts and semi-deserts. Elsevier, pp 271–319

    Google Scholar 

  • Breckle SW (1995) How do halophytes overcome salinity. Biol Salt Toler Plants 23:199–203

    Google Scholar 

  • Buhmann A, Papenbrock J (2013) An economic point of view of secondary compounds in halophytes. Funct Plant Biol 9:952–967

    Article  Google Scholar 

  • Chaturvedi AK, Patel MK, Mishra A, Tiwari V, Jha B (2014) The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco. PLoS ONE 9:e111379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dooki AD, Mayer-Posner FJ, Askari H, Zaiee AA, Salekdeh GH (2006) Proteomic responses of rice young panicles to salinity. Proteomics 6:6498–6507

    Article  CAS  PubMed  Google Scholar 

  • Ellouzi H, Hamed KB, Cela J, Munné-Bosch S, Abdelly C (2011) Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiol Plant 1422:128–143

    Article  CAS  Google Scholar 

  • Ephraim, Utah. Proc. RMRS-P-11, Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, pp 227–230

    Google Scholar 

  • Fageria NK, Gheyi HR, Moreira A (2012) Nutrient bioavailability in salt affected soils. J Plant Nutr 7:945–962

    Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 61:313–337

    Article  Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 7:604–612

    Article  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclamatory stress tolerance and signalling. Plant Physiol 2:241–254

    Article  Google Scholar 

  • Ganesan G, Sankararamasubramanian HM, Harikrishnan M, Ashwin G, Parida A (2012) A MYB transcription factor from the grey mangrove is induced by stress and confers NaCl tolerance in tobacco. J Exp Bot 63:4549–4561

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 12:909–930

    Article  CAS  Google Scholar 

  • Gorham J, Hughes LL, Jones RW (1980) Chemical composition of salt-marsh plants from Ynys Môn (Anglesey): the concept of physiotypes. Plant Cell Environ 3:309–318

    Article  CAS  Google Scholar 

  • Goyal E, Singh RS, Kanika K (2013) Isolation and functional characterization of salt overly sensitive 1 (SOS1) gene promoter from Salicornia brachiata. Biol Plant 57:465–473

    Article  CAS  Google Scholar 

  • Gulzar S, Khan MA, Ungar IA (2002) Salt tolerance of a coastal salt marsh grass. Commun Soil Sci Plan 34:2595–2605

    Article  CAS  Google Scholar 

  • Gulzar S, Khan MA, Ungar IA (2003) Effect of salinity on growth, ionic content, plant-water status in Aeluropus lagopoides. Commun Soil Sci Plan 34:1657–1668

    Article  CAS  Google Scholar 

  • Gupta K, Agarwal PK, Reddy MK, Jha B (2010) SbDREB2A, an A-2 type DREB transcription factor from extreme halophyte Salicornia brachiata confers abiotic stress tolerance in Escherichia coli. Plant Cell Rep 29:1131–1137

    Article  CAS  PubMed  Google Scholar 

  • Gupta K, Jha B, Agarwal PK (2014) A dehydration-responsive element binding (DREB) transcription factor from the succulent halophyte Salicornia brachiata enhances abiotic stress tolerance in transgenic tobacco. Mar Biotechnol 6:657–673

    Article  CAS  Google Scholar 

  • Hennig L (2012) Plant gene regulation in response to abiotic stress. Biochim Biophys Acta 1819:85

    Article  CAS  PubMed  Google Scholar 

  • Hu YZ, Zeng YL, Guan B, Zhang FC (2012) Overexpression of a vacuolar H+-pyrophosphatase and a B subunit of H+-ATPase cloned from the halophyte Halostachys caspica improves salt tolerance in Arabidopsis thaliana. Plant Cell Tiss Organ Cult 108:63–71

    Article  CAS  Google Scholar 

  • Jha B, Agarwal PK, Reddy PS, Lal S, Sopory SK, Reddy MK (2009) Identification of salt-induced genes from Salicornia brachiata, an extreme halophyte through expressed sequence tags analysis. Genes Genet Syst 2:111–120

    Article  Google Scholar 

  • Jha A, Joshi M, Yadav NS, Agarwal PK, Jha B (2011a) Cloning and characterization of the Salicornia brachiata Na+/H+ antiporter gene SbNHX1 and its expression by abiotic stress. Mol Biol Rep 3:1965–1973

    Article  CAS  Google Scholar 

  • Jha B, Sharma A, Mishra A (2011b) Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Mol Biol Rep 38:4823–4832

    Article  CAS  PubMed  Google Scholar 

  • Jha B, Mishra A, Jha A, Joshi M (2013) Developing transgenic Jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland. PLoS ONE 8:e71136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia GX, Zhu ZQ, Chang FQ, Li YX (2002) Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Rep 21:141–146

    Article  CAS  Google Scholar 

  • Joshi AJ (2011) Monograph on Indian halophytes. Bhavnagar (India). Department of Life Sciences, Bhavnagar University, Bhavnagar, Gujarat

    Google Scholar 

  • Joshi AJ, Bhoite AS (1988) Fluctuations of mineral ions in saline soils and halophytic grass Aeluropus lagopoides L. Ann Arid Zone 27:191–196

    Google Scholar 

  • Joshi AJ, Mali BS, Harsha H (2005) Salt tolerance at germination and early growth of two forage grasses growing in marshy habitats. Environ Exp Bot 54:267–274

    Article  CAS  Google Scholar 

  • Kavitha K, George S, Venkataraman G, Parida A (2010) A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. Biochimie 92:1321–1329

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Gul B (1999) Seed bank strategies of coastal populations at Arabian Sea coast. In: Proceedings: Shrubland Ecotones, pp 12–14

    Google Scholar 

  • Khedia J, Agarwal P, Agarwal PK (2018) AlNAC4 transcription factor from halophyte Aeluropus lagopoides mitigates oxidative stress by maintaining ROS homeostasis in transgenic tobacco. Front Plant Sci 9

    Google Scholar 

  • Krishnamurthy P, Mohanty B, Wijaya E, Lee DY, Lim TM, Lin Q, Xu J, Loh CS, Kumar PP (2017) Transcriptomics analysis of salt stress tolerance in the roots of the mangrove Avicennia officinalis. Sci Rep 7:10031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumari A, Jha B (2019) Engineering of a novel gene from a halophyte: potential for agriculture in degraded coastal saline soil. Land Degrad Dev 30:595–607

    Article  Google Scholar 

  • Kumari J, Udawat P, Dubey AK, Haque MI, Rathore MS, Jha B (2017) Overexpression of SbSI-1, a nuclear protein from Salicornia brachiata confers drought and salt stress tolerance and maintains photosynthetic efficiency in transgenic tobacco. Front Plant Sci 8:1215

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Houérou HN (1993) Forage halophytes and salt-tolerant fodder crops in the Mediterranean Basin. In: Halophytes as a resource for livestock and for rehabilitation of degraded lands. Springer, Dordrecht, pp 123–137

    Google Scholar 

  • Li N, Chen S, Zhou X, Li C, Shao J, Wang R, Fritz E, Hüttermann A, Polle A (2008) Effect of NaCl on photosynthesis, salt accumulation and ion compartmentation in two mangrove species, Kandelia candel and Bruguiera gymnorhiza. Aquat Bot 88:303–310

    Article  CAS  Google Scholar 

  • Li W, Wang D, Jin T, Chang Q, Yin D, Xu S (2011) The vacuolar Na+/H+ antiporter gene SsNHX1 from the halophyte Salsola soda confers salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Mol Biol Rep 29:278–290

    Article  CAS  Google Scholar 

  • Li K, Pang CH, Ding F, Sui N, Feng ZT, Wang BS (2012) Over expression of Suaeda salsa stroma ascorbate peroxidase in Arabidopsis chloroplasts enhances salt tolerance of plants. S Afr J Bot 78:235–245

    Article  CAS  Google Scholar 

  • Li QL, Xie JH, Ma XQ, Li D (2016) Molecular cloning of Phosphoethanolamine N-methyltransferase (PEAMT) gene and its promoter from the halophyte Suaeda liaotungensis and their response to salt stress. Acta Physiol Plant 38:39

    Article  CAS  Google Scholar 

  • Martinez JP, Silva H, Ledent JF, Pinto M (2007) Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). Eur J Agron 26:30–38

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) The value of wetlands: importance of scale and landscape setting. Ecol Econ 1:25–33

    Article  Google Scholar 

  • Mohsenzadeh S, Malboobi KMA, Razavi Farrahi-Aschtiani S (2006) Physiological and molecular responses of Aeluropus lagopoides (Poaceae) to water deficit. Environ Exp Bot 56:314–322

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Termaat A (1986) Whole-plant responses to salinity. Funct Plant Biol 13:143–160

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Naaz N, Hameed M, Wahid A, Arshad M, Aqeel Ahmad MS (2009) Patterns of ion excretion and survival in two stoloniferous arid zone grasses. Physiol Plant 135:185–195

    Article  CAS  Google Scholar 

  • Naz N, Hameed M, Sajid Aqeel Ahmad M, Ashraf M, Arshad M (2010) Is soil salinity one of the major determinants of community structure under arid environments? Community Ecol 11:84–90

    Article  Google Scholar 

  • Naz N, Hameed M, Nawaz T, Batool R, Ashraf M, Ahmad F, Ruby T (2013) Structural adaptations in the desert halophyte Aeluropus lagopoides (Linn.) Trin. Ex Thw. under high salinity. Eur J Biol Res 19:150

    Google Scholar 

  • Nellemann C, Corcoran E (2009) Blue carbon: the role of healthy oceans in binding carbon: a rapid response assessment. UNEP/Earthprint

    Google Scholar 

  • Oh DH, Dassanayake M, Haas JS, Kropornika A, Wright C, d’Urzo MP, Hong H, Ali S, Hernandez A, Lambert GM, Inan G (2010) Genome structures and halophyte-specific gene expression of the extremophile Thellungiella parvula in comparison to Thellungiella salsuginea (Thellungiella halophila) and Arabidopsis. Plant Physiol 1:110

    Google Scholar 

  • Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532:279–282

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Patel MK, Mishra A, Jha B (2016) In planta transformed cumin (Cumin umcyminum L.) plants, overexpressing the SbNHX1 gene showed enhanced salt endurance. PloS One 7:e0159349

    Google Scholar 

  • Pang CH, Li K, Wang B (2011) Overexpression of SsCHLAPXs confers protection against oxidative stress induced by high light in transgenic Arabidopsis thaliana. Physiol Plant 143:355–366

    Article  CAS  PubMed  Google Scholar 

  • Patel MK, Joshi M, Mishra A, Jha B (2015) Ectopic expression of SbNHX1 gene in transgenic castor (Ricinus communis L.) enhances salt stress by modulating physiological process. Plant Cell Tiss Organ Cult 122:477–490

    Article  CAS  Google Scholar 

  • Rajan N, Agarwal P, Patel K, Sanadhya P, Khedia J, Agarwal PK (2015) Molecular characterization and identification of target protein of an important vesicle trafficking gene AlRab7 from a salt excreting halophyte Aeluropus lagopoides. DNA Cell Biol 34:83–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramadan T (2001) Dynamics of salt secretion by Sporobolus spicatus (Vahl) Kunth from sites of differing salinity. Ann Bot 87:259–266

    Article  CAS  PubMed  Google Scholar 

  • Rao GN, Murty PP (2013) Morphological and anatomical features of Salicornia brachiata Roxb. J Biol Chem 2:887–891

    Google Scholar 

  • Razavi K (2005) Identification and characterization of mRNA transcripts differentially expressed in response to high salinity using DD-AFLP in Aeluropus lagopoides. In: 4th national biotechnology congress, 15–17 August, Kerman, Iran

    Google Scholar 

  • Rengasamy P (2002) Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Aust J Exp Agr 42:351–361

    Article  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Riadh K, Wided M, Hans-Werner K, Chedly A (2010) Responses of halophytes to environmental stresses with special emphasis to salinity. Adv Bot Res 53:117–145

    Article  CAS  Google Scholar 

  • Saad RB, Romdhan WB, Zouari N, Azaza J, Mieulet D, Verdeil JL, Guiderdoni E, Hassairi A (2011) Promoter of the AlSAP gene from the halophyte grass Aeluropus littoralis directs developmental-regulated, stress-inducible, and organ-specific gene expression in transgenic tobacco. Transgenic Res 20:1003–1018

    Google Scholar 

  • Sahu BB, Shaw BP (2009) Isolation, identification and expression analysis of salt-induced genes in Suaeda maritima, a natural halophyte, using PCR-based suppression subtractive hybridization. BMC Plant Biol 9:69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanadhya P, Agarwal P, Khedia J, Agarwal PK (2015) A low-affinity K+ transporter AlHKT2; 1 from recretohalophyte Aeluropus lagopoides confers salt tolerance in yeast. Mol Biotech 57:489–498

    Article  CAS  Google Scholar 

  • Santhanakrishnan D, Perumal RK, Kanth SV, Jonnalagadda RR, Bangaru C (2013) Studies on the physiological and biochemical characteristics of Salicornia brachiata: influence of saline stress due to soaking wastewater of tannery. Desalin Water Treat 52:31–33

    Google Scholar 

  • Shabala S (2013) Learning from halophytes physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 7:1209–1221

    Article  Google Scholar 

  • Sher M, Sen DA, Mohmmed S (1994) Seasonal variations in sugar and protein content of halophytes in Indian desert. Ann Arid Zone 33:249–251

    Google Scholar 

  • Shukla PS, Agarwal P, Gupta K, Agarwal PK (2015a) Molecular characterization of an MYB transcription factor from a succulent halophyte involved in stress tolerance. AoB Plants 1:7

    Google Scholar 

  • Shukla PS, Gupta K, Agarwal P, Jha B, Agarwal PK (2015b) Overexpression of a novel SbMYB15 from Salicornia brachiata confers salinity and dehydration tolerance by reduced oxidative damage and improved photosynthesis in transgenic tobacco. Planta 242:1291–1308

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Mishra A, Jha B (2014) Over-expression of the peroxisomal ascorbate peroxidase (SbpAPX) gene cloned from halophyte salicornia brachiata confers salt and drought stress tolerance in transgenic tobacco. Mar Biotechnol 16:321–332

    Article  CAS  Google Scholar 

  • Singh D, Yadav NS, Tiwari V, Agarwal PK, Jha B (2016a) A SNARE-like superfamily protein SbSLSP from the halophyte Salicornia brachiata confers salt and drought tolerance by maintaining membrane stability, K+/Na+ ratio, and antioxidant machinery. Front Plant Sci 7:737

    PubMed  PubMed Central  Google Scholar 

  • Singh VK, Mishra A, Haque I, Jha B (2016b) A novel transcription factor-like gene SbSDR1 acts as a molecular switch and confers salt and osmotic endurance to transgenic tobacco. Sci Rep 6:31686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slenzka A, Ladislav M, Gudrun K (2013) Salicornia L. (Amaranthaceace) in South Africa and Namibia: rapid spread and ecological diversification of cryptic species. J Bot Linean Soc 172:175–186

    Article  Google Scholar 

  • Sobhanian H, Motamed N, RastgarJazii F, Nakamura T, Komatsu S (2010) Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a halophyte C4 plant. J Prot Res 2:882–897

    Google Scholar 

  • Stanley OD (2008) Bio prospecting marine halophyte Salicornia brachiata for medical importance and salt encrusted land development. J Coast Dev 2:62–69

    Google Scholar 

  • Sun Q, Gao F, Zhao L, Li K, Zhang J (2010) Identification of anew 130 bp cis-acting element in the TsVP1 promoter involved in the salt stress response from Thellungiella halophila. BMC Plant Biol 10:90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis related halophyte salt stress using Arabidopsis microarray. Plant Physiol 135:1697–1709

    Google Scholar 

  • Taji T, Komatsu K, Katori T, Kawasaki Y, Sakata Y, Tanaka S, Kobayashi M, Toyoda A, Seki M, Shinozaki K (2010) Comparative genomic analysis of 1047 completely sequenced cDNAs from an Arabidopsis-related model halophyte, Thellungiella halophila. BMC Plant Biol 10:261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanveer M, Shabala S (2018) Targeting redox regulatory mechanisms for salinity stress tolerance in crops. In: Salinity responses and tolerance in plants. Springer, Cham, pp 213–234

    Chapter  Google Scholar 

  • Tanveer M, Shah AN (2017) An insight into salt stress tolerance mechanisms of Chenopodium album. Environ Sci and Poll Res 24:16531–16535

    Article  CAS  Google Scholar 

  • Tanveer M, Shahzad B, Sharma A, Biju S, Bhardwaj R (2018) 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: a review. Plant Physiol Biochem 130:69–79

    Article  CAS  PubMed  Google Scholar 

  • Tao JJ, Wei W, Pan WJ, Lu L, Li QT, Ma JB, Zhang WK, Ma B, Chen SY, Zhang JS (2018) An Alfin-like gene from Atriplex hortensis enhances salt and drought tolerance and abscisic acid response in transgenic Arabidopsis. Sci Rep 8:2707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tewari A (1970) A note on the value of Sporobolus coromandelianus (Trin.) Kunth and Aeluropus lagopoides (Linn.) as feed and soil binder. Plant Sci 2:135–136

    Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50:571–599

    Article  CAS  Google Scholar 

  • Tiwari V, Chaturvedi AK, Mishra A, Jha B (2015) Introgression of the SbASR-1 gene cloned from a halophyte Salicornia brachiata enhances salinity and drought endurance in transgenic groundnut (Arachis hypogaea) and acts as a transcription factor. PLoS ONE 10:e0131567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torbatinejad N, Maghsoodlowrad H, Gharabash AM (2000) Nutritive value of Aeluropus littoralis and Aeluropus lagopoides in sheep, pp 31–46

    Google Scholar 

  • Tuteja N, Banu MS, Huda KM, Gill SS, Jain P, Pham XH, Tuteja R (2014) Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery. PLoS ONE 9:e98287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Udawat P, Jha RK, Sinha D, Mishra A, Jha B (2016) Overexpression of a cytosolic abiotic stress responsive universal stress protein (SbUSP) mitigates salt and osmotic stress in transgenic tobacco plants. Front Plant Sci 7:518

    Article  PubMed  PubMed Central  Google Scholar 

  • Waghmode AP, Hegde BA (1984) Effect of sodium chloride on pyruvate orthophosphate dikinase of a saline grass Aeluropus lagopoides (Linn.). Trin Biovigyanam 10:209–210

    CAS  Google Scholar 

  • Waghmode AP, Joshi GV (1982) Photosynthetic and photorespiratory enzymes and metabolism of 14 C-substrates in isolated leaf cells of the C4 species of Aeluropus lagopoides L. Photosynthetica 16:17–21

    CAS  Google Scholar 

  • Wahid AB (2003) Physiological significance of morphoanatomical features of halophytes with particular reference to Cholistan flora. I J Agri Biol 5:207–212

    Google Scholar 

  • Waisel Y (1972) Biology of halophytes. Academic Press, New York

    Google Scholar 

  • Wang RZ (2007) Plant functional types and their ecological responses to salinization in saline grasslands, Northeastern China. Photosynthetica 42:511–519

    Article  Google Scholar 

  • Wang ZL, Li PH, Fredricksen M, Gong ZZ, Kim CS, Zhang C, Bohnert HJ, Zhu JK, Bressan RA, Hasegawa PM, Zhao YX (2004) Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Sci 166:609–616

    Article  CAS  Google Scholar 

  • Wang YC, Qu GZ, Li HY, Wu YJ, Wang C, Liu GF, Yang CP (2010) Enhanced salt tolerance of transgenic populus plants expressing a manganese superoxide dismutase from Tamarix androssowii. Mol Biol Rep 37:1119–1124

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Li B, Meng Y, Ma X, Lai Y, Si E, Yang K, Ren P, Shang X, Wang H (2014a) Transcriptomic profiling of the salt-stress response in the halophyte Halogeton glomeratus. BMC Genomic 16:169

    Article  CAS  Google Scholar 

  • Wang TT, Ren ZJ, Liu ZQ, Feng X, Guo RQ, Li BG, Li LG, Jing HC (2014b) SbHKT1; 4 a member of the high-affinity potassium transporter gene family from Sorghum bicolor, functions to maintain optimal Na+/K+ balance under Na+ stress. J Integr Plant Biol 56:315–332

    Article  CAS  PubMed  Google Scholar 

  • Watson L, Dallwitz MJ (1992) The grass genera of the world. CAB International, Wallingford

    Google Scholar 

  • Wu G, Shao HB, Chu LY, Cai JW (2007) Insights into molecular mechanisms of mutual effect between plants and the environment. A review. Agron Sustain Dev 27:69–78

    Article  CAS  Google Scholar 

  • Yadav NS, Shukla PS, Jha A, Agarwal PK, Jha B (2012) The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biol 1:188

    Article  CAS  Google Scholar 

  • Yadav NS, Singh VK, Singh D, Jha B (2014) A novel gene SbSI-2 encoding nuclear protein from a halophyte confers abiotic stress tolerance in E. coli and tobacco. PloS ONE (9):101926

    Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Zhao Y, Luo D, Zhang H (2002) Isolating the promoter of a stress-induced gene encoding betaine aldehyde dehydrogenase from the halophyte Atriplex centralasiatica. Biochim Biophys Acta 1577:452–456

    Article  CAS  PubMed  Google Scholar 

  • Yue W, Xia GM, Zhi DY, Chen HM (2001) Transfer of salt tolerance from Aeluropus littoralissinensis to wheat (Triticum aestivum L.) via asymmetric somatic hybridization. Plant Sci 161:259–266

    Article  CAS  Google Scholar 

  • Zhang GH, Su Q, An LJ, Wu S (2008a) Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus littoralis. Plant Physiol Biochem 46:117–126

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yin H, Li D, Zhu W, Li Q (2008b) Functional analysis of BADH gene promoter from Suaeda liaotungensis K. Plant Cell Rep 27(3):585

    Article  PubMed  CAS  Google Scholar 

  • Zhu M, Meng X, Cai J, Li G, Dong T, Li Z (2018) Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. BMC Plant Biol 18:83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parinita Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agarwal, P., Dabi, M., Kinhekar, K., Gangapur, D.R., Agarwal, P.K. (2020). Special Adaptive Features of Plant Species in Response to Salinity. In: Hasanuzzaman, M., Tanveer, M. (eds) Salt and Drought Stress Tolerance in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-40277-8_3

Download citation

Publish with us

Policies and ethics